MiR-223 Derived from Mesenchymal Stem Cell Exosomes Alleviates Acute Graft-Versus-Host Disease
Background Mesenchymal stem cells (MSCs) have been utilized in treating acute graft-versus-host disease (aGvHD) as they show strong immunosuppressive capacity, but the mechanisms are not well defined.
Methods In this study, we demonstrated that microRNA-223 (miR-223) derived from exosomes secreted by human umbilical cord mesenchymal stem cells (huc-MSCs) and murine compact bone mesenchymal stem cells (mb-MSCs) could inhibit aGvHD progression by reducing the migration and homing of donor T cells in aGvHD mice.
Results MiR-223 was one of the conserved microRNAs highly expressed in huc-MSCs exosomes and mMSCs exosomes, which was identified by high-throughput sequencing. MiR-223 derived from MSC exosomes showed enhanced immunosuppressive capacity, as it could inhibit expression of the target gene ICAM-1 and restrain adhesion and migration of T cells in vitro. Moreover, miR-223Agomir was effective in reducing the inflammatory reaction, and declining the donor T cells infiltration into the spleen, liver and intestine in aGvHD mice. Subsequently, it could alleviate aGvHD symptoms. Taken together, the MSC exosome derived miR-223 could attenuate aGvHD in mice through regulating ICAM-1 expression.
Conclusions Our results unveil a new role for MSC exosomes derived miR-223 in the treatment of aGvHD.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
This is a list of supplementary files associated with this preprint. Click to download.
Posted 19 May, 2020
MiR-223 Derived from Mesenchymal Stem Cell Exosomes Alleviates Acute Graft-Versus-Host Disease
Posted 19 May, 2020
Background Mesenchymal stem cells (MSCs) have been utilized in treating acute graft-versus-host disease (aGvHD) as they show strong immunosuppressive capacity, but the mechanisms are not well defined.
Methods In this study, we demonstrated that microRNA-223 (miR-223) derived from exosomes secreted by human umbilical cord mesenchymal stem cells (huc-MSCs) and murine compact bone mesenchymal stem cells (mb-MSCs) could inhibit aGvHD progression by reducing the migration and homing of donor T cells in aGvHD mice.
Results MiR-223 was one of the conserved microRNAs highly expressed in huc-MSCs exosomes and mMSCs exosomes, which was identified by high-throughput sequencing. MiR-223 derived from MSC exosomes showed enhanced immunosuppressive capacity, as it could inhibit expression of the target gene ICAM-1 and restrain adhesion and migration of T cells in vitro. Moreover, miR-223Agomir was effective in reducing the inflammatory reaction, and declining the donor T cells infiltration into the spleen, liver and intestine in aGvHD mice. Subsequently, it could alleviate aGvHD symptoms. Taken together, the MSC exosome derived miR-223 could attenuate aGvHD in mice through regulating ICAM-1 expression.
Conclusions Our results unveil a new role for MSC exosomes derived miR-223 in the treatment of aGvHD.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7