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Abstract
The emergence of the pandemic coronavirus-2019 (COVID-19) disease by the Severe Acute Respiratory
Syndrome Corona Virus-2 (SARS-CoV-2) or 2019-novel coronavirus-2019 (2019- nCoV-2019) has created
a disease-ridden environment for the entire human community, globally. However, no potent prophylactic
therapy is available to control the deadly emerged viral disease. Repurposing of existing antiviral,
antiinflammatory, antimalarial drugs is the only option against SARS-CoV-2. But without any clinical
evidence, the recommended dose and expected side effects are under debate. As an alternative solution,
we proposed a newer hypothesis using the selective, potent anti-HIV drugs and flavonoid class of
phytochemicals in combination to balance the potency and toxicity during combat against SARS-CoV-2.
Primarily, ten anti-HIV protease inhibitor drugs with ten phyto-flavonoids are selected as ligands for
docking study against the putative target, the main protease (Mpro) of SARS-CoV-2 (PDB ID: 6Y2E), as an
essential enzyme in viral genome replication. According to molecular docking and drug-ability scores of
each ligand, the anti-HIV drug, the darunavir (with a docking score, -10.25 kcal/mol and drug-likeness
rating, 0.60) and the quercetin-3-rhamnoside (with a docking score, -10.90 kcal/mol and drug-likeness
rating, 0.82), were selected for further analysis in the mixture. Later, the interchanged mutual docking
analysis suggested that ‘darunavir-quercetin-3- rhamnoside’ was the most potent and less toxic drug
chemical-cocktail/ formulation against SARS-CoV-2-Mpro. Additionally, molecular dynamics simulation,
predicted toxicity and pharmacokinetics profiles also support to the hypothesized formulation; mainly,
eight strong H- bond interactions were found against SARS-CoV-2-Mpro. Thus, projected molecular
docking- simulation based active and lesser toxic ‘anti-HIV-drug-phyto-flavonoid’ therapy could be
promoted against SARS-CoV-2.

Introduction
The pandemic of coronavirus–2019 (COVID–19) disease from the Severe Acute Respiratory Syndrome
Corona Virus–2 (SARS-CoV–2) or 2019-novel coronavirus–2019 (2019-nCoV) has created a horrific
situation and extremely impact of global primary health care management 1–4. As per the expert, the
outbreak and quick transmission of the COVID–19 is close to the severe pandemic Spanish flu that
happened in 1918–19. Concomitantly, approximately 78% of SARS- CoV–2 infected patients were found
in an asymptomatic manner 5, 6. Thus, recognition of a SARS-CoV–2 infected patient is a challenge to
break the invisible transmission of the pandemic state. As per updated information, severe pneumonia,
multi-organ dysfunction have been associated with a higher rate of mortality from SARS-CoV–2 in age
groups of the population in different geographical regions 7–9. Still, 30st April 2020, 214 countries have
been suffering from the SARS-CoV–2 with 2,21,823 mortality out of 31,45,407 cases, from which
maximum mortality associated with elderly-cum-health complicity community 1. In India’s scenario, the
death per incidence is only 0.03 %, out of which approximately 75% mortality rate linked with the upper
age-group (> 60 years) and comorbidity, as comparatively lower than the international level at present 1,

10. The global situation, staring from the Republic of China to the United States of America, Italy, Spain,
France, the United Kingdom, German, Spain, etc., are the most suffering countries from the deadly SARS-
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CoV–2 and at present except China, all Asian nations quite suffer less 1, 11. Thus, it is a massive
challenge for every nation-state as well as for the World Health Organization (WHO) to implement the
newer emergency advisory, national health policy and therapeutic strategy to protect the entire world
health system from the unknown viral disease 1, 12.

According to WHO reports, several drug and vaccine candidates are under testing and still no US-Food
and the Drug Administration (FDA) recommended drug is available for the treatment of the deadly
disease 13–15. However, fighting against the aggressive positive-sense single-strand RNA or (+)ssRNA viral
infection without any compelling medicine is the most substantial fear towards the protection of the
emergency health system 15. Indeed, experts or physicians used several alternative combinations of
existing antiviral and antiinflammatory drugs on a non-random trial or hit-and-trial basis to tackle the
situation 16, 17. Mainly, existing FDA approved antiviral drugs such as baloxavir marboxil, darunavir,
favipiravir, lopinavir, oseltamivir, remdesivir, ritonavir, etc., along with several immune-modulatory,
antiinflammatory medications such as fingolimod, sarilumab, and tocilizumab are using in non-clinical
trial repurposing and drug-combination method 16, 17. Even the combinatorial treatment with the obsolete
antimalarial and anthracitic drug, hydroxychloroquine (Plaquenil) with the macrolide class of antibiotics
azithromycin for standard flue gives an alternative solution form the clinical evidence against SARS-
CoV–2 18. Fortunately, strategically applied drug combinations seem good towards control of SARS-CoV–
2 from several obtained results, but it has different results on a geographical along with patient to patient
basis 15–18. From the vaccination point of view at present, eight vaccine candidates are in clinical trials
and another hundred candidates in the preclinical trial stage. However, as per the expert source, it needs a
minimum of one year for validation and marketing of a potent SARS-CoV–2 vaccine.

On the other hand, several alternative non-targeting treatment therapies and regimens such as Nitric
Oxide (NO) inhalation, human Natural Killer (NK) cells, or innate lymphocytes, humanized monoclonal
antibody (mAb) based formulation and several active traditional regiments under clinical validation
according to FDA guidelines 19–21. Currently, the anti-HIV medicine, darunavir, remdesivir, lopinavir,
ritonavir are the most working prophylactic agents against SARS-CoV–2 in repurposing basis in different
combinations and doses 15, 22. Therefore, we cannot switch off the drug combinations ordinarily until
available of any substituted potential drug/ vaccine. However, the non-standardized recommended drug
combinations without any clinical evidence create severe side effects 23–25. Thus, the development/
formulation of well- tolerated with lesser side treatment therapies/ regimens is the call of the day.

As an alternative solution, using screened-out any antioxidants, antiinflammatory and antiviral
phytochemical(s) with an anti-HIV/ antiviral medicines than used double anti-HIV/ antiviral or any
mainstream drug combinations, is expected to control the post-treatment side effects as well enhance the
activity. From Indian ancient Ayurvedic and Traditional Chinese Medicine (TMC), several natural
products/ regimens have been active against viral diseases 26–29. Recently, the activity of such secondary
metabolites against SARS-CoV–2 has been reported through several random computational and
experimental studies, too, from worldwide researchers 30–33. Consequently, polyphenol or flavonoids class
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of phytochemicals are well verified and reported having potential immune-stimulant and antiviral
properties 34–38. In parallel, some TMC regimen has already tested and shown a positive response
towards the control of SARS-CoV–2. Several active TMC formulations are also under clinical validation
against SARS- CoV–2 for FDA approval 20, 39, 40. Herein, the present work hypothesizes smartly with
selective anti-HIV drugs and phyto-flavonoids in combination to combat SARS-CoV–2, an iron hand. As
per the hypothesis, an advanced, cost-effective and time-saving molecular-docking-simulation approach
was used to evaluate the biological activity, toxicity and drug-ability of the combination formula. Herein,
the recently submitted crystallographic structure of the main proteinase (Mpro) used as a drug target
during the validation. Mainly, the viral protease is a prudent drug target, as the Mpro plays a pivotal
enzyme for viral genome replication 30, 32, 39, 40. Thus, this might be a novel idea in current anti-CoV drug
development by utilizing the potent natural product along with an anti-HIV drug feasibly and cost-
effectively.

Materials And Methods
Preparation of ligand and target structure for computational analyses. Based on previous ethnomedicinal
evidence, literature, and drug bank information, the chemical structure of ten anti-HIV protease inhibitor
drugs and ten flavonoid class of phytochemicals were selected for use in drug-combination approach
against SARS-CoV–2-Mpro. The anti-HIV drugs, amprenavir, ASC09 (TMC310911), atazanavir, darunavir,
indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, tipran avir and the phyto-flavonoids, apigenin, catechin,
dihydroquercetin, epigallocatechin gallate, hesperidin, hesperidin, LPRP-Et–97543, quercetin, quercetin–3-
rhamnoside and rutin were retrieved as ligands from PubChem database
(https://pubchem.ncbi.nlm.nih.gov/). Further, the recently submitted three-dimensional crystal structure
of the SARS-CoV–2-Mpro enzyme bearing 306 amino acids as a target protein, was extracted from protein
data bank (PDB) with an ID: 6Y2E for use in the docking-simulation study towards the selection of most
active drug-able compound. Additionally, both structure- and sequence-level analyses were carried out
between the SARS-CoV–2-Mpro with previously reported crystal structure of SARS-CoV-Mpro (PDB ID:
2DUC) with the protein fold recognition server, Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2/).

Molecular docking of both drug and phytochemicals. The present computational work was carried out in
Linux-Ubuntu 16.04 LTS workstation. The software namely, AutoDock 4.1 for both single and double
docking study and the BIOVIA Discovery Studio (BIOVIA DSB v4.5) for visualization of the target-ligand
interactions during docking . Retrieved target structure of SARS-CoV–2-Mpro and each ligand were saved
in dot (.) pdb format before docking study 41, 42. Additionally, first energy minimization of the retrieved
SARS-CoV–2-Mpro was carried out through simulation at 50 nano second (ns) before docking. The
default sets of docking parameters of AutoDock tools, as Kollman charges with polar hydrogen bonds for
target, while Geister partial charges for ligands were used. The grid size 126x126x126 during protein-
ligand and 40x40x40 during ligand-ligand docking was used. Particularly, interchanged double docking
study between selected two phyto-flavonoids, quercetin–3-rhamnoside and LPRP-Et–97543, with the
docked complex of SARS-CoV–2-Mpro-darunavir and SARS-CoV–2-Mpro-tipranavir, individually were

http://%28https//pubchem.ncbi.nlm.nih.gov/)
http://www.sbg.bio.ic.ac.uk/phyre2/)
http://%28http//www.sb
http://.bio.ic.ac.uk/phyre2/)
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performed. Additionally, interchange ligand-ligand docking between darunavir-quercetin–3-rhamnoside,
darunavir-LPRP-Et–97543, tipranavir-quercetin–3- rhamnoside and tipranavir-LPRP-Et–97543 were
performed 42, 43. Generated ten interaction poses for each ligand, the most effective pose was selected
based on its binding energy/ docking score and ligand efficacy 41–43. Further, the most effective docking
complexes were selected for stability check by molecular dynamic simulation (MDS) study.

Molecular dynamic simulation study with most effective protein-ligand complexes. Further, the native/
apo-enzyme protein structure, most effective protein-drug, protein-phyto and protein- drug-phyto docking
complexes were selected for molecular dynamic simulation (MDS) study to check the stability pattern of
each docking complexes in an appropriate computational environment. A total of 50 ns for apo-enzyme
and 30 ns MDS for each docking complexes with GROMACS (Groningen Machine for Chemical
Simulations) package (version 5.1.4) with GROMOS force field was carried out 42. Parameters and
topologies files for each complex were generated using the PRODRG server. Native protein and selected
three most effective docking complexes with the SPCE water-cubic box model (whose volume was about
976.40, 976.50, 977.48, 977.48 nm3, respectively) were simulated. A total of 30576, 30564, 30573 and
30563 numbers of solvent molecules added to each system from native protein structure to double
docking complexes. Neutralized the system by adding 4 Na+ ions, as well as the energy minimization
using 50,000 steepest descent steps, was carried out for each docking complex. After minimization of the
system, the NVT (number of particles, volume and temperature) and NPT (number of particles, pressure,
temperature) equilibrations were performed for equilibrating the system for the 100ps time scale for each.
The final MD step was performed for the protein system for a 30 ns time scale and with time steps of 2fs
42.

Possible toxicity and drug-ability prediction for both anti-HIV drug and phytochemicals. The primary
toxicity profiles of both anti-HIV drugs and phyto-flavonoids using the generated simplified molecular-
input line-entry system (SMILES) code for each chemical structure, was investigated. The toxicity profiles
such as hepatotoxicity, carcinogenicity, immunotoxicity toxicity, mutagenicity, cytotoxicity, along with
toxicity class and possible lethal dose (LD50) value using the tool, ProTox
(http://tox.charite.de/protox_II/), was recorded. Additionally, the overall drug-likeness or possibility for a
drug, based on the chemical composition of each ligand was measured using the tool, Molsoft
(http://molsoft.com/mprop/).

Possible pharmaceutical profiles prediction for both anti-HIV drug and phytochemicals. Besides the
crucial drug-selection parameter, pharmacokinetics profiles as known as, Absorption, Distribution,
Metabolism, Excretion, and Toxicity (ADME/T) properties of used anti-HIV drugs and phyto-flavonoids
were assessed using the tool, SwissADME (http://www.swissadme.ch/).

Results
Preparation of ligand and target structure for computational analyses. The selected chemical structure of
anti-HIV protease inhibitor drugs and phyto-flavonoids with individual PubChem with physicochemical

http://tox.charite.de/protox_II/)
http://.charite.de/protox_II/)
http://molsoft.com/mprop/)
http://www.swissadme.ch/)
http://dme.ch/)
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properties such as molecular weight (g/mol), number of H-bond acceptors, H-bond donors, octanol/ water
partition coefficient (XlogP), topological polar surface area (tPSA in Å), molar refractivity (mol/m3),
number of rotatable bonds were recorded (Table S1 & Table S2).. Currently, all cited parameters are
collectively known as the Lipinski rule five (RO5) in the current drug development module. However, all
drugs do not follow the standard RO5 regulations, while a maximum number of phyto-flavonoids are
obeying the RO5 rules. Currently, the RO5 is a fundamental physicochemical parameter based standard
rule to filter the possible drug-able compound in the early stage of ‘lead drug’ selection. On the other hand,
from fold recognition analysis with the selected target SARS-CoV–2-Mpro (ID: 6Y2E) confirmed that a >92
% structural portion with previously recognized SARS-CoV-Mpro (2DUC) was conserved (Fig. 1)..
Concomitantly, from sequence-level analysis, twelve substituted amino acids/ mutations also found.
From which nine variations/ mutations were conservative in between both CoV-Mpro. Thus, the pandemic
SARS-CoV–2-Mpro is structurally-sequentially conserved, but the mutated amino acids may be associated
with the development of severity or resistance to applied treatments.

Molecular docking of both drug and phytochemicals. The molecular docking score of selected 20 ligands
(ten anti-HIV protease inhibitors drugs or n = 10 and ten phyto-flavonoids or n = 10) against the energy
minimized and a stable (in 50 ns MDS) allosteric target, SARS-CoV–2- Mpro was recorded (Table 1 &
Table 2; Figs. S1 to S3).. Among all anti-HIV drugs, darunavir with docking score, –10.25 kcal/mol and
tipranavir with docking score, –10.14 kcal/mol were two most potent drugs against SARS-CoV–2-Mpro,
based on recorded docking score (Table 1).. Similarly, from the phyto-flavonoid side, quercetin–3-
rhamnoside with docking score, –10.90 kcal/mol and LPRP-Et–97543 with docking score, –10.11
kcal/mol were recorded (Table 2).. From molecular interactions study, the potent antiviral drug darunavir
has formed three hydrogen bond interactions with amino acids with LYS5 and LEU282 (Fig. 2).. In
comparison, quercetin–3- rhamnoside has assembled eight potent H-bond interactions at amino acids,
LYS5, ALA7, GLN127, LYS137 and GLU290 (Fig. 3),, respectively against SARS-CoV–2-Mpro during
docking study. Herein confirmed that the phyto-flavonoid quercetin–3-rhamnoside was more potent and
stable than anti-HIV drugs in molecular docking analysis. As per the hypothesis of the combination drug
approach, a total of four candidates (n = 4), from which two potent anti-HIV drugs, darunavir and
tipranavir (n = 2) and LPRP-Et–97543 and quercetin–3-rhamnoside (n = 2), were selected. Hypothetically,
the double-docking score is comparatively higher than the individual docking score of each selected
ligands. Fortunately, among four double-docking complexes, the darunavir-quercetin–3-rhamnoside (n =
1) combination was the most effective combination with total docking score, –14.83 (double docking
score, –10.95 kcal/mol and ligand- ligand docking score, –3.88 kcal/mol) than other double docking
complexes (Table 3; Fig. 4).. Above all docking analysis, three docking complexes, SARS-CoV–2-Mpro-
darunavir, SARS- CoV–2-Mpro-quercetin–3-rhamnoside and SARS-CoV–2-Mpro-darunavir-quercetin–3-
rhamnoside were selected for stability analyses with MDS at 30 ns.

Molecular dynamic simulation study with most effective protein-ligand complexes. Towards understand
the structural stability of native protein with selected protein-ligand docking complexes through the root
mean square deviation (RMSD)-protein backbone, root mean square fluctuation (RMSF)-C-alpha and
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Radius of gyration (Rg) of protein were analyzed by MDS. The explained RMSD plot of single protein
determined that continuous unorthodoxy in backbone protein has appeared during 50 ns time. But
between 32 to 46 ns, absolute mere stability was found from the analyzed plot (Fig. S1).. Similarly, the
RMSF-plot describes the c-alpha and Rg- plot of the whole protein including c-alpha, backbone and side-
chain described the inconsistency to maintain the stability during 50 ns in extracted plots (Figs. S2 & S3).

From the single docking complex of SARS-CoV–2-Mpro-darunavir, SARS-CoV–2-Mpro- quercetin–3-
rhamnoside, the RMSD plot of quercetin–3-rhamnoside was comparatively more stable than the
darunavir complex (Fig. 5).. Protein backbone of SARS-CoV–2-Mpro-quercetin–3- rhamnoside (green color
bar in Fig. 5), showing the least deviation in between 0 to 29 ns, while SARS-CoV–2-Mpro-darunavir (blue
color bar in Fig. 5) displayed the variation for first 20 ns and the rest 10 ns gradually less fluctuate in
plotted RMSD. Similarly, the RMSD plot of double docking was comparative higher fluctuation at an
upper length, > 0.25 nm between 10 to 15 ns (orange color bar in Fig. 5). From the above RMSD plot
analysis, quercetin–3-rhamnoside having the least fluctuation within 30 ns (Fig. 5).. Correspondingly,
garnered individual RMSF- and Rg- plots of and overplayed for judgment the variation with simulation
time in between three docking complexes (Figs. 6 & 7).. Based on the RMSF-analyses, both anti-HIV drug
and double docking complex (SARS-CoV–2-Mpro-darunavir-quercetin–3-rhamnoside) exhibited the most
diverged value in corresponding to C-alpha residues than phyto-flavonoids. Furthermore, Rg-plots showed
the compactness or solidity of the quercetin–3-rhamnoside with more squeezed Rg-values rather than
other complexes (Fig. 7).. Additionally, H-bond interaction analyses exposed that, eight strong H-bond
interactions in both SARS-CoV–2-Mpro-quercetin–3-rhamnoside (green color bar in Fig. 8) and SARS-
CoV–2-Mpro-darunavir-quercetin–3-rhamnoside (in the orange color bar), were found (Fig. 8).. In the form
of activity based on strong H-bond interactions points of view, the quercetin–3-rhamnoside was a most
active component than the anti-HIV drug darunavir; as a result, the flavonoid combined drug formulation
exhibited the most therapeutic potency towards inhibition of SARS-CoV–2.

Possible toxicity and drug-ability prediction for both anti-HIV drug and phytochemicals. The toxicity or
side effect is a significant concern for implementation of therapeutic agents/ drugs. Currently, a
maximum number of lead-drug candidates unable to express the ideal safety pieces of stuff and later on,
withdrawn from the clinical trial. Herein, from the predicted toxicity profile records, phyto-flavonoids were
comparatively safer than the anti-HIV drugs (Tables 4 & 5).. However, except for hepatotoxicity and
immunotoxicity, anti-HIV drugs are safer like phytochemicals. Mainly selected darunavir showed a
moderately reliable under class-III category with severe hepatotoxicity (Table 4).. On the other hand,
phyto-flavonoid, the quercetin–3- rhamnoside, was reasonably safer with class-V, as a more reliable/
inoffensive drug-able compound (Table 5)..

In the same way, the overall drug-likeness or possibility for a drug molecule score for each ligand was
recorded (Tables 1 & 2).. As per the drug-ability plot, positive drug-likeness value is good; a score between
0.60 to 1.20 is an ideal score to be a successive drug molecule. The drug candidates presented perfect
drug-likeness scores, while it was discernible that all phyto-flavonoids too exhibited drug-like scores as a
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recommended anti-HIV drugs, computationally. The drug-ability score of the quercetin–3-rhamnoside had
the most potential score, 0.82, while the anti-HIV drug darunavir score, 0.60 (Figs. S4 & S5). Thus, as per
the predicted drug-likeness score, it also supported the proposed phyto-drug combination.

Possible pharmaceutical profiles prediction for both anti-HIV drug and phytochemicals. At the close stage
of drug validation, the pharmacokinetics profile plays a crucial during recommendation. Moreover,
advanced computational tools also able to provide some statistical- based reports for each ligand from
its training set documents at an early stage. Herein, both anti- HIV drugs and phyto-flavonoids
pharmacokinetics profiles were recorded (Tables S3 & S4).. As per reports, except for lopinavir and
indinavir, rest for anti-HIV medicines have lower gastrointestinal absorption (GI-abs.), including darunavir
(Table S3).. Similarly, all drugs are unable to cross the blood-brain barrier (BBB) report. On the other hand,
pharmacokinetics profiles of phyto-flavonoids displayed in a changeability manner of GI-abs., P-gp
substrate, etc., where the quercetin–3-rhamnoside was similar to anti-HIV drug profile along with, all
phytochemical showed the same negative BBB cross report. (Table S4).. The overall pharmacokinetics
also reports of all ligands were presented, graphical (Figs. S6 & S7).. From the above analysis reports, all
ligands are some deviate profiles, mainly phytochemicals. As a result, a combination of a mainstream
drug with a phytochemical may have maintained the activity as well as pharmacokinetics in the presence
of one with another during treatment.

Discussion
Since the last decade, a continuous outbreak staring from Dengue, Nipah, Ebola, Chikungunya, Zika and
currently the SARS-CoV–2, an updated version of Middle East Respiratory Syndrome (MERS) and Severe
Respiratory Syndrome (SARS) CoV family, threatening the human health and economy 1–4. Like an
upgraded version of drug/ antibiotics, the virus also reconstructed their genome through genetic or
environmental pressure; as a result, the omnipotent human unable to protect from the massive storm of
deadly viral infection 3, 4, 7, 8. Motionless, the origin of SARS- CoV–2 is under investigation, but it is
continuing the unpredictable morbidity and mortality rates in wildfire gestures without any differentiation
between age group, gender, race, poor, rich and geographical region 3, 8. However, the actual activities,
route of transmission and especially symptoms of SARS-CoV–2 infection are still indistinguishable.
Notably, the genomic information of SARS-CoV–2 is quite diversified from the previously isolated strain
of the Co-V family; as a result, several newer serotypes continuously isolated from several geographic
regions 7, 8, 44, 45. Someway the more updated genomic material, clinical evidence and epidemiology
analysis stretch some clues in the scientific community to applying some novel strategy as well as
towards developing some therapeutic regimen towards control of the SARS- CoV–2 44–46.

Currently, no FDA-recommended drug/ vaccine is available for the treatment of the SARS-CoV–2;
somehow, several alternative combinations of existing antiviral, antiinflammatory, antimalarial drugs in a
hit-and-trial basis 15–19. Mainly, as from the experience of previously used combinations for MERS- and
SARS-Co-V virus were more viable, as members of similar taxa with a higher genomic match 44, 46. The
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anti-HIV drugs, ASC09, darunavir, lopinavir, ritonavir as potent viral protease inhibitors, oseltamivir, a
potent anti-H1N1 neuraminidase inhibitor, favipiravir and umifenovir as potent anti-influenza drugs
targeting viral RNA-dependent RNA polymerase, anti-ebola drug, remdesivir targeting viral RNA
polymerase, are most widely used drugs in repurposing basis with several combinations 15, 22. However,
the multi-drug combinations are complicated in SARS-CoV–2 patients with multiple comorbidities such
as diabetics, hypertension, respiratory disease and cardiac dysfunctions 24, 25, 47, 48. From the vaccination
point of view, it needs a minimum of one year for validation and marketing of a budding vaccine
candidate against SARS-CoV–2 with FDA recommendation 14, 17.

Alternatively, several non-target conventional treatment therapies with natural regimens/ products are
quite a classic area for any infectious diseases 39, 49, 50. Ordinarily, phytochemicals have been suggested
as a vibrant conservative resource, since individual plant crude extracts and isolated secondary
metabolites curative potential against various health ailments 35, 45, 50. Natural plant products such as
curcumin, quinine, taxol, vincristine, morphine, etc., have been playing a significant role in the contribution
of several mainstream medicines 49, 50. From the structural point of view, the flavonoid or polyphenol
class of phytochemicals is more suitable and safer secondary metabolites for human administration with
potent immune-stimulant and antioxidant as a lesser toxic/ non-toxic class of drug candidates 35–39, 51.

For example, the flavonoid class of derivatives, phenoxodiol, genistein and polyphenolic constituents
from green tea and soybeans are now in a different stage of clinical trials as a potent anticancer regimen
52. Someway, non- conventional therapy using Ayurveda and TCM regimens gives some productive
outputs against SARS-CoV–2 from several recent reports 26, 27, 28, 29.

Concomitantly, the computer-aided drug development (CADD) program is a cost- effective and time
saving and decisive method in ongoing drug discovery modules. The CADD program could be a
promising endeavor in newer anti-CoV drug development using lead-drug candidates than the traditional
hit-and-trial selection process 30–33. Mainly, the high-throughput screening to locate active most chemical
moieties based on binding energy or docking scores before synthesis and expensive experimental
validation are directly influencing the reduction of cost of medicine in the later stage 42, 53, 54.

Furthermore, the backbone RMSDs, Cα-RMSF, Rg- plot, and intermolecular H-bonds analyses through all-
atom MDS provide more productive results with more thermodynamic features as well as, underlying
kinetics behavior of protein- ligand docking complexes 42, 53, 54. Notably, MDS suggests that SARS-CoV–
2-Mpro-quercetin–3-rhamnoside is ideal complex than SARS-CoV–2-Mpro-darunavir as per the variability
observation within 30 ns. Additionally, the combination of darunavir-quercetin–3-rhamnoside makes
strong interactions against SARS-CoV–2-Mpro from H-bond analysis. MDS for an extended period with
these complexes may share more high-volume results on stability or structural flexibility in different time
intervals. Subsequently, computational tools can predict the possible toxicity and drug-ability profile of a
chemical; as a result, ordinarily remove the unwanted/ toxic chemicals in the preclinical stage 53, 54. Thus,
combined with a potent anti-HIV protease inhibitor drug is the most excellent and inspiring approach for
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the utilization of more phytochemicals in mainstream medicine during searching for alternative therapy
against SARS-CoV–2 at emergency.

Conclusion
Currently, the entire global health system in the intensive care unit (ICU) and the whole community living
under insecurity from the pandemic of SARS-CoV–2. Without any clinical evidence, the repurposing of
existing antiviral, antiinflammatory, antimalarial, etc., medicines is the only therapeutic option against
SARS-CoV–2. However, clinical dose and a proper assessment of post-treatment side effects of ongoing
repurposing drug therapies are an essential guideline-cum-challenge for any physician/ clinician, as
treatment has linked with severe side effects/ host-toxicity from recent clinical reports. As an alternative
solution, we proposed a newer hypothesis using potent anti-HIV protease inhibitor drugs with an active
flavonoid class of phytochemicals towards balancing the toxicity and potential effects to combat SARS-
CoV–2. Moreover, flavonoids reported as a potent antioxidant, antiinflammatory, immune-stimulant with
potent antiviral activities with non-toxic/ lesser toxic actions. Among ten anti-HIV-drugs with ten phyto
flavonoids, darunavir and quercetin–3-rhamnoside were selected as the most potent SARS-CoV–2-Mpro

,

at primary analyses. Future based on advanced molecular docking-simulation, overall drug-likeness
score, toxicity and pharmacokinetic profiles study, the ‘darunavir-quercetin–3-rhamnoside’ was the most
effective and less toxic pharmacological active mishmash against SARS-CoV–2-Mpro. Thus, the
proposed ‘anti-HIV-drug-phyto-flavonoid’ combination could be promoted against SARS-CoV–2 as a
potent natural-based antiviral therapy with lesser post-treatment adverse effects to the host. Strategically,
computer-aided drug design could be a promising endeavor in newer anti-CoV drug development during
possible lead-drug candidate(s) selection than the traditional hit-and-trial selection process in this
challenging time.
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predicted drug-likeness, lethal doses (kg/mg) and bioavailability scores of individual anti-
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HIV drugs.
Anti-HIV protease

 
inhibitor drug

Docking
 
score

Drug
 
likeness

Lethal
 
dose

Bioavailability
 
score

Amprenavir -8.43 1.14 300 0.55

ASC09/TMC-310911 -9.56 1.09 150 0.17

Atazanavir -7.37 0.11 200 0.17

Darunavir -10.25 0.60 245 0.55

Indinavir -7.80 1.86 5000 0.55

Lopinavir -9.00 1.10 5000 0.55

Nelfinavir -9.97 1.41 600 0.55

Ritonavir -8.75 0.11 1000 0.17

Saquinavir -8.97 0.69 500 0.17

Tipranavir -10.14 0.72 333 0.56

Table 2. Docking scores (kcal/ mol) against SARS-CoV-2-Mpro (PDB ID: 6Y2E) and

predicted drug-likeness, lethal doses (kg/mg) and bioavailability scores of individual

phyto-flavonoids.
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Flavonoid class
 
phytochemical

Docking
 
score

Drug
 
likeness

Lethal
 
dose

Bioavailability
 
score

Apigenin -8.28 0.39 2500 0.55

Catechin -8.86 0.64 10000 0.55

Dihydroquercetin -7.98 0.50 159 0.55

Epigallocatechingallate -7.69 0.23 1000 0.17

Hesperidin -8.48 0.94 12000 0.17

Kaempferol -7.91 0.50 3919 0.55

LPRP-Et-97543 -10.11 0.82 2000 0.55

Quercetin -8.33 0.52 159 0.55

Quercetin-3-rhamnoside -10.90 0.82 2300 0.17

Rutin -5.48 0.91 5000 0.17

Table 3. Recorded interchanged double docking and ligand-ligand docking scores (kcal/

mol) against SARS-CoV-2-Mpro with selected anti-HIV drugs (n=2) and phyto-flavonoids

(n=2).
Docking types

 
 

Flavonoids

Double docking Ligand-ligand docking

SARS-CoV-2-
 
Mpro-Darunavir

SARS-CoV-2-
 
Mpro-Tipranavir

Darunavir Tipranavir

Quercetin-3-rhamnoside -10.95 -10.84 -3.88 -3.34

LPRP-Et-97543 -10.45 -10.34 -3.32 -2.77

Due to technical limitations, Tables 4-5 are provided in the Supplementary Files section.

Figures
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Figure 1

Protein structure superimpose and sequence analysis between SARS-CoV-2- Mpro (PDB ID: 6Y2E) with
SARS-CoV-Mpro (PDB ID: 2DUC).
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Figure 2

Molecular interactions of the potent anti-viral drug, darunavir against SARS-CoV-Mpro (PDB ID: 6Y2E)
from docking study. The interactions image was visualized using BIOVIA DSV and interacted amino acids
are highlighted in both 2D format.
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Figure 3

Molecular interactions of the potent phytochemical, quercetin-3-rhamnoside against SARS-CoV-Mpro
from docking study. The interactions image was visualized using BIOVIA DSV and interacted amino acids
are highlighted in both 2D format.
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Figure 4

Molecular interactions of both the potent anti-viral drug, darunavir and the potent phytochemical,
quercetin-3-rhamnoside phytochemical against SARS-CoV-Mpro, simultaneously from docking study.
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Figure 5

Analyzed RMSD-plots of ‘protein’, ‘protein-drug’, ‘protein-phyto’ and ‘protein-drug- phyto’ during
conformational stability investigation at a 30 ns time.
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Figure 6

Analyzed RMSF-plots of ‘protein’, ‘protein-drug’, ‘protein-phyto’ and ‘protein-drug- phyto’ during
conformational stability investigation at a 30 ns time.
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Figure 7

Analyzed Rg-plots of ‘protein’, ‘protein-drug’, ‘protein-phyto’ and ‘protein-drug- phyto’ during conformational
stability investigation at a 30 ns time.
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Figure 8

Analyzed hydrogen‐bonds interactions plots of ‘protein-drug’, ‘protein-phyto’ and ‘protein-drug-phyto’
docking complexes after 30 ns.
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