
Page 1/22

Modelling flood susceptibility zones using hybrid machine learning
models of an agricultural dominant landscape of India
Satish Kumar Saini 

Jawaharlal Nehru University
Susanta Mahato 

Jawaharlal Nehru University
Deep Narayan Pandey 
(

deepudai@gmail.com
)

Jawaharlal Nehru University
Pawan Kumar Joshi 

Jawaharlal Nehru University

Research Article

Keywords: Risk assessment, Flood events, Spatial analysis, Machine learning, Accuracy assessment

Posted Date: June 2nd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2835927/v1

License:


This work is licensed under a Creative Commons Attribution 4.0 International
License.
 
Read Full License

Version of Record: A version of this preprint was published at Environmental Science and Pollution Research on August 18th, 2023. See the
published version at https://doi.org/10.1007/s11356-023-29049-9.

https://doi.org/10.21203/rs.3.rs-2835927/v1
mailto:deepudai@gmail.com
https://doi.org/10.21203/rs.3.rs-2835927/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11356-023-29049-9


Page 2/22

Abstract
One of the most destructive natural disasters is flood because it destroys a significant amount of property and infrastructure, and often causes
death. Due to complexity and ferocity of severe flooding, predicting flood-prone areas is a difficult task. Each year, flooding results in destruction
of agriculture, damage to resources, and fatalities in the Asia and the Pacific. Thus, creating flood susceptibility maps at local level is though
challenging but inevitable task. In order to implement a flood management plan for the Balrampur district, an agricultural dominant landscape of
India, and strengthen its resilience flood susceptibility modeling and mapping is carried out. In the present study, three hybrid machine learning
models namely Fuzzy-ANN (Artificial Neural Network), Fuzzy-RBF (Radial Basis Function) and Fuzzy-SVM (Support Vector Machine) with 12
topographic, hydrological and other flood influencing factors were used to determine flood susceptible zones. To ascertain the relationship
between the occurrences and flood influencing factors, Correlation Attributes Evaluation (CAE) and multicollinearity diagnostics tests were used.
The predictive power of these models was validated and compared using a variety of statistical techniques, including Wilcoxon signed-rank, t-
paired tests, and Receiver Operating Characteristic (ROC) curves. Result shows the Fuzzy-RBF model out performed other hybrid machine
learning models for modelling flood susceptibility, followed by Fuzzy-ANN and Fuzzy-SVM. Overall, these models have shown promise in
identifying flood-prone areas in the basin and other basins around the world. The outcomes of the work would benefit policymakers and
government bodies to capture the flood-affected areas for necessary planning, action and implementation.

1. Introduction
The ecosystems of the natural and human world are greatly impacted by floods, which are frequent catastrophe. The magnitude of floods up to
a certain degree is generally beneficial for the ecosystem, such as providing riparian corridor with water and nutrients, removing pollutants from
flood plain areas, recharging ground water, and improving soil fertility (Hester et al., 2020; Golden et al., 2019). But beyond the tolerance levels
these floods result failure in agricultural fields, lives and properties, residential areas, water resources, and natural habitat, among others
(Guzzetti and Tonelli, 2004). According to the United Nations Office for Disaster Risk Reduction (UNDRR), between 1996 and 2015, there were
150,061 deaths worldwide attributable to flood occurrences, or 11.1% of all total deaths from disasters worldwide (Chen et al., 2019). Floods
were the most common and often occurring form of disaster (about 47 percent between 1995 to 2015), among all the weather-related disasters,
and out of all floods about 95 percent were in Asia (Khattri, 2017). The rate and intensity of floods are expected to intensify by 2050, which
might result in enormous damage (about US$ 1 trillion). This would further intensify due to rapidly growing population, changing land usage,
and the continuing climate change (Islam and Karim 2019; Armal et al., 2020).

The increased frequency of severe occurrences of floods, including droughts, storms, and catastrophic outcomes, are thought to be mostly
caused by poorly anticipated climate change. Highly skewed patterns of monsoon rainfall intensity frequently result in flood occurrences in
monsoon climate regions (Ullah et al., 2021; Dewan, 2015). Unfavourable changes in channel morphology, particularly aggradations of the
channel bed, falling carrying capacity, man-made drainage modifications such capture, piracy of distributaries, and cross-blocking of rivers are
some significant causes behind the increase in flood triggering factors (Mahato et al., 2021). The susceptibility of flood is increased by
artificially controlling the flow of water from a dam, releasing it suddenly, and artificially raising the water level to embank a river. It can prevent
flooding up to a point, but when an embankment is breached, the flood impact multiplies (Froehlich, 2008; Pierce, 2010). People affected by such
breaching episodes not only experience tremendous flow impacts, but also some extra negative effects including long-lasting or permanent sand
splay damage to agricultural fields (Brázdil et al., 2006; Ielpi et al., 2018) and several water-borne infections (Davies et al., 2015; Semenza, 2020).
The chance of a flood effect increases as a result of wetland reclamation in the flood plain region, which decreases the natural capacity of flood
water to be stored. In addition to triggering factors, increased population density in flood plains, urban expansion, expansion of infrastructure
agriculture and fishing activities in riparian flood plain areas have increased flood exposure, and consequently, the vulnerability of those areas to
flooding (Talukdar and Pal, 2020; Wang et al., 2020). The recent meteorological events have increased the risk of flooding in locations with flood
plains due to sudden flooding, faster-moving water, and shorter reaction times (Barrocu and Eslamian, 2022). By 2050, it is anticipated that the
danger of fluvial floods would have increased globally by around 187 percent due to changes in the triggering variables and degree of exposure,
with Asia likely suffering the most (Arnell and Gosling, 2016).

In order to conserve the natural and human ecology, extensive study is needed to explore the cause-nature-consequence links throughout the
globe. Floods are a hazard, and this necessitates a focus on the cause-nature-consequence relationships. Adedeji et al. (2012) and Mind'je et al.
(2019) correctly said that mapping flood susceptibility is a prerequisite for sustainable flood control and risk management techniques since it
provides a useful database for adopting the necessary adaptation and mitigation methods. The use of several pertinent characteristics to
address particular susceptibilities, such as land slip, soil erosion, and habitat change, is a recent research trend known as susceptibility
modelling (Dragićević et al., 2015 and Barney et al., 2012). When data are available, direct flood parameters can be used in vulnerability
modelling; otherwise, proxy parameters can be used in situations when data are few (Jun et al., 2013). Therefore, this strategy can occasionally
close the hydrological data gap and offer an acceptable flood forecast at a spatial scale (Molinari et al., 2020). Numerous studies have taken
advantage of this chance to map flood susceptibility using a different set of variables than those listed in Table 1. Effective modelling requires
the selection of representative parameters and the use of a strong integrating approach (Mahato and Pal, 2019; Pal et al., 2020; Pal et al., 2021).



Page 3/22

Table 1
Literature on selecting conditioning parameters for flood susceptibility modelling

References Soil
type/texture

LULC Buffer Curvature Elevation Flow
Acc

Geomorphology MNDWI Rain Slope SPI TWI

Choubin
et. al.,
2019

  √ √ √ √         √   √

Arora et.
al., 2019

√ √ √ √ √   √   √ √   √

Das 2019   √ √ √ √ √ √   √ √ √ √

Pham et.
al., 2020

√ √ √ √ √         √    

Bui et. al.,
2019

  √ √ √ √       √ √ √ √

Chowdhuri
et. al.,
2019

√ √ √   √       √   √ √

Chen et.
al., 2019

√ √ √ √ √       √ √ √ √

Hong et.
al., 2017

√ √ √ √ √       √ √ √ √

Pandey et.
al., 2021

√ √ √ √ √   √   √ √   √

Mahato et.
al., 2021

  √ √ √ √ √       √ √ √

Sahana
and Patel,
2019

√ √ √ √ √       √ √   √

Towfiqul
Islam et.
al., 2020

√ √ √ √ √       √ √ √ √

Pal and
Singha,
2021

√ √ √ √ √ √     √ √ √ √

Kundu and
Mahato,
2020

√ √   √ √ √     √ √   √

Gourav et.
al., 2020

  √ √   √         √    

Various flood susceptibility assessment models, including the Analytic Hierarchy Process (AHP) (Vojtek and Vojteková, 2019; Hammami et al.,
2019), frequency ratio (a bivariate statistical model, FR) (Rahmati et al. 2016; Shafapour Tehrany et al., 2019), weighted factor (Termeh et al.,
2018), Weights-of-Evidence (WoE) (Tehrany et al., 2014; Rahmati et al., 2016), Random Forest (RF) (Vafakhah et al., 2020; Abedi et al., 2022),
Remote Sensing (RS ) (Dano et al., 2019), Logistic Regression (LR) (Al-Juaidi et al., 2018; Shafapour Tehrany et al., 2019; Pham et al., 2020),
fuzzy logic (Akay, 2021; Bouamrane et al., 2022), and Multivariate Discriminant Analysis (MDA) (Choubin et al., 2019), have been used so far for
flood susceptibility mapping. However, there are drawbacks and advances to each model and technique. The reviewed literature reveals that a
variety of flood susceptibility assessment models, including Multi-Criteria Decision-Making (MCDM), Multivariate Discriminant Analysis (MDA),
HYDROTEL, RBF, Soil Water Assessment Tool (SWAT), wetSpa, AHP, FR, weighted factor, WoE, RF, RS, LR, fuzzy logic, and others, have been used
so far.

All techniques have been successfully applied and yielded satisfying results in terms of susceptibility modelling across many disciplines.
Statistical techniques were used by Arabameri et al. (2019), Shafapour Tehrany et al. (2019), and Mousavi et al. (2022) to analyse flood
susceptibility. The knowledge-based multi-criteria approach was used by Das and Gupta (2021) and Nachappa et al. (2020), but those
approaches may encounter problems like bias in the expert assessment of the parameters (Kamali et al., 2017; Das and Gupta, 2021; and Comes
et al., 2011). But the first two approaches have some limitations (Arabameri et al., 2019). Traditional hydrological models need intensive work to
develop and calibrate, and they aren't very trustworthy. Since bias is frequently present in the parameter selection and weighting processes, data-
driven and statistical techniques have subjectivity problems. Non-linear machine learning methods may also produce poor outcomes because of
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uneven data sets and wide range of values in specific layers (Papandreou and Ziakopoulos, 2022). However, as researchers have observed
through applications, machine learning algorithms may yield trustworthy results if parameter selection is done objectively and scientifically, and
if the quality of the data is sufficient.

On the Indian subcontinent, different regions are vulnerable to flooding due to geographical variability. A number of perennial rivers are created
by the Himalayan glacier melt, which leads to floods during the monsoon season. In addition to river flooding, other factors that contribute
include heavy rainfall, cloud bursts, glacial lake outbursts, and tsunamis (Tripathi, 2015; Singh and Kumar, 2013). India, after Bangladesh, has
the second-highest number of floods worldwide (Singh and Kumar, 2013). The proportion of flood-prone land in India is about 12.5%. (Usama,
2015). From 1915 to 2015, there were 649 disasters in India, 302 of which were caused by floods (Tripathi, 2015). According to CRED (Centre for
Research on the Epidemiology of Disasters) reports, between 1965 and 1975, there were 1000 flood-related deaths per year, but between 2005
and 2015, these were 1700 (Crunch, 2019). About 2% of India's GDP was lost to flood-related economic losses between 2005 and 2015. After
Bengal and Bihar, Uttar Pradesh is the state in India that has experienced the most flooding. The state of Uttar Pradesh has a flood-prone area of
about 73,400 km2 (Planning Commission, 2011). Ghaghara, Sarda, Gandak, Rapti, Gomati, Yamuna, and Ganga are the rivers that cause
flooding and damage in Uttar Pradesh (Khatoon, 1994; Usama, 2015). Uttar Pradesh has 294.36 lakh hectares of total land, of which 73.36 lakh
hectares are at risk of flooding (Usama, 2015). Every year, floods affect about 27 lakh hectares of land in Uttar Pradesh, causing an estimated
loss of 432 crore rupees (Usama, 2015). One of Uttar Pradesh's most severely affected districts by flooding is Balrampur. A flood in 2017 greatly
damaged property and claimed many lives (Singh, 2018) in around 300 villages. In October 2022, flood affected about 287 villages (Hindustan
times, 2022). Since it is situated in the foothills of the Himalaya, it frequently floods as a result of the Rapti and other rivers. Flood damages
property and hinders the socioeconomic and agricultural development of the region. In order to implement a flood management plan for
Balrampur district and make this district resilient, this paper captures and reports the susceptible flood zones using hybrid machine learning
modeling. The model proposed and used refers to intensive flood inventories. For activities aimed at reducing flood hazards and promoting
economic development, the findings of this paper will be helpful to governments and policy makers, specifically to the nations of interests and
flood-prone regions. The flood susceptibility map prepared here might serve as a starting point for additional study, such as risk and hazard
mapping. It can also help the planners and decision-makers take the right steps to regulate and limit this phenomenon in the research region.

2. Study area
Balrampur is an under developed district located in the eastern part of Uttar Pradesh, at the foothills of the Himalaya (Diwakar, 2008). The
geographical extent of the district is between 27°08' to 27°54' North latitude and82°02' to 82°49' East longitude (Kumar et al., 2003), covers total
area of 3349 sq km (Diwakar, 2008). The district touches border of Siddharthnagar (in East), Shravasti (in West), and Gonda (in South) in
addition to the international border of Nepal on the northern side. It is about 113 m from mean sea level (Sanjay and Prakash, 2020). The region
has a sub-humid climate with cold winters and warmer summer (Prakash and Verma, 2020), and three distinct seasons- summer, rainy and
winter season. It is located in the Tarai region, where the south-west monsoon brings majority of regional rainfall. The floods in the district are
primarily caused by the Rapti River. It moves from north to south-east along the elevation drop (390 m), (109.7 m at Tulsipur and 106.68 m at
Balrampur). Some other significant sources of flooding during the south-west monsoon season in the district are BudhiRapti, Suawa, and Kuano
rivers, along with the KharjharKatni, Kaktava, Mannar, Varuna, and Ary hilly nullah flow (Census of India, 2011). Due to low level surface, the
region is affected by frequent floods, resulting the district unhealthy and malaria prone. The district has a 642 person/sqkm population density,
with 92% population dwelling in rural areas (Census of India, 2011). The population distribution indicates higher dependency of community on
primary income source like agriculture, forest, etc. Flooding affects highly on agricultural lands and damage crops which causes economic
losses and promote migration. 

3. Materials and methods
With the aid of prior research and in consideration of the study goal and geographic setting of study area, a range of parameters were chosen for
flood susceptibility mapping. Data on the chosen parameters was compiled from a number of sources. Table 2 provides details of the
parameters, source of data and data resolution/scale. Data from the United States Geological Survey (USGS) was collected for Landsat 8 and
SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). Data on rainfall was derived from MEERA-2 (Modern-Era
Retrospective analysis for Research and Applications, Version 2) model. The agricultural contingency plan report for the district of Balrampur
served as the source for soil types map. Geomorphology map (Geological Survey of India) was procured from the Bhukosh website.
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Table 2
Description of the flood conditioning parameters

Parameter Source of Data Resolution

Topographic Wetness Index (TWI) SRTM DEM 30 m

Land Use Land Cover Landsat8 (United States Geological Survey, USGS) 30 m

Slope SRTM DEM 30 m

Rainfall MERRA-2 modeled data Interpolation

Elevation SRTM DEM 30 m

Soil Agriculture Contingency Plan: Balrampur Vector

Distance from River Open Street Map (OSM) Vector

Curvature SRTM DEM 30 m

Stream Power Index (SPI) SRTM DEM 30 m

Geomorphology Bhukosh (Geological Survey of India) Vector

MNDWI Landsat8 (USGS) 30 m

Flow Accumulation SRTM DEM 30 m

3.1 Selection of Parameters contributes to flood susceptibility
The review of literature revealed that a variety of factors influence flood susceptibility, but due to the variation in local features, some parameters
have greater impact than others. So, using the Correlation Attributes Evaluation (CAE) approach, the most appropriate parameters were chosen.
This method enables evaluation of conditioning parameters among the factors and classes using Pearson's correlation method (Pal and Singha,
2021). Additionally, to reduce the likelihood that the flood susceptibility models will be incorrect, a multicollinearity test was used in this study to
determine whether the attached parameters have any multicollinearity consequences (Pal and Singha, 2021; and Pandey et. al., 2021).
Tolerances and Variance Inflation Factor (VIF) are used in identifying the error in this test (Pal and Singha, 2021). Following equation was used
to calculate VIF and tolerance values (1,2).

Tolerance = 1- r2 (1)

VIF = 1/tolerance (2)

VIF value above 10 and tolerance level less than 0.1 shows a multicollinearity issue (Pal and Singha, 2021). In this study factors for flood
susceptibility model were included which have VIF value less than 2.5.

3.2 Flood conditioning parameters

3.2.1 Geomorphology
Geomorphology and flood susceptibility are closely related (Pandey et. al., 2022). Through the processes of erosion and deposition, flood
changes the topography (Cavalli et al., 2017). Numerous geomorphic features have impact on direction of water flow. Geomorphology indicates
indices of previous flood events. The geomorphology of the study area comprises of active flood plain, dams and reservoir, hills and plains, older
alluvial plain, older flood plain, piedmont alluvial plain, pond, river, lake and water bodies (Fig. 2a).

3.2.2 Soil
The hydrologic properties of the surface, such as the rate and amount of infiltration, erosion, and runoff are influenced by soil characteristics
(Rodríguez-Caballero et al, 2013). Flood susceptibility is negatively correlated with the rate of infiltration and surface runoff (Yang & Zhang,
2011). Lower runoff and infiltration rates reduce flood susceptibility, and vice versa as it determines degree of drainage.

3.2.3 Distance from River
Floods are most likely to occur in areas along both river banks (Buraas et al., 2014). The majority of the flood-affected land in rural areas is
found close to river streams (Janizadeh et al., 2021). As a result, flood susceptibility is higher close to rivers and decreases as distance from
them grows. This is because water intensity is highest along river banks and in flood plains. Expansion in the flooded area is brought on by
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sediment accumulation in the river basin and rising water discharge. The Euclidean map of distance from river source in the district is shown in
Fig. 2c.

3.2.4 Curvature
Curvature is a sign of a particular direction's changing slope (Minár et al., 2020). Surfaces with a positive curvature are convex, those with a zero
curvature are flat, and those with a negative curvature are concave. Water runoff is associated with regions with negative values that are highly
susceptible to flooding, whereas regions with positive curvature are less susceptible to flooding (Zaharia et al., 2017). Curvature helps to define
water surface topography relation affecting heterogeneity and hyporheic flow. It helps the model in accurate representation of water velocity
which proves beneficial in susceptibility mapping. The curvature map of the site is represented in Fig. 2d.

3.2.5 Elevation
In flood susceptibility modelling, elevation is also a key component that is frequently used. Water flows from high altitude to low altitude, and
there is a negative correlation between that and flood susceptibility (Giordano et al., 2007). Because of this, areas with low elevation are more
vulnerable to flooding than those with high elevation, and vice versa (Ishaya et al., 2009). The elevation ranges from 79–235 meter (Fig. 2e).

3.2.6 Flow Accumulation
The area where river water is gathered or stored is known as a flow accumulation. The susceptibility to flooding increases with flow
accumulation and vice versa (Zingaro et al., 2020). The potential to recharge ground water is greatest in areas where water flow accumulation is
high. Data from the SRTM DEM have been used to create a flow accumulation map. The study area has flow accumulation value ranging from
zero to 636 (Fig. 2f).

3.2.7 Land Use Land Cover (LULC)
LULC has the ability to modify and examine variables like surface runoff, water infiltration capability, sediment transport, moisture holding
capability, heat albedo, and carries a relationship of flood susceptibility in a region (Sugianto et al., 2022). For instance, built-up areas have low
infiltration capacities due to the concrete, whereas vegetation has higher infiltration capacities and lower runoff rates, which is why flood events
in settlement areas are more intense and frequent than those in vegetated areas. Land use is key determinant of flood susceptibility influencing
frequency and spread of flooding (Owrangi et al., 2014). LULC map of the study area comprises of 6 classes: agriculture, stream sediment,
settlement, vegetation, wqater bodies and wetland (Fig. 3g).

3.2.8 MNDWI
Normalized Difference Water Index (NDWI) could not distinguish between shallow water regions, so Modified Normalized Difference Water Index
(MNDWI) was used to represent the entire water body (Du et al., 2016). For locating open water areas, the MNDWI is superior to the Normalised
Difference Water Index (NDWI) (Sahana and Patel, 2019). The formula used for calculation of MNDWI is:

Where, Green refers to green wavelength and SWIR refers to Shortwave Infra-red wavelength in which satellite data is acquired. The value of
MNDWI generally ranges between − 1 and 1, however, in this case it is -0.52 to 0.25 (Fig. 3h).

3.2.9 Rainfall
One of the most important parameters for determining flood susceptibility is rainfall. It functions as a fundamental force that causes flooding
(Breugem et al., 2020). The main cause of floods in India and the study area is heavy rainfall that occurred in a very short amount of time
between June and September. Due to heavy rainfall in a brief period of time, the monsoon season is when India experiences the majority of its
floods. Rainfall with a high intensity and frequency causes flooding (Zellou and Rahali, 2019), but it is not clear that increase in what amount of
rainfall will result in increasing proportionality of flood. The rainfall distribution map is shown in Fig. 3i.

3.2.10 Slope
The physiographic feature of slope regulates water velocity. High runoff velocity and minimal vertical percolation of water are suitable for high
slope gradient slopes. So there is inverse relationship between slope and flood susceptibility (Whipple et al., 1998). Higher the slope angle means
lower the flood susceptibility; i.e. at lower slope angle or flat leads to higher flood susceptibility as it regulates surface runoff and infiltration
(Santos et al., 2019). In the study area the slope angle ranges from 0º – 24.2º (Fig. 3j).

3.2.11 Stream Power Index (SPI)
It is an influential factor for flood susceptibility mapping. SPI is the measurement of sediment transportation and stream bed erosion capacity of
a stream. It is calculated using formula:

MNDWI =
(Green − SWIR)

(Green + SWIR)
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Where,  stands for the specific catchment area and  stands for the slope gradient.

SRTM DEM data was used to generate SPI value of the study area map (Fig. 3k). A study show that higher SPI confined channels lead to
disastrous transformations of the channel. Streams have loss of water holding capacity due to swallowing of depth increase flooding in the
area.

3.2.12 Topographical Wetness Index (TWI)
TWI was proposed by Beven and Kirby (1979) as a symptom of watersheds. TWI is a quantitative index which is used to identify the moisture
content of the land surface. It shows the effect of topography on surface water saturation and its runoff. It is expressed as

Where, ‘ ’ stands for the cumulative up slope area draining through a point (per unit contour length) and  stands for the angle of slope at
that point. Flood susceptibility is positively correalated with TWI values. The TWI map was prepared from SRTM DEM using Arc-GIS software
(Fig. 3l).

3.3 Flood susceptibility models
Figure 4 depicts the paradigm of vulnerability to flooding using three hybrid models. To create hybrid models, fuzzy-logic membership has been
used. Fuzzy-ANN (Artificial Neural Network), Fuzzy-RBF (Radial Basis Function) and Fuzzy-SVM (Support Vector Machine) are the three models.

3.3.1 Fuzzy logic
Fuzzy was established by Zadeh in 1965 (Zadeh et al., 1996). It is a composition of non-discrete mathematical equation used for operating
various complex problems. Fuzzy is also known specially for its straightforwardness and implementation. The fuzzy membership value, which
ranges from 0 to 1, is used to communicate the level of confidence and support for a certain characteristic or variable. The degree of
membership of the member can be any value between '0' and '1' if the object is a member of the set, otherwise it has a membership value of '0'.

Fuzzy logic enables more adaptable configurations of weighted map data for GIS modelling. In this fuzzy set technique, the pixel of any
causative flood conditioning variable is assumed to be flood-susceptible. The value "1" assigned to this sensitive pixel contrasts with the value
"0" assigned to non-vulnerable pixels. However, since many various methods, including the Analytical Hierarchy Process, knowledge-based
weighting, and user-defined weighting, have been used to establish the fuzzy membership value, there is no unanimity on how to compute the
fuzzy membership function.

3.3.2 ANN (Artificial Neural Network)
The artificial neural network (ANN) is a black box and mathematical model. It has been applied in many fields, such as decision-making, pattern
recognition, automated control systems, robotics, and others (Liang et al., 2021). It can handle dynamic, nonlinear, and imbalanced data sets. As
a result, it is able to mimic how the human brain functions and is also able to generalise and foresee the results of a wide variety of varied
inputs. Because of this, researchers from all over the world are frequently used to answer challenges in a variety of sectors. The ANN model can
function as an expert since it can recognise complicated prediction patterns that a non-expert would not be able to. Without going against the
assumptions and characteristics of the data, it can act on categorical, continuous, and binary data (Eq. 2).

This study made use of the feed-forward dependent multilayer perceptron (MLP) architecture. An average MLP has three layers, including an
input layer, one or more hidden layers, and an output layer for nonlinear activation nodes. Numerous neurons or nodes are present in each layer,
and each node in the subsequent layer is given a specific weight. Sharing the data is their responsibility. The MLP trains the network using the
back-propagation algorithm until the difference between the expected and output values of the network is as close to zero as possible. The
outcomes are therefore produced by the ANN model.

3.3.3 RBF (Radial Basis Function)
Three layers—the input layer, the hidden layer, and the output layer—make up the hidden layer neural network known as the Radial Basis Function
Neural Networks (RBF Neural Nets) (Orr, 1996). Each unit in the hidden layer receives a broadcast from the input layer with the input vector’s
coordinates. Then, depending on the linked RBF, each hidden layer unit creates an activation (Orr, 1996). A linear combination of the activations
of the hidden units is then computed by each unit in the output layer.

SPI = Astanβ

As β

TWI = ln( )
As

tanβ

As tanβ
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3
where αis the total number of processing units, are the connecting weights, are the RBF centres or prototypes, and the function (,) is chosen to
be a Gaussian function (Du & Swamy, 2014). An unsupervised RBF Neural Nets network uses the training dataset and a k-means algorithm to
choose the initial hidden unit centres. Additionally, the initial value of every variance parameter (or parameters) in the network is set to the
greatest squared distance between any two cluster centres.

3.3.4 SVM (Support Vector Machine)
SVM is well recognized as a controlled non-parametric quantitative ML technique. Decision planes, also known as the plane of separation of
distinct aims or varying class membership, serve as the conceptual foundation for SVM. It can be used with a variety of variables, including
continuous, categorical, linear, and non-linear data sets in various members of the class. The segregation of hyper-plane formation in the
training sample is the basis of this method. The kernel function is the name of the mathematical operation used to transform data. Which
separated the data set between groups for floods and non-floods, which are indicated by 1 and 0 accordingly. The capability of the SVM model
is demonstrated by the recognition of correct kernel function. The SVM model's kernel functions were divided into four groups, including the
radial basis kernel (RBK) sigmoid kernel (SG), linear kernel (LN), and polynomial kernel (RBF) (PL).PL and RBF kernels have been employed
frequently in remote sensing scenarios. RBF kernel is frequently employed in SVM approaches due to the model's superior performance and level
of precision compared to other conventional techniques. According to earlier work, the RBF kernel performed better than other kernels in
problems involving flood susceptibility. In the most recent work, the RBF kernel function was used to identify the flood probability zones. This
approach has been used widely in the context of flood susceptibility. The main issues with SVM modelling are typically related to how
challenging it is to capture crucial variables.

3.4 Accuracy assessment and model comparison
Four methods are considered for the accuracy evaluation of the models and model comparison: (1) Area under curve under Receiver operating
characteristics (AUC-ROC), (2) Friedmen test, (3) Wilcoxon test, and (4) Correlation coefficient. The true positive rate of several probable cut
points of a diagnostic test is plotted against the false positive rate to create the ROC curve. The ROC curve produces the area under the curve,
which represents model accuracy. The susceptibility model validity is checked using a non-parametric test. No statistical inference is necessary
for non-parametric models (Buchet al., 2017). Despite the fact that the data were normally distributed, a non-parametric test—the Friedman test
and paired t test—was used (Martinez-Alvarez et al., 2018). The test was used to compare substantial variations between two or more models
(Beasley and Zumbo, 2003). The first implication for carrying out this test is that, at a significance level of 5% (p < 0.5), flood model
performances are equal (null hypothesis). When comparing two or more models, the outcome was not used if the P value for the Friedman test
held true for all models (Mahato et al., 2021). The Wilcoxon signed-rank test was used to examine the statistical significance of systematic pair-
wise differences among flood models in order to solve this issue. To evaluate the significance of differences across five susceptibility models,
the p-value and the z-value were utilised in this case. The null hypothesis was rejected since the z-value was greater than the critical values of z
(±1.96) and the p-value was less than 5%; as a result, the susceptibility models performed substantially differently (Islam et al., 2021).
Correlation coeeficient computed between flood susceptibilty models using 200 points. A test of significance must be conducted in both
circumstances. Highly significant results for the correlation coefficient can be interpreted as indicating the models' applicability in the real world.

4. Results and Discussion

4.1 Determining the influence of flood susceptibility parameters
The multicollinearity test is one of the contemporary methods for removing collinear characteristics and identifying the most important ones for
the creation of a flood susceptibility model. A multicollinearity problem among the conditioning Parameters is indicated by a variance inflation
factor (VIF) > 5 or a tolerance 0.01, according to the examined literature. To determine the relative importance of the factors influencing flood
susceptibility, the CAE rank value of each parameter was calculated using a multicollinearity test. The higher rankings for soil (0.543), MNDWI
(0.247), flow accumulation (0.051), geomorphology (0.049), TWI (0.032), aspect (0.027), slope (0.019), and SPI (0.019) indicate that these
characteristics have a significant impact on flood susceptibility modelling. However, the indications of low effect flooding susceptibility include
the distance from the river (-0.348), height (-0.343), rainfall (-0.025), and curvature (-0.025).

4.2 Flood susceptibility models
Primarily fuzzy membership was given to all the selected parameters to flood susceptibility was measured with the three hybrid models that are
Fuzzy-ANN, Fuzzy-RBF and Fuzzy-SVM. have been categorized into five susceptible classes i.e. very low, low, moderate, high and very high,
based on the natural break approach. Confluence stretches of the main river and select sections of major tributary connections are where high to
extremely high flood sensitive zones are located. Main water conduits, which are classified as having a very high sensitivity to floods, are

fi(x) = ∑
m

k=1
wkiθ(∥x − ak∥

θ
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specifically the most at risk. Although it is exceedingly challenging to define a precise high flood affected buffer width alongside the river, the
confluence stretch has a breadth of around 15 kilometres. This section of the river's bank is occupied, which necessitates the lateral spread of
flood water. This conclusion agrees with findings by Mahmoud and Gan (2018), Hong et al (2018), and Yang et al. (2018), who conducted
research in the dry regions of the Middle East, Hengfeng area, China, and Hainan, China, respectively. In addition to this, it is discovered that a
few isolated areas of topographical depression are extremely vulnerable to floods, even far from the main river (Fig. 4). According to individual
estimates from the Fuzzy-ANN, Fuzzy-RBF and Fuzzy-SVM models, there is a prominent geographical proximity between high and very high
flood sensitive zones. All hybrid models created using the aforementioned three models additionally contain spatial adjacency (Fig. 4).

Table 3
Areal distribution under different flood susceptibility models

Susceptibility zones Class Fuzzy-ANN Fuzzy-RBF Fuzzy-SVM

Very Low Area in sqkm 865.17 (25.83%) 818.52 (24.44%) 521.54 (15.57%)

Low Area in sqkm 1100.41 (32.86%) 1167.70 (34.87%) 936.55 (27.97%)

Moderate Area in sqkm 793.77 (23.7%) 665.61 (19.87%) 1031.62 (30.8%)

High Area in sqkm. 368.56 (11%) 454.69 (13.58%) 478.04 (14.27%)

Very High Area in sqkm. 221.11 (6.6%) 242.49 (7.24%) 381.26 (11.38%)

Table 3 demonstrates the calculated area of each susceptibility category across all models. In the case of all the models, out of the total area,
16.60%, 20.82%, 25.65% in Fuzzy-ANN, Fuzzy-RBF and Fuzzy-SVM models respectively, fell within extremely high and high flood sensitive zones.
In Fuzzy-SVM model, a comparatively larger region is identified as being in very high flood-prone zones. The characteristics of extremely high to
high flood sensitive locations are very low elevation (10m), high flow accumulation, concave topography, very low slope, high wetness index, and
very close proximity to rivers. They both Fig. 4, Table 3 indicate physical proximity between the calculated regions and sensitive zones, thus if
any one of them looks to be genuine, all the models will likely be correct. Only after accuracy evaluation can a final decision regarding the
models' validity be drawn. When the flood susceptibility maps are spatially overlaid with the land use/land cover maps, it is evident that 11
percent of agricultural land is located in very high to high susceptible zones, which may experience regular crop loss. 2 percent of the entire built-
up area may be very to extremely susceptible to flooding (Table 4). The similar image is shown by field experience. Flooding in September 2022
resulted in significant crop loss and property devastation.

Table 4
Land use specific flood area detection from Fuzzy-RBF model

LULC/ Flood Very low low Moderate High Very High

Waterbodies 0.004 0.027 0.022 0.070 1.372

Wetland 0.016 0.110 0.130 0.434 1.830

River sediment 0.162 0.533 0.523 0.620 0.367

Vegetation 7.424 8.695 3.254 3.127 0.309

Agriculture 16.221 23.975 15.276 8.219 2.916

Settlement 0.646 1.476 0.688 1.103 0.453

4.3 Accuracy assessment using ROC curve
The Receiver Operating Characteristic (ROC) Area Under Curve (AUC) values for all applied hybrid models range from 0.776 to 0.872,
demonstrating very good to excellent agreement between Flood Susceptibility Models (FSMs) and the actual ground situation. So, all of the
models could be considered to be reliable. The Fuzzy-RBF was found to be the most indicative of the three hybrid models used, with an AUC
value of (0.872). Fuzzy-ANN was second, with (0.831), and Fuzzy-SVM was third (0.776). The best model for predicting flood susceptibility in the
study area among the three hybrid models is fuzzy-RBF. Flood inventory map was used to validate the hybrid models of flood susceptibility
(Fig. 5).
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Table 5
Mean rank of flood susceptible models from Friedman test

Models Mean Rank Chi-square Monte Carlo Sig. at 99% confidence interval

Fuzzy-ANN 2.05 589.039 0.00

Fuzzy-RBF 2.71    

Fuzzy-SVM 1.24    

4.4 Model comparison
For the purposes of validating and contrasting different flood susceptibility models, flood inventory data sets were used. The Friedman's test
revealed that all hybrid models' average rank was notable at a value of 0.05, indicating a notable difference in the performance of flood
susceptibility models (Table 5). The analysis demonstrates that the Fuzzy-RBF model's higher mean rank value (2.71) reflects its greater
accuracy (Table 5). There are significant differences between all of the models, as indicated by the calculated chi-square value (589.039) and
the degree of freedom. All models could not be compared as comparable models with satisfactory performance. The top three models are fuzzy-
RBF, fuzzy- ANN, and fuzzy- SVM. The Friedman test is applied to the entire set of model outputs; pair-wise comparisons are not included in its
scope. In order to compare the flood susceptibility models on a pair-by-pair basis, Wilcoxon Signed Rank tests were used. According to the
results of the Wilcoxon Signed Rank test, which were calculated in Table 6, there were significant variations in the flood susceptibility models (P
value < 0.05 and Z value > critical value).

Table 6
Wilcoxon signed rank test for flood susceptible models

Models   N Mean Rank Sum of Ranks Z value Monte Carlo Sig. at
99% confidence
interval

Significance

Fuzzy-RBF vs
Fuzzy-ANN

Negative
Ranks

0a 0.00 0.00 -14.45 0 Yes

  Positive Ranks 265b 133.00 35245.00      

  Ties 135c          

Fuzzy-SVM vs
Fuzzy-RBF

Negative
Ranks

306d 154.50 47277.00 -15.194 0 Yes

  Positive Ranks 1e 1.00 1.00      

  Ties 93f          

Fuzzy-ANN
vsFuzzy-SVM

Negative
Ranks

1g 1.00 1.00 -15.202 0 Yes

  Positive Ranks 306h 154.50 47277.00      

  Ties 93i          

a. Fuzzy-RBF 
< Fuzzy-ANN

b. Fuzzy-RBF > 
Fuzzy-ANN

c. Fuzzy-RBF 
= Fuzzy-ANN

d. Fuzzy-SVM 
< Fuzzy-RBF

e. Fuzzy-SVM 
> Fuzzy-RBF

     

f. Fuzzy-SVM 
= Fuzzy-RBF

g. Fuzzy-ANN 
< Fuzzy-SVM

h. Fuzzy-ANN 
> Fuzzy-SVM

i. Fuzzy-ANN 
= Fuzzy-SVM

       

4.5 Significance of the study
This year (2022) also due to persistently severe rains in the region, a flood devastated many parts of Balrampur, Uttar Pradesh, posing
challenges for the local villagers. The water level of rapti river remained above the danger level and flowing 130 cm above the danger mark. The
flood that devastated more than 200 villages in the Balrampur area resulted in lengthy traffic lines at the National Highway-730 for vehicles.
Water has risen 3 feet above ground level on the NH-730 as a result of the flooding. Following this, the district administration halted allowing
vehicles to proceed, resulting in a lengthy line-up of trucks and other vehicles on the roadway. Thousands of people have been impacted by the
flood in more than 200 villages so far. Jagtapur, Panditpurva, Jhovahna, Kalandarpur, Gangapur, Kodari, Lalpur, Phagunia, Jogiya Kalan, Lal
Nagar, Durgapur, and Sherpur are just a few of the villages that was impacted (Fig. 7). The flood has spread beyond rural regions to urban areas
as well. Many residential areas in urban area were submerged in water. Many colonies, including Shyam Bihar and the Civil Line of the One India
Mall, was also flooded. Water levels on the Balrampur-Bahraich Marg have risen to two feet, forcing many locals to utilise boats to transport
goods out of their stores. The water level in Gilauli Bhaga village at its peak flood stage is shown in Fig. 7a, which was taken just before the
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monsoon. The state of the research area in flood in 2022 is depicted in Fig. 7. It is obvious that a more accurate and reliable map of flood
vulnerability can reduce the expense and harm caused by floods. The generated maps can help governments, planners, managers, and decision-
makers come up with better ways to limit additional urbanisation in the vulnerable areas in order to limit harm. The generated map might serve
as a starting point for additional study, such as risk and hazard mapping. It can also help the planners and decision-makers take the right steps
to regulate and limit this phenomenon in the research region.

5. Conclusions
Present study finds some areas of depressed land with centripetal-type flow convergence and accumulation along the river's edge, as well as the
low-lying areas there, are more susceptible to flooding. It is also found to be more successful to predict flood vulnerability using an ensemble
modelling approach as opposed to a single machine learning model. However, the individual model's performance in the current study is also
satisfactory. The ensemble model's accuracy level is strongly influenced by the accuracy of the combined models. Only use highly ground truth
representative models for ensemble modelling, it is advised. A significant portion of formed agricultural land is extremely vulnerable to flooding.
The idea of leaving important floodways unusable due to the severe population pressure is untenable. Two methods should be employed to
lessen the effects of a flood. A flood must first have a clear flow path in order to move swiftly and reduce both flood depth and stagnation time.
flood depth and lateral extent could be reduced by storing flood water in natural reservoirs. Reclamation of wetlands must stop immediately in
this case. The next step is to increase locals' ability to withstand flooding. It is obvious that homes constructed of mud must be replaced with
elevated-base concrete structures. It is necessary to build crop granaries. When selecting crops during the monsoon, water-resistant varieties
should be prioritised. The significance of flood control plans has increased recently, especially in India where flooding occurs yearly. However, the
effectiveness of other regions' flood mitigation measures has not yet been examined. Thus, the current study, which was carried out in the
Balrampur district of Uttar Pradesh using hybrid machine learning algorithms, will provide crucial information about the approaches to be used
to support the local government and other parties in creating efficient flood mitigation strategies and planning land-use policy not only in India
but also in other parts of the world.
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Figures

Figure 1

Map showing the location of study area in India and the drainage network, rail and road infrastructure along with sub-district units (blocks)
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Figure 2

Flood conditioning parameters- a. Geomorphology; b. Soil; c. Distance from River; d. Curvature; e. Elevation and f. Flow Accumulation
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Figure 3

Flood conditioning parameters- g. Land Use / Land Cover; h. Modified Normalized Difference Water Index; i. Rainfall; j. Slope; k. Stream Power
Index; l. Topographic Wetness Index
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Figure 4

Methodological framework of the study
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Figure 5

Figure 4 Flood Susceptibility maps through; a (Fuzzy-ANN); b (Fuzzy-RBF); c (Fuzzy-SVM)

Figure 6

Figure 5Model validation using Receiver Operating Characteristic curve (ROC)
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Figure 7

Figure 6 The correlation between the flood susceptible models
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Figure 8

Figure 7 Severe flooding and water logging problems in various locations throughout the Balrampur district during survey work


