Test materials
Ethanamizuril (CAS:1560840-75-6, C18H16N4O4, molecular weight 352.3 g/mol, purity 98.6%), N-(4-(4-(3,5-dioxo-4,5-dihydro-1,2,4-triazin-2-(3H)-yl)-2-methylphenoxy)phenyl)acetamide, was synthesized by Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science (Shanghai, P.R. China) and characterized by NMR, IR, LC-MS, and LC-UV methods (data were not shown).
Animal receipt, acclimation and husbandry
Forty beagle dogs (20 males and 20 females), approximately 4–6 months of age, were obtained in good health from Xinglong Laboratory Animal Breeding Plant, Haidian District, Beijing (Batch No. SCXK (Jing) 2016-0003). Each animal was immunized as planned prior to the study. It took 7 days to get acclimatized the testing facility conditions for dogs prior to dose administration. At the initiation of ethanamizuril administration, body weights of dog ranged from 6.0–7.0 kg. Each group of animals was housed in a separate room maintained at 18-25℃, with 30–70% relative humidity, natural ventilation, and a 12-h light-dark cycle. Each dog stayed and was fed in individual stainless steel cages measuring 100 cm in height, 100 cm in length, and 90 cm in width. Noise was controlled below 50 decibels. The animals were fed 2 times daily with a medicated diet at 9:00 and 15:00. Distilled water was available ad libitum throughout the study. Regular opportunity for exercise and social interaction were allowed for all animals. The study was approved (20160105) by the Institutional Animal Care and Use Committee at Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences.
Diet preparation
According to the requirements of different doses in the beagle dog 90-day oral toxicity study, the diets were mixed separately by group and ethanamizuril was evenly incorporated in basal diet respectively. The processing of diet was in the charge of Beijing Keao Xieli Feed company (Beijing Keao Xieli Feed Co., Ltd., Beijing, China), and the components of the diet include: water content ≤10%, crude protein ≥20%, crude fat ≥8%, Crude fiber ≤4%, Crude ash ≤9%, calcium 0.7-1.0%, Total phosphorus 0.5-0.8%. To ensure the homogeneity and effectiveness, the drugs were weighed carefully and were thoroughly mixed and prepared every 4 weeks. In addition, the stability and homogeneity of the diets were verified prior to the study by HPLC method [18].
Assignment of animals to treatment groups
The animals were randomly divided into four groups by Excel software based on the body weight, and each group of dogs were fed basal diets mixed with 0, 12, 60 and 300 mg/kg ethanamizuril for a total period of 90 days, respectively. The low and middle dose groups each consisted of 4 males and 4 females, and the control and high dose groups each consisted of 6 males and 6 females. Animals were dosed for 90 days and four dogs/sex/group were sacrificed under anesthesia with sodium pentobarbital. The remaining dogs of control and high dose groups were administered control feed for a further 4 weeks (convalescence) after which they were killed in the same manner and subjected to examination.
Parameters evaluated
Clinical observations
All animals in the study were observed at least twice daily for any changes in appearance of coat, activity and respiration, food and water intake, micturition and stool excretion. The presence or absence of findings in each animal was recorded regularly.
Prior to the start of ethanamizuril administration and at the end of the treatment period, ophthalmological examinations with fluorescein sodium method were performed respectively in control and high dose groups. If there were the changes of ophthalmology in the high dose group, all animals in the other dosing groups should be examined.
Body weights, food consumption
The individual body weight and food consumption weights of animals were recorded every 5 days throughout the study period. Food consumption was calculated as g/animal/day. In addition, the body weight on the day of randomization was also recorded.
Clinical pathology/laboratory examinations
To detect hematology and serum chemistry parameters, blood samples of treated animals were collected during study day 0, 45, 90 (scheduled necropsy), and 118 (end of convalescence). Prior to blood collection, animals were fasted overnight. Hematological test parameters were basophil (BAS), eosinophil (EOS), erythrocyte count (RBC), hematocrit (HCT), hemoglobin (HGB), leukocyte count (WBC), lymphocyte (LYMPH), monocytes (MO), neutrophils (NEU), platelet count (PLT). Albumin (Alb), alanine aminotransferase (ALT), blood glucose (Glu), blood urea nitrogen (BUN), creatinine (Cr), glutathione aminotransferase (AST), total cholesterol (TCH), total protein (TP), triglyceride (TG) were included in clinical chemistry test parameters.
During study day 0, 45, 90 (scheduled necropsy), and 118 (end of convalescence), urine samples were also collected from all animals by using cage pans. Bilirubin (T-BIL), glucose (GLU), ketones (KET), occult blood (BLO), protein (PRO) and white blood cells (WBC) were detected using qualitative indicators of analyte concentration. Urine pH, specific gravity (SG) and urobilinogen (URO) were measured quantitatively.
Necropsy and pathology
After injected sodium pentobarbital with small saphenous vein, the dogs were euthanized by exsanguination via the abdominal aorta under anesthesia. Four dogs/sex/group were euthanized on day 90 and the remaining dogs of control and high dose groups were euthanized on day 118. The necropsy included, but was not limited to, examining the body external surface, all orifices, and all organs in coelom. All the organs from animals at the scheduled necropsy including the adrenals, brain, heart, kidney, liver, lung, spleen, stomach and intestine, testis and epididymides, ovaries and uterus were weighed. The organ relative weight (the percentage of organ weight to body weight) was calculated. Based on the SOPs of histopathology technical operation, the tissue sampling, paraffin embedding, sectioning, and hematoxylin-eosin staining were conducted for the above organs from each animal, and then evaluation via light microscopic for morphological alterations. Tissues from other groups were examined as necessary to determine NOAEL in target organs.
Statistical methods
The treated groups were compared to their respective control groups. To determine intergroup differences, the data in the study were applied to a parametric one-way analysis of variance (ANOVA) [20]. When statistically significant (p < 0.05) intergroup variance was revealed by ANOVA, Dunnett's test was applied to compare the groups.