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Abstract19

Understanding pathogen emergence in new host species is fundamental for developing prevention and re-20

sponse plans for human and animal health. We leveraged a large-scale surveillance dataset coordinated21

by United States Department of Agriculture, Animal and Plant Health Inspection Service and state natu-22

ral resources agencies to quantify outbreak dynamics of SARS-CoV-2 in North American white-tailed deer23

(Odocoileus virginianus; WTD) throughout its range in the United States. Local epidemics in WTD were24

well approximated by a single outbreak peak followed by fade out. Outbreaks peaked earliest in the northeast25

and mid-Atlantic. Local effective reproduction ratios of SARS-CoV-2 were between 1 and 2.5. Ten percent26

of variability in peak prevalence was explained by human infection pressure. This, together with the similar27

peak infection prevalence times across many counties and single-peak outbreak dynamics followed by fade28

out, suggest that widespread transmission via human-to-deer spillover may have been an important driver29

∗Address correspondence to josh.hewitt@usu.edu
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of the patterns and persistence. We provide a framework for inferring population-level epidemiological pro-30

cesses through joint analysis of many sparsely-observed local outbreaks (landscape scale surveillance data)31

and linking epidemiological parameters to ecological risk factors. The framework combines mechanistic and32

statistical models that can identify and track local outbreaks in long-term infection surveillance monitoring33

data.34

1 Introduction35

Starting in 2020, SARS-CoV-2 was found in white-tailed deer (WTD) [1, 2]. By 2021, there was evidence36

of regional transmission in WTD through a combination of ongoing deer-to-deer and human-to-deer trans-37

mission [2–5]. Early reports of SARS-CoV-2 in WTD were from surveillance in local areas—a single state,38

province, or region—during a 3 to 4-month window [1, 2, 4, 6]. Experimental infection studies corroborated39

that WTD are susceptible to SARS-CoV-2 infection, capable of shedding and deer-to-deer transmission, and40

able to form persisting neutralizing antibodies [7–9]. Endemic transmission of SARS-CoV-2 in WTD could41

position these populations as reservoir hosts, posing risk for variant persistence [4, 10], evolution of new42

variants [6, 11], and spillback into human populations [6, 11, 12]. Phylogenetic studies provide evidence43

that animal-human transmission and viral evolution routinely occurs in pandemics [13–15]. The potential44

for ongoing zoonotic outbreaks highlights the need to understand drivers of zoonotic pathogens establishing45

and persisting in new species to inform science-based One Health decisions, improve risk assessment, and46

plan effective surveillance, early response, and mitigation strategies.47

The United States Department of Agriculture (USDA) has been working with state wildlife agencies48

to investigate the occurrence of SARS-CoV-2 across the range of WTD [16] and examine its evolutionary49

patterns [5]. National-scale surveillance data were collected by opportunistically sampling hunter-harvested50

deer and through targeted agency management. However, the epidemiological dynamics of SARS-CoV-251

emergence in WTD and ecological drivers of this emergence have not been studied closely. Estimates for epi-52

demiological dynamics can guide risk assessments for infection emergence events and risk-based surveillance53

plans to study infection transmission rates, spread, and duration.54

National surveillance data can reveal landscape-scale spatial variation in infection that may be linked to55

regional and environmental factors [17, 18]. Although individual outbreaks occur at local scales, variation56

between outbreaks can arise from complex interactions between environmental conditions and infection57

transmission rates [19]. Landscape-scale analyses routinely incorporate spatial statistical models to evaluate58

the consistency (i.e., predictability) of potential risk factors while accounting for the impact that geographic59

proximity (i.e., spatial correlation) can have on empirical patterns [20]. For example, spatial correlation can60
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quantify the probability that neighboring local outbreaks may naturally co-occur, even in the absence of61

predictive environmental risk factors.62

We embed spatially and temporally correlated epidemiological compartment models within a hierarchical63

statistical model to estimate the dynamics of concurrent outbreaks of SARS-CoV-2 in white-tailed deer64

(WTD) across the conterminous United States (CONUS). The epidemiological models quantify spatially-65

varying infection parameters, such as transmission rates. The statistical framework partitions uncertainty66

to account for the unbalanced spatial, temporal, geographic, and demographic distribution of samples that67

arises from opportunistic sampling (e.g., more male vs. female WTD sampled). Hierarchical modeling68

frameworks can identify epidemiological parameters that best explain empirical infection patterns[21–24].69

Epidemiological compartment models are known to provide informative predictions for SARS-CoV-2 deaths70

in humans [25].71

We use the hierarchical statistical model to study landscape-scale factors that influence the epidemio-72

logical dynamics of SARS-CoV-2 in WTD from national surveillance data that captures multiple outbreaks.73

We estimate demographic differences in infection, spatially-varying epidemiological characteristics such as74

the effective reproductive ratio, and spatially-varying estimates for the dates of peak infection. We also esti-75

mate potential spillover risk of infection from humans to WTD. The hierarchical model estimates ecological76

factors that can potentially explain the spatially-varying differences. The model’s spatial component makes77

it possible to predict emergence dynamics in areas where surveillance data has not been collected, to guide78

risk assessment and surveillance plans critical for One Health initiatives.79

2 Methods80

2.1 Data81

2.1.1 Surveillance of SARS-CoV-2 in white-tailed deer82

We present a detailed epidemiological analysis of data collected from surveillance studies described in [16] and83

[26]. Sampling for this surveillance program was opportunistic and did not follow a preset sampling design.84

Postmortem WTD samples were collected voluntarily from multiple sources, including hunter harvest samples85

collected by state departments of natural resources, management events conducted by USDA Animal and86

Plant Health Inspection Service (USDA-APHIS), Wildlife Services, and sampling of miscellaneous mortalities87

such as roadkill collected by all agencies. Sample source and individual deer-specific metrics including sex88

and age class were recorded. Removal location data was collected at the county level. When available,89

hunters were asked to disclose the county of removal, but in lieu of removal county, the check station county90
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where the sample was collected was used. Nasal or oral swabs were collected and tested for the presence of91

SARS-CoV-2 viral RNA via rRT-PCR as described in [5, 16, 26].92

2.1.2 County-level covariates93

We use the 2020 Census Bureau population data [27] to estimate human density for each county (residents94

per sq. km.). We use the United States Geological Survey’s Gap Analysis Project (GAP) WTD species95

distribution model [28] to calculate the proportion of each county’s land that can support WTD populations96

(i.e., WTD habitat). The GAP model uses empirical analyses of occupancy by habitat to predict species97

occurrence across landcover classes. GAP landcover class pixels are converted to a binary based on if that98

pixel represents suitable year-round WTD habitat. We used the total area covered by WTD habitat pixels99

within a county divided by the total county area to calculate the proportion of WTD habitat in each county.100

2.1.3 County-level time-varying mortality rates for SARS-CoV-2 in humans101

We compare SARS-CoV-2 surveillance data for humans to the SARS-CoV-2 surveillance data for WTD to102

evaluate the potential frequency of spillover from humans to deer at landscape scales. The SARS-CoV-2103

pandemic in humans is difficult to track precisely. Public health departments use case counts, hospital104

admissions, mortality data, and derived metrics such as the proportion of all weekly deaths attributable105

to SARS-CoV-2 to monitor the state of the SARS-CoV-2 pandemic in humans [29, 30]. Each metric is106

susceptible to over and under-reporting biases, which motivates recommendations for using excess mortality107

to monitor the pandemic instead [31]. Excess mortality is typically defined as the difference between the108

number of predicted all-cause deaths and the number of observed all-cause deaths, with the difference being109

attributed to SARS-CoV-2 [32]. However excess mortality can be challenging to use at local scales since it110

can be negative and sensitive to the risk that pandemic-related behavioral changes (i.e., driving less) biases111

all-cause death predictions to be high [32, 33].112

We use the weekly death rate of SARS-CoV-2 in humans as a lagged proxy to quantify the relative113

amount of human SARS-CoV-2 infection. Human SARS-CoV-2 mortality can be predicted reasonably well,114

which suggests reporting biases for mortality rates may be consistent across time and space, especially as115

compared to case counts that strongly depend on testing rates [25]. We calculated the weekly death rate of116

SARS-CoV-2 in humans per county using data from The New York Times repository of SARS-CoV-2 cases117

(deaths per 100,000 people between Sunday–Saturday).The New York Times data aggregates daily case and118

death counts published by state and local health departments.119
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2.2 Statistical analyses120

2.2.1 Spatially-varying SIR model121

We specify a hierarchical Bayesian model that uses sample-level test results to estimate epidemiological122

parameters, associations with potential risk factors, and prevalence over time. We estimate separate epi-123

demiological parameters for each county, within which we assume there is a local, well-mixed population of124

WTD. Landscape-scale variation in infection arises from differences in parameters across counties.125

Spatially and temporally correlated, county-level susceptible-infected-recovered (SIR) compartmental126

models account for trends across time and space. The model uses both sample- and county-level covariates127

to influence SIR model parameters, identifying potential risk factors for infection transmission. We apply128

the model to the 2,893 counties across CONUS estimated to support WTD populations and focus on the129

weeks over which samples were collected.130

The model’s response variable Yk encodes the binary rRT-PCR test results for the kth sample such that

Yk = 1 for positive results and Yk = 0 for negative results. The model treats Yk as a Bernoulli random

variable with probability pk of being positive. We interpret pk as the individual test positivity or prevalence

of SARS-CoV-2 for the kth animal’s group, time, and location. The model uses the regression function

specified via

logit (pk) =
∑

j

ajzkj + logit (iℓk(tk)) (1)

to link rRT-PCR test results to county-level SIR curves and sample-level covariates and external conditions131

(e.g., age, sex, human death rate). The aj and zkj terms specify sample-level coefficients and covariates132

that adjust the baseline infected compartment iℓk(·) of the SIR curve for county ℓk at time tk based on133

group-level characteristics and external conditions for sample k. Covariates include main effects and select134

pairwise interactions for animal age class and sex, harvest source, and swab type (see Table S5 for detailed135

covariate listing). We assume counties are small enough for local WTD populations to be well-mixed, so136

that sampled deer are representative of their respective, within-county demographic groups.137

The SIR curve we propose models the proportion of susceptible sℓ(t), infected iℓ(t), and recovered rℓ(t)

individuals in county ℓ at time t via spatially and temporally correlated systems of differential equations.
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The SIR system of differential equations for each county specified via

dsℓ(t)

dt
= −βℓiℓ(t)sℓ(t),

diℓ(t)

dt
= βℓiℓ(t)sℓ(t) − γiℓ(t),

drℓ(t)

dt
= γiℓ(t)

(2)

uses a population-level recovery parameter γ and spatially varying deer-to-deer contact rate βℓ. Each county’s138

SIR curve is modeled with a local outbreak time t0,ℓ and common initial conditions sℓ(t0,ℓ) = s∗
0
, iℓ(t0,ℓ) = i∗

0
,139

and rℓ(t0,ℓ) = r∗
0
. The SIR model’s infectious period assumptions induce exponential growth in population-140

level infection before fade out. Modeling SIR parameters and initial conditions with respect to spatial random141

effects and covariates accounts for spatial and temporal similarities in SIR curves between counties.142

We model the county-level contact rate βℓ relative to the recovery rate γ scaled by a SARS-CoV-2 local

effective reproduction ratio Rℓ for each county, such that βℓ = γRℓ. The local effective reproduction ratio

quantifies the number of WTD to which a single infected WTD can be expected to transmit SARS-CoV-2

to näıve contacts. Covariates and spatially correlated random effects influence Rℓ via

g(Rℓ) =
∑

j

bjxℓj + ηℓ, (3)

to link Rℓ to county-level covariates that can influence deer-to-deer contact rates (e.g., habitable area and143

human population density). The link function g(·) is an exponentially smoothed ramp that is linear for144

0.1 < Rℓ < 10 and decays to a low of Rℓ = 0 and a high of Rℓ = 15 (additional details in Supplement). The145

bj and xℓj terms specify county-level effects and covariates, and ηℓ specifies a spatially correlated random146

effect for each county (see Table S5 for detailed covariate listing). A conditional autoregressive (CAR)147

process model uses county adjacency reference information to model spatial connection and correlation for148

ηℓ [34]. The CAR model requires a spatial precision parameter τℓ and a spatial range parameter γℓ, both149

of which are estimated from data. We also use a CAR process to model the local outbreak time t0,ℓ. Like150

ηℓ, the CAR model for t0,ℓ requires a spatial precision parameter τt0 and spatial range parameter γt0 . In151

conjunction with the other SIR curve parameters, the local outbreak time t0,ℓ influences the time at which152

peak prevalence occurs.153

We use Markov chain Monte Carlo (MCMC) methods to fit the model. MCMC procedures and prior154

distributions are described in the Supplemental information (Table S6).155
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2.2.2 Spatio-temporal risk evaluation and mapping156

The SIR model equation (2) can estimate spatially and temporally complete maps of SARS-CoV-2 prevalence157

for WTD after model fitting, filling in data collection gaps. Model fitting estimates SIR parameters for all158

counties ℓ and times t, so it is possible to estimate baseline prevalence iℓ(t) and other compartments at any159

point in time and space. Model fitting also estimates sample-level coefficients aj , so it is also possible to160

replace the variables zkj , ℓk, and tk in equation (1) with appropriate substitutions zGj , ℓ, and t to estimate161

prevalence pGℓt for an arbitrary demographic group and sample type G in county ℓ and time t. Within162

the Bayesian framework, composition sampling is the technical method that propagates uncertainty and163

dependence from estimates of parameters to estimates of prevalence, maps, and other features [34]. The164

prevalence pGℓt can be aggregated across both time and space, independently or together.165

The time-averaged prevalence pGℓ for demographic group and sample type G in county ℓ is the average166

of the weekly prevalences pGℓ1, pGℓ2, pGℓ3, . . . . Maps of pGℓ can illustrate where infection tended to be more167

widespread across the study period. Time-averaged prevalence also provides a metric that can be compared168

to empirical studies that present summary statistics of raw surveillance data. Composition sampling, again,169

propagates uncertainty and dependence from estimates of parameters to estimates of pGℓ.170

The space-averaged prevalence pGAt for demographic group and sample type G in area A summarizes

all prevalence estimates pGℓt for G at time t in area A. The summary pGAt is a flexible weighted average

specified via

pGAt =
∑

ℓ

wAℓpGℓt, (4)

where wAℓ is the relative weight (or contribution) of county ℓ to area A at time t. For example, we can use171

equation (4) to estimate overall prevalence in state A at time t by setting wAℓ = 0 for all counties outside172

state A. Within state A, we can set wAℓ proportional to the total area of state A’s WTD habitat that falls173

within county ℓ. So, if 20% of state A’s WTD habitat falls within county ℓ, then we set wAℓ = .2. As174

with pGℓ, composition sampling propagates uncertainty and dependence from estimates of parameters to175

estimates of pGAt.176

2.2.3 Spillover risk177

We compare prevalence estimates that are both space and time-averaged to evaluate spillover. We use178

conditional probabilities to quantify spillover as the risk that, on average, an infected deer was infected179

due to human infection pressure. Using aggregation methods described previously, the sample-level model180
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equation (1) can estimate pDH the time-averaged proportion of deer that were infected with SARS-CoV-2181

across CONUS. The sample-level model can also estimate pD the time-averaged proportion of deer that were182

infected with SARS-CoV-2 across CONUS in the absence of human infection pressure (i.e., through deer-183

to-deer transmission and other zoonoses). The estimate for pD uses the fitted model to predict prevalence184

with all human SARS-CoV-2 data set to 0. The sample-level model is not designed to directly estimate185

the time-averaged proportion of deer infected due to human infection pressure pH , but we assume the186

causes of infection are mutually exclusive, implying pDH = pD + pH . The conditional probability pH|DH =187

1−pD/pDH exactly quantifies spillover as we defined it earlier. Composition sampling propagates uncertainty188

and dependence from estimates of parameters to estimates of pH|DH .189

3 Results190

3.1 Sample composition and descriptive statistics191

From October 2021 through March 2022 there were 10,217 nasal or oral swab samples from WTD tested192

from 27 states and Washington, DC. SARS-CoV-2 viral RNA was detected in 13% (1,307) of the 10,217193

samples [16, 26]. The raw, apparent prevalence summaries are descriptive statistics that do not account for194

the opportunistic sample collection. There were similar numbers of samples collected from both sexes (males195

= 5,076, females = 5,141), but SARS-CoV-2 viral RNA was detected more often in males (15%) relative196

to females (11%). Adults (8,000 samples) were more heavily sampled than juveniles (2,217 samples), but197

detection rates were similar in both groups (13% vs. 12%). Nasal swabs (9,343 samples) were collected more198

often than oral swabs (364 samples), and 510 samples had missing data describing swab type. Infection199

rates (i.e., proportion positive) appeared higher in oral and unknown swabs (16% and 17%, respectively)200

relative to nasal swabs (12%). For sample source, hunter-harvest samples were most common (4,577 samples201

with 17% positive), followed by samples collected from USDA removal and management purposes (agency202

management; 3,866 samples with 11% positive) or other mortalities (e.g., roadkill; 1,774 samples with 6%203

positive). Hunter harvest samples were collected during a shorter time window (i.e., hunting seasons), while204

agency management and other mortalities were collected more consistently throughout the full period of205

surveillance. Samples were collected from 589 of the 2,893 counties that WTD can inhabit in the Contermi-206

nous United States (CONUS) [28], and samples were not necessarily collected at regular time intervals. Deer207

habitat is estimated via the Gap Analysis Project (GAP) species distribution model [28]. Here, we quantify208

deer habitat as the GAP-estimated proportion of a county’s land area that is inhabitable to WTD.209

8



3.2 Risk factors210

3.2.1 The model can estimate population-level epidemic characteristics of SARS-CoV-2 out-211

breaks in WTD212

We inferred the effects of ecological risk factors using a hierarchical model of the surveillance data that213

included a sample-level component for inferring test positivity probability pk for each individual k =214

1, . . . , 10, 217. The SIR component of the model simultaneously estimates a local effective reproduction215

ratio Rℓ for each county ℓ = 1, . . . , 2, 893 that WTD can inhabit in CONUS. A calibration curve assesses216

model fit, validating that pk predicted positive and negative test outcomes well (Figure S1), and that es-217

timates of pk are close to apparent prevalence (observed data) with underprediction in regions with high218

predicted prevalence. The model fit indicates the method can use landscape characteristics and spatial corre-219

lation between observed outbreaks to estimate plausible ranges for prevalence in more than the 589 counties220

from which samples were collected. The model fit indicates the method can also estimate epidemiological221

characteristics of SARS-CoV-2 in WTD, such as the timing of outbreaks and peak prevalence across counties.222

3.2.2 Sex and sample source are significant sample-level variables223

We estimate that sample-level test positivity for agency harvested male WTD significantly increases relative224

to agency harvested female WTD (Figure 1, Figure S2, additional details in Table S5; 14% positive males,225

10% positive females from October 2021 through March 2022). The effect is moderated for hunter harvested226

male WTD (10% positive males, 8% positive females from October 2021 through March 2022). We also227

estimate that test positivity is almost significantly decreased for juvenile male WTD. The surveillance data228

do not provide evidence that oral vs. nasal swab type or the main effect for age class (vs. the sex interaction)229

significantly impacts test positivity.230

3.2.3 Inhabitable deer area effect is weaker than human population density across landscapes231

For county-level effects, there are positive, but insignificant trends between the local effective reproduction232

ratio Rℓ and covariates. The effects of deer habitat (a proxy for deer abundance) and human population233

indicate an insignificant, noisy positive trend (Figure S3, Rows b2 and b3 in Table S5). Predicted prevalence234

across counties in WTD increased from a posterior average of 10% when human population density was 10235

people per sq. km. to 15% when human population density was 100 people per sq. km. from October 2021236

through March 2022 (Figure S3). Predicted prevalence in WTD also increased from an average of 10% when237

the proportion of WTD habitat is low (i.e., near 0) to 15% when WTD habitat is high (i.e., near 1). (Figure238

S3). Both potential trends are of biological interest, but are statistically insignificant due to substantial239
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variation across counties.240

3.2.4 Human SARS-CoV-2 infection tends to increase WTD SARS-CoV-2 prevalence241

The model estimates that SARS-CoV-2 prevalence in WTD tends to increase with SARS-CoV-2 infection242

in humans. The model estimates the odds of WTD prevalence increases by 13% for every additional 11243

human deaths per 100,000 county residents (logistic regression parameter interpretation for row a8 in Table244

S5; 95% highest posterior density interval (HPDI) spans from 1% decrease to 31% increase). The model245

also estimates that, on average, 10% of positive deer detected were due to human infection pressure from246

October 2021 through March 2022 (95% HPDI: 0–18%).247

3.2.5 Local effective reproduction ratios greater than 1 are widespread248

Estimates of the local effective reproduction ratio Rℓ were greater than 1 in nearly all counties in states249

where samples were collected and ranged up to 2.5 in some counties (Figure 2A). However, there is also large250

uncertainty in Rℓ estimates in states where few samples were collected such that Rℓ could have been less251

than 1 for many Mid- and South-western counties (Figure 2).252

3.2.6 Estimates of time-averaged prevalence were at least 3% in most sampled counties253

Estimates of average prevalence from October 2021 through March 2022 tended to be higher on the East coast254

than in the Mid- and South-West (i.e., time-averaged prevalence; Figure 3A). The model-based estimates255

adjust for uneven sample collection rates over time. The average county-level apparent prevalence (Figure256

3B; the proportion of positive test results per county) was more extreme (i.e., higher or lower) than time-257

averaged estimates in counties with low sample sizes (Figure 3D). Importantly, uncertainty in time-averaged258

prevalence estimates (Figure 3C) was also higher in counties with low sample sizes. Predicted peak prevalence259

varied spatially across the range of WTD studied.260

3.2.7 Peak prevalence occurred earliest in counties in the northeast and mid-Atlantic261

Peak prevalence occurred later in counties in the Midwest and Southeast (Figure 4A). However, there was262

local variation across counties within a state. In New York, peak prevalence is predicted to have occurred 1–3263

months earlier in the western counties compared to the eastern counties (Figure 4A). However, uncertainty264

in predicted timing is higher in the eastern counties of New York compared to the western counties (Figure265

4B). Examination of SARS-CoV-2 prevalence in WTD over time predicted outbreak start, peak prevalence,266

and prevalence decline occurred earlier in Onondaga County, New York than in Cuyahoga County, Ohio;267

the two most intensively sampled counties in our study (Figure 5). Comparison to human death rate data268
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illustrates how SARS-CoV-2 in humans is not necessarily a primary driver for SARS-CoV-2 prevalence in269

WTD, but can prolong the duration of an outbreak in WTD.270

4 Discussion271

We identify ecological drivers of spatially-varying outbreak dynamics and infer outbreak sizes, timing, and272

epidemiological parameters across the full range of WTD. Outbreaks were well characterized by assuming273

a single epidemic peak followed by fade out. We estimated that the Rℓ (i.e., locally-varying R0) ranged274

between 1 and 2.5, and that infection trends in humans may have contributed to 10% of infections in WTD.275

Evaluation of ongoing monitoring data will help evaluate persistence and whether multiple-peak epidemic276

models would better describe the infection process over longer time scales. Our methods provide landscape-277

scale surveillance programs a framework to infer population-level epidemiological processes from non-random278

sampling designs.279

We provide an approach for estimating population-level outbreak parameters from multiple, sparsely-280

observed outbreaks. Model-based analyses of surveillance data estimate infection prevalence at all points in281

space and time to fill in data collection gaps. Prevalence estimates can be interpreted as reconstructions of282

infection trajectories. Spatially analyzing reconstructed infection trajectories can identify regions that have283

been heavily impacted by infection and are potentially at increased risk for future outbreaks.284

Our model estimates that SARS-CoV-2 in humans explained a substantial proportion of prevalence in285

WTD (10%) in the initial outbreaks. The result suggests human-to-deer spillover rates were high, are286

potentially important for persistence, and may be useful for informing targeted, risk-based surveillance.287

Phylogenetic studies corroborate our finding through the identification of many cases of human-to-deer288

transmission. However, the sampling design of these studies has prevented them from estimating population-289

level spillover rates [2, 3, 5, 26]. While SIR models do not identify individual spillover events, the human290

infection proxy within the sample-level model equation 1 estimates the relative frequency of deer-to-deer vs.291

human-to-deer transmission events. In general, spillover can occur through direct contact between animals,292

or indirectly through excretions, blood, or intermediate hosts [35, 36]. Targeted surveillance programs that293

closely monitor small groups of wild animals are important for identifying likely pathways for spillover of294

SARS-CoV-2 from humans to WTD. Future studies with finer-scale data may also attempt to use a two-host295

system to closely model and quantify the impact of spillback from deer to humans on disease transmission296

and persistence [37].297

Interpretation of epidemiological parameters, such as Rℓ, inherently depends on the specified disease298

model and its assumptions. Our model fits apparent prevalence well, with some underprediction in areas of299
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high apparent prevalence. Improved sampling might improve model fit by reducing the effect of potential300

sampling bias on model fit diagnostics, or by better resolving potential risk factors and temporal trends.301

Disease models with more flexible assumptions about infectious periods, such as those that more closely302

model latent infectious periods [38], will inherently yield different reproductive ratios that could potentially303

better describe epidemiological dynamics if model fit is improved. However, waning immunity and changing304

demographics may be more appropriate extensions to the basic SIR modeling presented. But, such models305

require more precise demographic data and longer surveillance than are available.306

An understanding of risk factors that drive epidemiological dynamics can be leveraged to predict potential307

patterns in future outbreaks. Evidence for substantial population-level spillover risk suggests that focusing308

surveillance of WTD in regions near human SARS-CoV-2 outbreaks would lead to finding the most samples309

that are positive for SARS-CoV-2. However, it is currently unclear if humans are infecting WTD close or310

far from their place of residence. Additional surveillance data could help obtain the best information for risk311

assessment for variants of concern in active circulation. Pathways for spillover can also be better assessed by312

collecting more data on deer-to-human interactions through camera studies and surveys that ask participants313

to describe their interactions with wildlife.314

Posterior summaries for the risk factors identified in Figure 1 suggest potential strategies to optimize315

SARS-CoV-2 monitoring in future surveillance, with additional details in Table S5. Surveillance plans must316

balance resources between studying transmission and persistence to improve risk, assessment, and managing317

infection through control [39]. Descriptive summaries of the raw data suggested that prevalence differed for318

sample source (i.e., Hunter vs. Agency) and swab type (i.e., Oral vs. Nasal). However, the model did not find319

strong evidence for this pattern once the imbalanced sampling design factors were accounted for together.320

So, surveillance data collected from different sources and methods can likely be analyzed together without321

concern, similar to some rabies surveillance data [40]. The model also suggests male deer were infected at322

higher rates than female deer, implying that sampling male deer can increase chances of detecting SARS-323

CoV-2 in WTD populations when surveillance resources are limited. Sex-linked differences have also been324

identified through other surveillance programs [2, 4, 16, 26].325

Local effective reproductive ratio of SARS-CoV-2 in WTD appeared to weakly increase with human326

population density. This might suggest that areas with higher human density have greater opportunity for327

zoonotic transmission, contributing to the force of infection in deer. Regional studies have also identified328

different infection rates with respect to broader, urban vs. rural land designations [26]. The effect of human329

density was relatively small with ample variation. Our model did not consider changes to human density330

across time, which likely does not accurately reflect human movement and contact patterns with deer because331

we did not have such data. For instance, the effect of areas such as campgrounds that see pulses of human332
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density at irregular time intervals (i.e., around holidays) would not be captured by static landscape covariates333

[40]. Furthermore, natural areas such as parks and campgrounds that have pulses of human activity are also334

places where humans are likely to encounter a deer. Finer scale data on human mobility and human-deer335

contact frequencies in different settings would improve our understanding of this relationship and enable336

identification of additional landscape variables that could help identify how spillover is occurring and be337

included in risk mapping.338

The model also suggested the local effective reproductive ratio increased with the proportion of a county’s339

land that supports WTD populations, albeit weakly. Surveillance programs may choose to prioritize sampling340

counties with ample WTD habitat, which are also assumed to be counties with larger WTD populations.341

In lieu of using WTD density estimates, we used the proportion of a county’s land that WTD can inhabit342

(i.e., WTD habitat) to approximate where WTD might be more densely populated. We chose this approach343

because WTD density information is limited to small-scale studies due to the difficulty of collecting this344

data [41], and methods for state-level abundance estimation vary across states, which introduces additional345

variation. Increased habitat suitability is tied to increased incidences of CWD in WTD [42], with the346

supporting hypothesis that suitable habitat supports higher density of WTD. The effect seen here might347

suggest infection reproduction is facilitated through deer-to-deer contact. However, finer scale WTD density348

information or habitat data that more closely informs WTD density would provide further insight to this349

relationship.350

Infection transmission pressure from humans to deer is difficult to quantify because reporting rates in351

humans can vary widely, making infection surveillance in humans challenging, but our method suggests352

proxies (i.e., human death rate) can be effective tools for surveillance of SARS-CoV-2 in WTD. However,353

the proxy has likely become increasingly uninformative (after the time frame of this study) as effective354

treatments and vaccination have become available and survival has increased, even when infection rates355

are high. Future evaluation of SARS-CoV-2 in WTD may require different proxies for human infection.356

Surveillance of SARS-CoV-2 in humans requires extensive funding and consistent community participation,357

and is further challenging because positive at-home tests are generally not included in official reporting.358

Public health priorities also impact the availability of human SARS-CoV-2 surveillance data [30]. One359

Health approaches toward disease surveillance can potentially help provide structure to improve sampling360

efforts across species. Long-term monitoring can also provide data to evaluate predictive models.361

Quantifying infection dynamics requires intensive data distributed throughout time and space. In this362

study, we used an opportunistic sampling design, which incurred temporal and spatial data gaps. Model-363

based analyses accounted for uneven sampling and estimate infection dynamics between data collection gaps.364

The model propagates uncertainty in our estimates of SARS-CoV-2 prevalence in WTD (Figure 3C), and365
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uncertainty in these estimates could be reduced through continued sampling in counties where long-term366

sampling has already taken place. Furthermore, new sampling in counties that do not currently have data and367

are distant from well-sampled counties (e.g., represent different values in of covariates such as proportion368

of land inhabitable to WTD, human density, human case rates, or other potential risk factors that have369

yet to be explored) would bolster the confidence of these estimates. However, requirements for reducing370

estimate uncertainty can change over time, and would be best addressed using an adaptive sampling design.371

Future surveillance programs may also reduce uncertainty in county-level estimates by intensively sampling372

individual WTD populations within a subset of counties where samples are collected. Sampling individual373

WTD populations within counties can augment landscape-scale data through expanded hierarchical models,374

improving estimates of transmission dynamics and their risk factors. Similarly, uncertainty can also be375

reduced via repeated, long-term sampling at specific locations spread across different ecosystems, focusing376

both on humans and WTD. Such sampling can help to disentangle the drivers of infection dynamics and377

persistence both within and across populations—the subject of our ongoing work.378

5 Conclusions379

Estimates of outbreak parameters and their corresponding risk factors can help optimize strategies for risk-380

based surveillance, prevention, early response, and control of zoonotic diseases. Optimization is important381

because surveillance programs can only partially observe disease trajectories due to limited resources. Our382

work demonstrates how prevalence estimates can be interpreted as reconstructions of disease trajectories.383

Combining estimates of prevalence across points in space and time helps to fill data collection gaps for384

population-scale inference of epidemiological parameters that can be used to understand drivers of transmis-385

sion risk and disease hotspots in a newly emerging disease at the human-animal interface.386
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Figure 1: Estimated effects of logistic regression covariates on odds of infection relative to reference group
(i.e., risk factors, aj terms in equation (1)). The reference group is oral swab samples from Adult Female
WTD harvested by Agency management.
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Figure 2: A) Estimates for local effective reproduction ratio Rℓ and B) uncertainty (posterior probability
that Rℓ < 1). States that did not participate in the study are greyed out. Counties estimated through the
GAP WTD species distribution model to not support WTD populations are also greyed out.
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Figure 3: A) Estimates for time-averaged prevalence from October 2021 through March 2022, B) apparent
prevalence from October 2021 through March 2022, C) uncertainty for estimated prevalence (maximum
half-width of 95% highest posterior density interval), and D) number of samples collected from each county.
Grey shading is as described for Figure 2.
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Figure 4: A) Estimates for peak prevalence time with B) uncertainty (maximum half-width of 95% highest
posterior density interval). Grey shading is as described for Figure 2.
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Figure 5: Estimated prevalence (solid black line) with uncertainty (95% HPD interval as grey shading) in the
two most intensively sampled counties, A) Onondaga County, New York (252 samples), and B) Cuyahoga
County, Ohio (609 samples). Blue time series shows the human death rate for both counties during the same
time period. Black dots depict apparent prevalence (i.e., sample proportion of positive tests), with error
bars from 95% frequentist intervals for proportions.
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