
Online QoS/QoE-driven SFC Orchestration
Leveraging a DRL Approach in SDN/NFV Enabled
Networks
Mohamed Escheikh (mohamed.escheikh@enit.utm.tn)

National Engineering School of Tunis: Ecole Nationale d'Ingenieurs de Tunis
wiem Taktak Yakoub

École Nationale d'Ingénieurs de Tunis: Ecole Nationale d'Ingenieurs de Tunis

Research Article

Keywords: SDN/NFV, QoE/QoS, SFC orchestration, RL/DRL, Double DQN, Scale, Hyper-parameters

Posted Date: October 31st, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2842998/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2842998/v1
mailto:mohamed.escheikh@enit.utm.tn
https://doi.org/10.21203/rs.3.rs-2842998/v1
https://creativecommons.org/licenses/by/4.0/

Online QoS/QoE-driven SFC Orchestration

Leveraging a DRL Approach in SDN/NFV

Enabled Networks

Mohamed ESCHEIKH1* and Wiem TAKTAK1†

1*Syscom Laboratory, ENIT,, University of Tunis El Manar, BP 37, LE
BELVEDERE, 1002, Tunis, Tunisia.

*Corresponding author(s). E-mail(s): mohamed.escheikh@enit.utm.tn;
Contributing authors: wiem.taktak@enit.utm.tn;
†These authors contributed equally to this work.

Abstract

The proliferation of the ever-increasing number of highly heterogeneous smart
devices and the emerging of a wide range of diverse applications in 5G mobile net-
work ecosystems impose to tackle new set of raising challenges related to agile and
automated service orchestration and management. Fully leveraging key enablers
technologies such as Software Defined Network (SDN), Network Function Vir-
tualization (NFV) and Machine Learning (ML) capabilities in such environment
is of paramount importance to address Service Function Chaining (SFC) orches-
tration issues according to user requirements and network constraints. To meet
these challenges, we propose in this paper a Deep Reinforcement Learning (DRL)
approach to investigate online Quality of Experience (QoE)/Quality of Service
(QoS) aware SFC orchestration problem. The objective of this work is to fulfill
intelligent, elastic and automated Virtual Network Functions (VNF)s/Container
Network Function (CNF)s deployment optimizing end-to-end user experience
while respecting QoS constraints. We implement the DRL approach through using
a variant of Deep-Q-Network (DQN) algorithm referred to as Double DQN. We
show how DRL agent behaves along the learning process for different PSN scales.
We highlight also the impact of a set of hyper-parameters such as batch size and
learning rate on solving the sequential decision problem related to SFC orches-
tration. The evaluation of the learning process is achieved based on the quality
of learning with respect to the number of runs. In this regard, we use QoE metric
to define a score quantifying the quality of learning.

1

Keywords: SDN/NFV, QoE/QoS, SFC orchestration, RL/DRL, Double DQN, Scale,
Hyper-parameters

1 Introduction

The spectacular proliferation and the outstanding growth in mobile users and mobile
devices, applications, and traffic worldwide, have imposed certainly new challenges but
creates new opportunities to the service providers to shorten service innovation cycles,
reduce the Total Cost of Ownership (TCO) and improve Average Revenue Per User
(ARPU). Nowadays the advent of cloud computing, Software as a Service (SaaS) and
key enablers technologies such as SDN, NFV and network slicing, are shifting towards
the cloudification of the network resources in 5G and beyond where network connec-
tions are becoming faster, smarter and more automated. However, the growing density
and complexity of traffic flow between service providers and users traversing one or
more data centers are becoming more unpredictable and distributed and far more diffi-
cult to manage and control. Fully leveraging such technologies combined with emerging
cognitive technologies such as ML are envisioned to provide cost-effective solutions
achieving useful CAPital EXpense (CAPEX) and OPerational EXpense (OPEX) cost
savings and boosting networks innovation. SDN is a promising networking paradigm
that decouples control plane and data (forwarding) plane and moves the control logic
to the SDN controllers [1] [2]. Thereby, each plane can independently scale to reduce
TCO. The objective is to reduce management complexity and cost and to enhance
network performance and management efficiency. This is achieved mainly through cen-
tralized network management and network programmability. This paradigm promotes
agility and scalability in networks that customize the virtualized infrastructure of mod-
ern data centers to meet rapidly the evolving business lines requirements. Furthermore,
SDN is leveraged for VNF orchestration by providing a centralized logical control
thanks to centralized network controllers and by enabling service chains creation. On
the other hand NFV represents a new architectural paradigm proposed by European
Telecommunications Standards Institute (ETSI) that promotes developing new archi-
tectures, systems and applications and creating more agile and cost-effective network
infrastructure [3] [4]. By leveraging virtualization technologies, NFV presents new
opportunities to provide flexible and cost-efficient Network Functions (NF)s manage-
ment and orchestration and accelerates successful Network Service (NS) deployment
for network operators. Furthermore, NFV aims to virtualize the whole class of net-
work node functions (e.g., FireWall (FW), Load Balancer (LB), Intrusion Detection
System (IDS), Network Address Translator (NAT), Content Filters (CF) and others)
into building blocks known as VNF that may be judiciously arranged and intercon-
nected based on a given service logic to create composite communication services.
NFV virtualizes NS traditionally running on proprietary hardware. These services are
bundled into virtual machines or containers on Commercial Off-The-Shelf (COTS)
hardware, allowing service operators to run their network on commodity, rather than
proprietary servers and offering automated and on-demand service deployment. One
of the main motivations of NFV is the agility to deploy new NFs chained together as

2

SFC on demand. In order to take advantage of this agility, a high level of automa-
tion is required to provision, configure and test the performance of VNFs. Instead
of using middle-boxes as appliance and typical routing techniques to forward packets
from source to destination, SFC proposes packet routing across a chain of NFs before
reaching the destination (accounting for the type of service and policy in use). In this
context the ETSI Industry Specification Group for NFV (ETSI ISG NFV) had defined
an architectural framework referred to as Management and Orchestration (MANO) [3]
[5]. MANO is a standard ensuring network resource coordination for cloud-based appli-
cations and managing life-cycle of both VNF and NS. It includes the functional blocks
NFV Orchestrator (NFVO), VNF Manager (VNFM) and Virtualized Infrastructure
Manager (VIM). Its key role is to facilitate the deployment and connection of new ser-
vices. SFC paradigm in NFV environments describes a network capability that plays
a key role in automating NSs deployment. It leverages traffic engineering techniques
in forwarding and steering traffics between peers [6] [7]. Based on user demand, SFC
request specifies the link order of a sequence of interconnected heterogeneous VNFs.
The interconnection between successive VNFs is achieved through virtual links. These
VNFs are traversed by user-generated traffic flows (i.e., SFC request) of a specific
service/application toward the destination. The SFC may been seen as a processing
pipeline composed by a set of VNFs to ensure on-demand end-to-end NSs delivery
in virtual networking environment. Whenever traffic is steered across more than one
VNF a service orchestrator is instantiated to establish a chain. Incoming flows are
forwarded along a predetermined sequence chain of VNFs named SFC. SFC aims to
automate the set up of virtual network connections in order to handle different types
of traffic flows. The flow request with SFC is called as SFC Request (SR) (in the rest
of this paper we will use interchangeably SFC Request and SR). Moreover, VNFs can
easily place and run-on different COTS hardware like x86 servers or moved/migrated
from one compute resource to another with respect to demand changes. This may be
achieved without requiring to install or purchase new specialized hardware, allowing
a faster service deployment and providing innovation and a great number of opportu-
nities for the world of networked systems. This flexibility accelerates the delivery of
services and applications and allows to respond quickly and to cope with the surge
and changing demand in utilization patterns such as Over-The-Top (OTT) multimedia
applications. Fundamentally, SFC routes packets through one or more service func-
tions instead of conventional routing that routes packets using destination IP address.
The SFC deployment in the SDN/NFV ecosystem, enables composing customized ser-
vices and handles fine granular policies. The deployment of NS through SFC request
embedding requires the mapping of VNF-Forwarding Graph (VNF-FG) on PSN [3].
Mapping between SFC request and PSN determines the allocation of VNFs and vir-
tual links of the SFC request onto the PSN nodes and PSN links (fig.1). This implies
to address the challenge of Placement and Chaining of VNFs (PC-VNF) according to
the requests of VNF-FGs. Two kinds of sequential decisions making have to be con-
sidered while investigating the VNF-FG Embedding (VNF-FGE) problem: (a) where
running the VNFs (on which PSN node will be performed the mapping), and (b)
how interconnecting them in the PSN, taking into consideration the VNF ordering
requirements.

3

Fig. 1: SFC Orchestration in SDN/NFV Environment

SDN and NFV are often combined to bring a novel dimension for automating
network provisioning and fostering future innovative services. They are integrated to
create a flexible, resource-efficient, and programmable network architecture enabling
to perform instantiating, managing, and orchestrating the life-cycle of service chains
[8]. They increase the pace of expediting implementation over virtual networks infras-
tructure meeting specific needs of the vertical markets on the top on the same shared
physical infrastructure. Thanks to SDN and NFV, service delivery automation is
enabled. As a consequence, highly programmable networks with automated workflows
that supports every single step of the service life-cycle are achievable. Synergy between
SFC, SDN and NFV promises to bring agility and flexibility in terms of provisioning
and deployment. It provides also centralized management to future mobile networks
and accelerates and automates service delivery.

4

In this paper, we tackle the problem of optimizing resource allocation and
management in a distributed NFV enabled networks dealing with dynamic SFC orches-
tration/deployment and involving VNF placement and virtual link embedding on PSN.
We attempt, in this regard, to answer to the question: for each incoming SR, how the
limited available resources in PSN should be managed conveniently to maximize QoE
profit while meeting the QoS resource constraints. In order to answer this question,
we consider an online strategy where each SFC request deployment will be built in a
hop by hop manner using fine-grained control decisions and this deployment may be
cancelled whenever end to end SR constraints are violated.

Our contributions are threefold:

• We formulate first the QoE/QoS-aware SFC orchestration issue as a mathematical
optimization problem based on an objective function maximizing QoE profit while
respecting some QoS constraints.

• We implement next the formulated problem using a DRL approach based on Double
DQN.

• We investigate then the impact of the PSN scale and hyper-parameters (batch size
and learning rate) on the learning process of the DRL agent controlling the SFC
orchestration process through extensive simulations.

The remainder of this paper is structured as follows: Section 2 presents the background
on NFV resource allocation and SFC orchestration. Section 3 details training, testing
and implementation of RL and DRL approaches. We focus in section 4 on applying
the DRL approach to solve the QoE/QoS aware SFC orchestration problem. We par-
ticularly detail first, in this same section, the proposed system model and problem
formulation. The QoE/QoS aware SFC orchestration problem will be described next
as a MDP with a specific reward model and solved using a DRL approach. We investi-
gate then in section 5 performance evaluation and simulation results before concluding
this paper in section 6.

2 NFV Resource Allocation and SFC Orchestration

2.1 NFV Resource Allocation

The main objective of NFV-Resource Allocation (NFV-RA) is to efficiently leverage
the PSN resources to promote the NSs design, delivery and operation by bringing more
flexibility and scalability. This may be fulfilled by maximizing resource utilization
and/or QoE while minimizing operation overhead. Particularly, NFV-RA approach
based on DRL may be proposed to efficiently solve SFC orchestration issue in NFV
enabled networks. On the other hand, SFC orchestration issue may be transformed
into a problem of SFC request deployment or VNF placement. It consists for each
incoming SFC request, composed of ordered VNFs chained through virtual links, in
placing all the corresponding VNFs on suitable PSN nodes (NFV-compliant servers)
and mapping each of the virtual links (of the SFC request) on appropriate PSN links.
The main objective of the SFC orchestration is the VNF placement through finding
the optimal or near-optimal path, mapping the incoming users’ SFC requests on the
available PSN resources.

5

2.1.1 NFV-RA stages

From NFV-RA perspective, three distinguishable stages are considered [9]: VNFs
Chain Composition (VNFs-CC), VNF-FGE and VNFs SCHeduling (VNFs-SCH).

• VNFs-CC copes with efficient VNFs concatenation and ordering.
• VNF-FGE seeks ensuring optimal VNF placement (virtual node embedding) and
virtual link mapping.

• VNFs-SCH fulfills complicated scheduling decisions related to determining how to
allocate NFV Infrastructure (NFVI) shared resources to several VNFs.

2.1.2 NFV-RA and SFC orchestration: scenarios, strategies and
deployment

Along the SFC orchestration process, the automatic deployment of a composite ser-
vice involving multiple heterogeneous NFs belonging to different service providers
requires SFC orchestrator to enable end-to-end life-cycle management automation of
NFs. The objective, in this case, is to build a processing pipeline involving a set of
chained and ordered NFs to simplify and streamline complicated operation processes.
Automation facilitates operation, manages harder complexity, and brings better accu-
racy. It also enables for composite and customized services to be achieved without
adversely affecting the level of service expected defined in the Service-Level Agree-
ments (SLAs). Furthermore, automation tackles dynamic workload conditions that
ultimately improve network agility and scalability. In order to perform SFC orches-
tration, the operator requires finding for a given incoming SFC request, the right SFC
instance complying with various PSN resource limitation and traffic fluctuations. On
the other hand, achieving smart QoE/QoS-aware SFC orchestration requires suitable
integration of both NFV and SDN with QoE/QoS metrics. It is highly recommended
also to fully leverage ML techniques and particularly DRL making use of autonomous
agent to meet dynamic NFV orchestration needs.

Actually, a SFC request might involve distributed execution of a set of VNFs
interconnected through virtual links. Thus, the software service providers are facing
a challenging resource allocation problem regarding VNFs deployment and virtual
links mapping in the PSN (NFVI environment). In our case study, an incoming SFC
request (characterized by an end-to-end bandwidth and end-to-end delay) looks for a
suitable SFC instance (SFC response) that maximizes the user perceived quality (QoE)
while accounting for the QoS constraints. Such objective is achieved, in this work, by
respecting a set of constraints and limitations related to, the maximum number of
VNF instances that may be deployed simultaneously per VNF license, the PSN nodes
processing capacity and PSN links bandwidth.

SFC Orchestration Scenarios: In NFV-RA, the SFC orchestration problem
may be solved according to two scenarios namely offline and online. In the offline
scenario, one-time decisions are taken over aggregation of input traffics (the full SFC
requests that are known in advance) to the PSN. Whereas, in the online scenario,
the SFC orchestration strategy is adapted according to dynamic network load and
the related problem is solved using migration algorithms on real time basis. In such
scenario, a PSN under various resource availability constraints is considered with a set

6

of already deployed SFC requests and the new incoming SFC requests are processed
on sequential basis (in a one-by-one modality) [10]. In online scenario, adopted in this
paper, the challenge for each SFC request is to find a suitable SFC instance meeting
its requirements.

SFC Orchestration Strategies: Along the SFC orchestration process two main
strategies may be considered namely monolithic orchestration and incremental orches-
tration. In monolithic orchestration strategy, we verify for the current step whether
there is an overall (a complete) SFC instance in the PSN that verifies or not SFC
request requirements (maximizing QoE) and constraints (meeting QoS constraints).
If this is not the case, we attempt to find another complete SFC instance in the next
step. Conversely, in incremental orchestration strategy, each VNF of SFC request is
selected in a hop-by-hop fashion. Therefore, the SFC length gradually increases by
incrementally embedding VNFs and mapping virtual links composing the SFC request
on the corresponding PSN nodes and PSN links of the NFVI respectively. The advan-
tage of such strategy, adopted in this paper, is that it can be easily mapped to a
multi-step RL problem and can perform quite a sophisticated policy maximizing QoE
requirements while respecting QoS constraints. This may be achieved by formulating
a suitable reward function.

SFC Deployment: From RA perspective and in order to deploy each incoming
SR on a PSN, we need to find among all achievable SFC instances on PSN a suitable
SFC instance maximizing QoE will meeting QoS requirements. Recall that, SR is a
sequence of ordered VNFs chained through virtual links whereas the SFC instance
corresponds to a set of available resources in PSN nodes and PSN links to be allo-
cated in order to handle a given SR. The SR deployment process requires embedding
VNFs (on PSN nodes) and mapping virtual links (on PSN links). As a result, the suc-
cessful SR deployment requires the effective fulfillment of successive embedding and
mapping actions. This is accomplished through following an incremental strategy aim-
ing to ensure assigning step by step each SR component (VNF/virtual link) to the
corresponding PSN component (PSN node/PSN link) of a suitable SFC instance.

2.2 SFC Orchestration

2.2.1 SFC Orchestration Approaches

SFC orchestration consists in automating SFC deployment and determining “a feasible
path on the physical network where the vertexes and edges of the path can satisfy
both the computing resource requests of VNFs and the bandwidth demands of virtual
links” [11]. Mirjalily et al. [12], identifies four stages for SFC orchestration in PSN
including description, composition, placement, and scheduling.

The existing approaches for SFC orchestration and adaptive SFC placement focus-
ing on RA can be categorized into three types each of them has its own advantages
and or limitations in terms of scalability, agility, flexibility, cost-effectiveness and
complexity: According to [13], these types cover: (1) Mathematical optimization-
based approach formulated through multi-objective Integer Linear Programming (ILP)
models looking for global optimal solution. (2) Heuristic-based models, seeking a
suitable trade-off between performance and complexity. (3) Markov decision process

7

(MDP)-based, RL and DRL models, accounting for the current and the future system
performance.

Mathematical Optimization-Based Approaches: Mathematical
optimization-based approaches may be achieved by means of several classes of linear
programming algorithms, such as ILP [14], Mixed ILP (MILP) [15], and Integer Non-
Linear Programming (INLP) [16], [17]. The choice of a given class of such algorithms is
tributary of the optimization problem features. Several works in literature formulated
the NFV-ORchestration (NFV-OR) problem as ILP model and uses heuristics to find
a trade-off between optimality and efficiency [3]. F. Bari et al. [18] formulated OPEX
problem as an ILP model, in order to minimize the overall costs and enhancing the
network resources utilization. To fulfill some specific optimization objectives, aiming
to minimize the number of busy servers and to maximize the acceptance rate of the
incoming requests, J. G. Herrera et al. [3] abstracted the NFV-OR problem as an
ILP model to solve the global optimal orchestration scheme. G. Lee et al. [19] tackles
NFV-OR problem as an ILP model by considering resource limitation constraints.
Nevertheless, ILP models for solving NFV-OR problems are proven to be NP-Hard
(i.e., there is no known algorithm enabling its resolution in polynomial time) since
the ILP solution space is not considered as a convex set, and convex optimization
techniques are impractical in such context. Hence ILP models are generally unpracti-
cal to deal with large scale networks, since they are hard to scale well especially when
the problem size increases and therefore the resolution could only work efficiently for
very small instances. D. Li et al. [20] proved that the ILP models take mathematically
four times as long as the heuristics with the same optimization toolboxes.

Heuristic and Meta-Heuristic based Approaches In order to mitigate the
ILP problem complexity, several researches have resorted to heuristics to find near-
optimal solution for the NP-hard problem, seeking for a suitable trade-off between
complexity and performance. S. Sahhaf et al. [21] leveraged the heuristic method based
on the ILP model, which used backtracking mechanism to obtain the most convenient
deployment scheme. However, the corresponding time complexity is shown to be o(n!).
D. Li et al. [22] jointly combined ILP model with the dynamic programming-based
heuristic method to study the NFV-OR problem. Nonetheless, it prioritized to sharing
the same node between VNFs without accounting for resource link limitations. R.
Mijumbi et al. [23] formulates the SFC orchestration problem by considering three
greedy-based algorithms and a tabu search-based heuristic. However, the greedy-based
mechanisms can easily fall into a local optimum. Authors in [24] formulate the virtual
Deep Packet Inspection (vDPI) placement problem as a cost minimization problem
based on a centrality-based greedy algorithm. However, they only assumed one type
of VNFs. In addition, works provided in [25] [26] adopted heuristic methods founded
on ILP models to solve multiple objectives problem, in order to minimize the overall
costs. Furthermore, they focus on real time system performance instead of considering
the steady state system performance. Authors in [27] used a heuristic approach based
on Segment Routing IPv6 (SRv6) to propose an effective SFC dynamic orchestration
algorithm in a multi-domain NFV enabled networks. The objective is to enhance the
SFC deployment in terms of performance metrics such as end-to-end delay, bandwidth
consumption, and load balancing. Paper in [28] studies the digital coding scheme of

8

the heuristic SFC deployment in an NFV environment to enhance time efficiency
without decreasing performance. Although the effectiveness of heuristic approaches,
they may suffer from convergence problems and therefore slowness. Furthermore, they
usually fall into the local optimal dilemma, and they are highly conditioned by the
prior knowledge.

MDP-RL-DRL-Based Approaches In order to overcome the limitations of the
above approaches, MDP-RL-DRL-based approaches are often proposed. From MDP-
RL-DRL perspective SFC request deployment requires two kinds of decisions making:
(a) where to run the VNFs (on which PSN node having sufficient available resources
the VNF would be hosted and run), and (b) how to interconnect them in the PSN,
accounting for VNF ordering requirements.

MDP-based models optimize NFV-OR problem by considering both current and
future system performance. In work [29], the SFC problem is abstracted as a MDP
and resource allocation is achieved according to a preemptive strategy. In addition,
authors propose leveraging Bayesian learning algorithm to forecast the future resource
reliability and suggest an MDP-based algorithm by adopting the asynchronous par-
titioning concept. S. C. Lin et al. [30] proposed RL-based adaptive routing method,
for modeling QoS metrics of delay, loss, and throughput as the reward function. Then
Softmax-based policy was used to select the next hop forwarding device. However,
only packet forwarding strategy was developed and VNF placement was not consid-
ered. RL-based methods divided NFV-OR into two sub-problems (i.e., network-level
and flow-level) depending on the generality of the learning target, aiming at achieving
the automatic network configuration [31] [32] [33]. Notice that, RL maintains a Q-
table to store policies, which cannot handle the large infinite state space. J. Pei et al.
[34] proposed DDQN-VNFPA to obtain the optimal VNF placement solution from a
prohibitively large solution space. But it only considers network-level other than flow-
level, and the framework does not take QoS awareness into account in depth. Chen et
al. [35] proposed RL algorithm to orchestrate SFCs, considering QoS and QoE syn-
thetically. However, they only consider network-level optimization and no flow-level
optimization strategy is devised. In addition, the proposed framework intentionally
ignores some constraints, such as node resource in QoS metrics, which is a crucial
factor in the real network environment.

2.2.2 QoE/QoS Aware SFC Orchestration

In this paper, we use a DRL approach to tackle QoE/QoS aware SFC Orchestration
problem.

QoE Evaluation Based QoS Metrics: QoE is an ecosystem that involves
together users, network, and network/service providers to measure the process as well
as the outcomes of communication (e.g., user effectiveness, efficiency, satisfaction and
enjoyment). It has drawn much attention over the past few years and has become
a prominent issue for delivering services and applications. In this direction a huge
research effort has been carried out for studying various aspects to apprehending,
quantifying, and modelling QoE for a wide range of media services. The objective is to
fulfill service assurance through delivering reliable and value-added services satisfying

9

the requirement of user and meeting user experience requirements while ensuring oper-
ational efficiency. High quality of experience of network services is nowadays becoming
an essential requirement for NFV and a pivotal differentiator for gauging the effec-
tiveness of telecom operators and service providers. Indeed, QoE degradation may
cause critical quality assurance problems and may lead to the most sensitive network
impairment. A good interplay is usually needed for real-time services between net-
work and application dynamics so as to deliver an acceptable user experience [36].
The traditional monitoring and optimization of QoS parameters in the network lacks
of knowledge of user’s QoE and, as a result, of efficiency in improving user experience.

Objective vs Subjective: The QoE is related to both objective and subjec-
tive evaluation [35]. Objective QoE evaluation depicts the influence of the network
and application performance on the user. Whereas subjective QoE evaluation quan-
tifies the individual user experience obtained, when interacting with technology and
business entities in a particular context to provide satisfaction to the end-user. This
context may concern emotional state, feeling, preference Notice that, it is hard to
apply subjective QoE evaluation in large scale networks. As a result, we opt in this
paper for objective QoE evaluation which is derived and automated from measurable
QoS metrics without involving end-user. This is achieved by characterizing the rela-
tionship between network-level QoS parameters and application QoE indicators. Such
characterization is leveraged to formulate a DRL approach modeling a QoE/QoS SFC
orchestration problem.

SFC Orchestration Maximizing QoE and Meeting QoS In this paper, we
particularly focus for SFC orchestration on the online scenario and the incremen-
tal strategy and the SFC orchestration issue (including VNF placement and virtual
link mapping) is formulated as DRL model maximizing QoE while meeting QoS
constraints. This is investigated through a specific implementation based on Double
DQN.

3 RL and DRL: Training, Testing and
Implementation

3.1 Reinforcement Learning (RL)

In this section, we provide detailed description of the RL technique and how it is
used to train an agent to perform a given task. We describe particularly the RL agent
learning process and how agent interacts at each learning step with network environ-
ments to solve a RL problem and to achieve a given objective. RL is one of the hottest
research topics in the field of modern AI expected to produce and boost developing
a wide range of innovative solutions based on decision making science. It represents
a class of ML algorithms that refers to sequential decision making under uncertainty
(uncertain conditions of the real world) with the objective of reward optimization.
The learning aims to solve a specific category of problems and is achieved through
trial-and-error using rewards and punishments as signals for positive and negative
behavior as feedback from agent actions and experiences. During the learning process,
the agent strives to maximize some long-term reward (total or expected cumulative

10

reward over a trajectory including immediate and delayed rewards) in an interactive
complex and uncertain environment. In this regard, the agent leverages the rewards
from past experience and the environment’s feedback to build a decision policy that
would be incrementally and continuously enhanced at run-time and that can adapt
according to dynamic environment changes [37].

In an active RL the agent executes a sequence of runs to interact with an environ-
ment. The objective is to try to learn an optimal policy that maximizes a long-term
reward perceived from the environment by associating actions and states through mul-
tiple rounds of trial and error, based on the environment’s feedback. In other words,
the agent learns by trial-and-error how to select actions that maximize its expected
discounted future rewards. Interaction between an agent and an unknown environ-
ment from the initial to final states is referred as an episode. An episodic task, unlike
continuous task, lasts a finite amount of time and have a terminal state.

In RL, exploration and exploitation both share the same objective since they
endeavor to maximizes rewards. However, what makes the dilemma between them is
the limited knowledge or partial observability. Balancing exploration with exploita-
tion and finding the perfect equilibrium between them is a serious challenge. The RL
problem is formulated by the following terms:

• Environment: Describes physical or external world in which the agent operates and
with which it interacts in order to collect information about the environment.

• State: Presents current situation of the agent. It provides a detailed and complete
description of the environment’s state.

• Reward: Quantifies feedback from the environment. It represents a signal that the
agent leverages to measure its success and to quantify how good or bad the current
world state is.

• Policy: Defines method to map agent’s state to actions. It tries to maximize a reward
and represents a rule leveraged by an agent to decide what actions to select.

We distinguish two kinds of RL methods (namely on-policy and off-policy). On-policy
methods (i.e., Policy Iteration, Value Iteration, Sarsa) try to evaluate or enhance the
policy used for decision making, whereas, off-policy methods (i.e., Q learning, Expected
Sarsa) evaluate or enhance a policy for action selection.

3.2 Training and Testing in Online and Episodic RL Process

In RL, training and testing phases are typically referred to as the learning and eval-
uation phases, respectively. The RL agent is trained through interacting with its
environment via a large number of trial and error learning process balancing between
exploitation and exploration. This is achieved for episodic tasks by performing some
actions, starting from the initial state and continuing along a series of steps until
reaching either its goal (the desired state (final state)) and then it restarts, or the max-
imum learning duration expires. This duration is defined in a fixed number of episodes.
In other words, the learning process may last less than on episode (if the goal state
is reached) and at most a given number of episodes corresponding to the maximum
learning duration (regardless of whether the goal state is reached or not). Notice also
that whenever the agent reaches the final state before the maximum learning duration

11

expires, the problem is considered solved, otherwise the problem is never solved. It is
worth mentioning that only trivial and simple enough RL problems have a solution.
However most of the time real world RL problems are complex and may very likely
never been solved even with an excessively long learning phase. This may be explained
by the fact that the problem complexity is greater than that of the RL algorithm and
in such case this latter can never hope full understanding of the problem leading to
an optimal policy at the end of the learning process.

Since we are concerned in this paper with online RL testing (evaluation) can be
done periodically during training phase (whereas in offline RL testing is achieved in
separate phase following the training phase). The objective of the training phase is to
reach final state corresponding to a satisfactory level of performance. This performance
level can be quantified by a score measuring the learning quality of the agent. Once
the current episode is finished a new episode is started by resetting the environment
to its initial state. Such process is repeated iteratively to enable the agent to learn
in a first step from its experience in every episode and to use in a second step that
knowledge to enhance its performance in subsequent episodes.

Before dealing with the experimental results let’s recall some preliminary defini-
tions related to step, run, episode and trail used in RL. A step corresponds to a cycle
of state-action-reward. Each incoming SR involves 5 steps or actions. The deployment
of 100 SRs is fulfilled during one run. An episode is defined as a set of runs and it is
stopped whenever a maximum number of runs expired or a training goal (final state)
is achieved by the DRL agent. To show how the agent evolves during the learning
phase during one episode (a set of runs) we plot the graph scores vs runs by consider-
ing the discounted cumulative expected rewards with respect to run. At larger scale,
We train the agent during a set of episodes (referred to as a trail). To show how an
agent behaves along a trail we plot the number of runs per episode with respect to
order of each episode.

3.3 RL implementation via Q-learning: Scalability Issues

In this subsection, we detail Q-learning as example of off-policy RL and its scalability
issues.

Q-learning: Q-learning is an off-policy RL algorithm [37] able to learn from data
collected by any behavioral policy where the agent estimates the reward for future
actions and appends a value to the new state without actually following any greedy
policy. In Q-learning, the Q-learning function learns from actions that are outside
the current policy. It seeks to find the next best action (decision) to take given the
current state without requiring any environment model (model free). More specifically,
Q-learning looks for learning a policy that maximizes the total reward. It uses a Q-
table that stores Q-values (Q-Table elements) after an episode. This allows the agent
to view all possible actions for a given state and to evaluate the performance of any
action in a given a state and to choose subsequently the best one. Q-Value quantifies
a measure of the expected discounted cumulative reward assuming the agent is in a
given state s and performs action a, and then continues playing until reaching the end

12

of the episode according to some policy.

Q(st, at) = Q(st, at) + α(rt+1 + γmaxaQ(st+1, a)

−Q(st, at))
(1)

Scalability Issues in Q-learning: In complex environments many network states
may be hidden and action space may be huge and as a consequence table-based RL
agents will be unable to provide useful solutions. Indeed, tabular methods complexity
scales linearly with the number of states and becomes ineffective whenever the state
and actions spaces are large. RL algorithms require an exact representation of value
functions and policies. Such representation is infeasible in large real-world problems
,and therefore value function approximation methods are used. The aim these meth-
ods is to scarify some representation accuracy for the sake of scalability. In order to
solve the high-dimensional mapping problem DRL combines RL with DL and uses a
Neural Networks (NN)s as a nonlinear type of function approximator to approximate
optimal policy and value functions. The goal of the DRL agent is to find the parame-
terized policy with the maximum expected rewards. Several DRL implementations are
proposed in literature including DQN and its variants (Double DQN, Dueling DQN,
. . .).

3.4 DRL Implementation via DQN

DQN [38] combines Q-learning with Deep NN (DNN) function approximation and
experience replay [39]. Q-learning is used to learn the best action to take in the
given state whereas DNN brings a compact representation of both high-dimensional
observations and the Q-function. It provides better expressiveness to approximate
Q-function of Q-learning and allows Q-learning to be applied to more complex and
high-dimensional problems intractable with a table-based approach. When compared
to standard ML, DNN [40] enables more efficiency as the volume of data increases. It
leverages multiple layers to represent the abstractions of data in order to build com-
putational models. Since DNN uses a large number of parameters, it spends a long
time to train a model. Conversely, its testing phase takes a short amount of time
when compared to standard ML algorithms [41]. Instead of storing an action-value
table, DQN leverages a DNN as a function approximator and uses a parameterized
Q-function Q(s, a; θ) ≈ Q(s, a) where, θ represents the DNN parameters. By training
DNN with gradient descent instead of the Q-Learning iterative update process, DQN
aims to minimize a loss function at iteration i:

Li(θi) = Es,a,r,s′ [(y
DQN
i −Q(s, a; θi))

2] (2)

Although using a non-linear DNN brings significant advantage, it often yields training
instability if it is used inappropriately. The big problem is to compute NNs that
are both stable and accurate and the challenge is to find the right trade-off between
stability (i.e., convergence) and accuracy (i.e., performance). The DQN tackles the
fundamental instability problem of using function approximation in RL by leveraging
two innovative techniques: experience replay and target networks. The experience

13

replay aims to break harmful correlations between different training samples however
the target Q-network attempts to provide better stability to the training target, the
target Q-value. Given the state s′, reward r, discount factor γ, DQN computes the
target Q-value yDQN

i as follows:

yDQN
i = r + γmaxa′Q(s′, a′; θ−) (3)

where θ− represents the parameters (weights) of a fixed and separate target network.
Standard Q-learning is usually used to learn the parameters of the network Q(s, a; θ)
online. Nevertheless, this estimator provides poor performance in practice. In order
to solve this problem and to prevent over-fitting a key breakthrough advancement
provided in [38] consists in freezing the target network parameters Q(s′, a′; θ−) for a
fixed number of iterations while updating the online network Q(s, a; θi) by gradient
descent. Such freezing technique enables in DRL context to improve the stability of the
training and to sample efficiently the learning process. The specific gradient update is
given as follows:

∇θiLi(θi) = Es,a,r,s′ [(y
DQN
i −Q(s, a; θi))∇θiQ(s, a; θi)] (4)

3.5 DRL Implementation via Double DQN

Several DQN variants such as Double DQN and Dueling DQN are proposed in lit-
erature. We focus in this paper on Double DQN considered as a model-based RL
algorithm. The basic idea behind Double DQN [42] is to improve DQN by addressing
the target Q over-estimation problem [43] associated with Q-learning. Double DQN
uses two networks to avoid over optimistic Q-values. Such improvement is achieved
through decoupling the action selection and action evaluation (Q-value estimation)
steps while computing the target Q-value (Eq.(5)).

yDoubleDQN
i = r + γQ(s′, argmaxa′Q(s′, a′; θi); θ

−) (5)

Action selection is fulfilled using the current Q-network with weights θ while action
evaluation is accomplished using DQN’s target Q-network, with weights θ−.

4 RL Driven QoE/QoS Aware SFC Orchestration

In this section, we introduce first the system model and problem formulation. We
present next the MDP modeling the QoE/QoS aware SFC orchestration problem. We
propose then the reward model and the main building blocks involved in its conception.
We detail last how to solve the QoE/QoS aware SFC orchestration problem based on
DRL approach implemented via DQN variants.

4.1 System Model and Problem Formulation

Our research motivation concerns determining how to deploy one by one incoming
SFC requests on PSN. In this section, we introduce first the system model repre-
senting formal statement of both PSN and SFC request. We provide next a detailed

14

formulation of the QoE/QoS aware SFC orchestration problem and related constraints
explanation.

4.1.1 System Model

In this subsection, we start the system model representing formal statement of both
PSN and SR.

PSN Model:The PSN, namely NFV Infrastructure (NFVI) by ETSI [44], is for-
malized as a model represented by an undirected weighted graph (i.e. a graph where
the edges have no orientation and weights are assigned to nodes and edges). This
graph is denoted by G = (V (G), E(G)) where E(G) is the set of its PSN links and
V (G) is the set of the PSN nodes. Furthermore, We assume a PSN topology with fully
interconnected PSN nodes (hosting VNFs) through PSN links. We assume also that
PSN resources are limited and these limitations concern both PSN nodes and links
and are taken into account whenever an incoming SFC request solicits a SFC instance
(in the PSN) meeting its requirements in terms of capacity, delay and bandwidth. In
this regard the DRL agent, based on an algorithmic approach makes decision about
accepting or rejecting this request according to SFC requirements and PSN resource
constraints. The SFC request is considered accepted if and only if all the responding
VNFs and virtual links are successfully embedded. Also, we characterize each PSN
node, w ∈ V (G), by the corresponding available (idle) computing capacity (in terms
of CPU cores) denoted by C(w). Likewise each PSN link, e ∈ E(G), is commonly
described by its available bandwidth Bw(e) and the corresponding transmission delay
D(e) for processing traffic flow traversing it. Without loss of generality further met-
rics such as storage and memory may be taken into consideration to enlarge the PSN
node description. From RA perspective, a PSN may be seen as a set of SFC instances.
Each of them may be dynamically assigned to a given SR.

SR Model: We consider, in this paper, a SR characterized by both VNFs and
virtual links QoS requirements. VNF QoS requirement covers computing capacity C
(in CPU cores) whereas virtual link QoS requirements encompasses bandwidth Bw
(in Mbps) and delay D (in ms) (as mentioned in table 1). The SR is formally modeled
by a VNF-FG graph namely FG = (V (FG), E(FG)) where V (FG) is the set of VNFs
(notice that the ingress and egress nodes are considered of VNF type) and E(FG) is
the set of virtual links. It is specified by end-to-end requirements in terms of delay D
(the maximum tolerable latency between any pair of endpoints) and bandwidth Bw
(the minimum bandwidth between any pair of endpoints)(see table 1). Each VNF,
n ∈ V (FG), is described by the required processing CPU core capacity C(n) whereas
each virtual link l ∈ E(FG) is characterized by its required bandwidth Bw(l) and
transmission delay D(l).

4.1.2 Problem formulation

We explicitly formulate, in this subsection, the SFC orchestration problem with spe-
cific objective function and constraints as an ILP model. The objective function
aims to maximize end-to-end QoE of the incoming SFC request while meeting QoS
constraints. These constraints concerns respectively the maximum number of VNF

15

instance in VNF License, VNF Placement, PSN Node Capacity, PSN Link Capac-
ity, Delay. Detailed explanation of the above problem formulation is provided in the
following paragraph. The problem formulation and the main related notations and
parameters are summarized in Table 1.

Constraints Explanation: For every incoming SR, we are looking for investi-
gating the online VNF deployment/ embedding and chaining problem on PSN. The
question to be answered in this context is how to steer a SFC request to suitable path
in PSN. This comes down to find the most appropriate (the best) SFC, in the PSN,
meeting the SFC request requirements maximizing QoE and meeting QoS require-
ments and PSN constraints related to resource limitations. The definition of SFC
orchestration problem requires in a first step the detailed specification of the differ-
ent constraints related to PSN Nodes (resp. links). It requires, in a second step, its
mathematical formulation as a constrained optimization problem. Notice that in this
paper, we are concerned with maximizing QoE while respecting QoS constraints. The
objective of the SFC orchestration is to embed all the VNF (resp. virtual link) of the
SFC request on the corresponding PSN node (resp. PSN link) of the PSN. Where
Eq.(7) specifies that the maximum number of VNF instances of type i, vnfi, deployed
on the PSN, should not exceed the number Lvnfi of VNF instances per license of a
given VNF type owned by the operator. Placement constraints related to deploying
the entire SFC request without exceeding the maximum number of individual VNF
instances that may be installed and used simultaneously by the license owner are
formulated by Eq.(8) and Eq.(9): Eq.(8) guarantees that every VNF type (N) belong-
ing to the same SFC request is effectively deployed at least once and no more than
Lvnf

rn
i

times. Eq.(9) imposes limitation on the amount of requested CPU resources
of the VNF that should not exceed the available resources of the PSN node on which
it will be embedded. Eq.(10), indicates that the virtual link bandwidth V Link(i, l)rn

should not exceed that of the PSN link link(j, k) of the PSN on which it will be
mapped. Eq.(11) (resp. Eq.(12)) explicitly expresses the cumulative delay incurred by
all the PSN nodes (resp. PSN links) involved in the SFC request Dnrn (resp. Dlrn)is
expressed as the sum of the processing delay required to map every VNF instance
vnfrn

i (resp. virtual link V Link(i, l)rn) of the SFC request rn on the corresponding
PSN node nfvij (resp. PSN link Link(j, k)). Eq.(13) indicates that the end-to-end
SFC request expected delay must not exceed the given threshold Drn .

4.2 MDP Based QoE/QoS Aware SFC Orchestration

We formalize the SFC orchestration issue as a MDP model and we illustrate from
reinforcement learning perspective the interaction between the RL agent with the
controlled environment interact over a sequence of discrete time steps t = 0, 1, 2, . . . , T
to achieve a goal.

4.2.1 MDP Specification

MDP is formally described by the following tuple: {S,A, P,R, γ}:

16

• S: denotes the finite set of all possible of states (the state space). Each state s ∈ S
represents the system environment including PSN topology, QoE/QoS status of
VNF instance, functional and QoS requirements of the current SR, etc.

• A denotes the finite set of all possible actions (the action space). Each action a ∈ A
indicates selecting the next VNF instance from the current one. To deploy a SR,
The first action corresponds to embedding the first VNF on PSN node and the
second action corresponds to embedding the second VNF and mapping virtual link
V Link(1, 2) interconnecting V NF1 to V NF2 on PSN link. The following actions (3,
4 and 5) are executed in a similar manner to action 2. In other words, the ith action
(2 ≤ i ≤ 5) embeds V NFi on a PSN node and maps V Link(i−1, i) interconnecting
V NFi−1 to V NFi on a suitable PSN link. Notice that, for the ith VNF it’s possible
to choose an action among Mi possible actions.

• P denotes the state transition probability matrix, a function of transition probabil-
ities between states (conditioned to the action taken by the agent). Each transition
probability P a

s→s′ represents the case where the QoE/QoS status moves from s to
s′ under the action a enabling the selection of a VNF instance.

• R denotes reward function (the immediate reward) assigning a specific reward to
each state-action pair. Each immediate reward r ∈ R describes the contribution of
the chosen VNF instance vnfij to the current QoE of the chain.

• γ ∈ [0, 1] is the discount factor, future rewards are discounted at a given rate to bring
more importance to immediate (current) reward compared to the future rewards and
to ensure convenient trade-off between short term and long term rewards. The con-
vergence of the discounted reward sum is of paramount importance when evaluating
the performance of reinforcement learning algorithms.

4.2.2 MDP Process Description

The evolution in time of the Markov decision process is detailed as follows: At every
time step t the agent receives state representation of the environment state st and
performs an action at. The objective of the agent is to learn a policy that maps states
to appropriate actions in a way that maximizes a reward signal furnished by the
environment. As a feedback to the action of the agent the environment moves from
the current to the next state st+1 by achieving a Markovian transition. At the next
time step t+1 the agent receives a reward rt+1 assessing its performance and uses this
information with the current state st+1 to choose the next action at+1. The received
reward is selected based on the chosen action and the state transition from the current
state to the new (next) state of the environment.

The resolution of MDP enables the agent to learn the optimal action to take in
every state, for the sake of maximizing the expected cumulative rewards. The quality
of a policy π(s, a) is assessed by a long term reward over some time horizon instead
of an immediate reward r, since a good action is always the best in the long-term. As
a result, assigning immediate short-term reward is unprofitable to evaluate the policy
quality and to guide the search for an optimal policy. The optimal action is obtained
via two value functions:

17

• The state value function V π(s) defined as the expected accumulated discounted
rewards starting from s and following policy, π (Eq.(14)). It provides the value of
being in a given state.

V π(s) = E(

∞
∑

k=0

γkrt+k+1∥st = s)

= E(rt+1 + γV π(st+1)∥st = s)

(14)

• The state-action value function Qπ(s, a) (Q function), extends V π(s) and takes into
consideration the action taken. It specifies the utility for an agent to perform a
particular action in a specific state following a fixed policy π and represents the
expected accumulated discounted rewards by action a from initial state s (Eq.(15)).

Qπ(s, a) = E(

∞
∑

k=0

γkrt+k+1∥st = s, at = a))

= E(rt+1 + γV π(st+1, at+1)∥st = s, at = a)

(15)

where rt represents the immediate reward of step t ∈ {1, 2, ..., T} and E(.) indicates
the mathematical expectation operator. Finding the optimal solution of MDP involves
finding the policy that maximizes V π(s) (Eq.(16)):

π∗(s) = argmaxV π(s) (16)

According to Bellman Optimality Equation, the optimal policy π∗ is given as follows
(Eq.(17)):

V π∗

(s) = maxa∈AQ
π∗

(s, a) (17)

The resolution of MDP SFC orchestration model seeks the optimal SFC instance sfcic∗
c∗ ∈ C (among a finite set of sfci denoted by C) according to the policy π such that
(Eq.(18)):

c∗ = argmaxc∈CE(

T
∑

t=0

γtrt+1) (18)

4.3 The Reward Model: Global Formula and Building Blocks

In order to determine the optimal policy in a RL problem that maximizes the expected
cumulative reward over time and over all possible sequences of states and actions, it’s
of paramount importance to build a the reward model (reward function), enabling to
map states and actions to the corresponding rewards. The reward model represents
the cornerstone of the decision-making process in reinforcement learning. It enables
the quality evaluation of different actions taken by the agent and guides its learning
process. In the rest of this subsection, we provide first a global formula of the proposed
reward model. We describe next the different building blocks involved in the reward
model conception.

18

4.3.1 The Global Formula

Formulating the SFC orchestration/deployment issue as a RL problem requires
defining a rewards model in order to associate convenient rewards/penalties to suc-
cessful/failed deployment actions. We adopt, in this paper, reward/penalty assignment
only for VNF embedding and we consider that whenever two successive VNFs are
successfully deployed they are automatically interconnected through a virtual link suc-
cessfully mapped on a PSN link. The successful embedding of the next VNF depends
on checking the achievement of two conditions: (i) finding a suitable PSN node with
enough available resource to handle it and (ii) verifying that the mapping of the vir-
tual link interconnecting the first VNF to the next VNF is achievable on appropriate
PSN link (with sufficient idle resources). Furthermore, and for convenience, we assume
that not only the mapping action is always achieved automatically and successfully
but also no reward is assigned to such action. Notice also that every embedding/map-
ping action along the SR deployment process is preceded by a preliminary capacity
constraints check by the DRL agent. This kind of control is repeated iteratively until
the entire SR deployment process is completely achieved. In the rest of paragraph,
we will detail all the rewards and/or penalties assigned to each action taken by the
DRL agent. Whenever SR deployment process is initiated, if the embedding action
of the first VNF is correctly achieved according to the chosen (random in this case)
policy, a reward 0 is assigned, otherwise the current SR deployment process is consid-
ered failed and interrupted and a penalty (P) is assigned to such action. If the first
VNF embedding action is successfully fulfilled, the DRL agent should verify any node
capacity constraint before beginning the next VNF embedding action. The following
action of the DRL agent is to establish the mapping action of the virtual link (onto
a suitable PSN link) interconnecting the first VNF to the following one, stated in the
SR. The previous embedding/mapping actions are incrementally repeated for every
VNF/virtual link until fulfilling the entire SR deployment task. Depending on the
success or fail of the VNF embedding action we assign a reward or penalty accord-
ing to Eq.(19). In this regard, we assume that each one of the first (N − 1) VNFs
(vnfi, i ∈ [1...N − 1]) of the SFC request, successfully deployed, obtains a reward
RQoE−QoS equals to 0 (Eq.(19a)) whereas a successful deployment of the last VNF
(the N th VNF, vnfN) obtains a positive reward value equals to QoEsfcic (Eq.(19b))
(resp. QoEsfcic − P rn

sfcic
(Eq.(19c))) whenever condition c2 (resp. c3) is satisfied. We

assume also that the fail of one action corresponding to VNF embedding (among the
set of VNFs composing the SR) yields to cancelling the entire SR deployment and
produces a negative reward (P = −10) (Eq.(19d)).

19

RQoE−QoS =

0, if (c1)

QoEsfcic , if (c2)

QoEsfcic − P rn
sfcic

, if (c3)

P, otherwise

(19a)

(19b)

(19c)

(19d)

where c1, c2, c3 are logical conditions defined as follows:

• c1: vnfi (i ∈ [1...N − 1]) ∈ rn is successfully deployed
• c2: vnfN ∈ rn is successfully deployed and QoSt

sfcic
= QoSt

rn
, t ∈ {1, 2, .., L}

• c3: vnfN ∈ rn is successfully deployed and QoSt
sfcic

̸= QoSt
rn
, t ∈ {1, 2, .., L}

For convenience, we may rewritten Eq.(19) in a compact representation and unified
form given by (Eq.(20)).

RQoE−QoS = δrn .(QoEsfcic − P rn
sfcic

)− (1− δrn).P (20)

where δrn , QoEsfcic and P rn
sfcic

are given as follows:

• δrn (Eq.(21)): represents a decision variable indicating whether the whole SFC
request rn has been successfully deployed or not. Hence, δrn equals 1 if SFC request
finds a suitable SFC instance on PSN and is effectively deployed and 0 otherwise.

δrn =

{

1, if vnfi (i ∈ [1...N]) ∈ rn issuccessfully deployed

0, otherwise
(21)

• QoEsfcic (Eq.(22)) [45] [46]: is the overall QoE gain of a successfully deployed SR
and is given by:

QoEsfcic =

K
∑

t=1

wt ×QoEt
sfcic

−

L
∑

t=K+1

wt ×QoEt
sfcic

(22)

QoEsfcic quantifies the reward obtained in response to the effective SFC deployment
where:

QoEt
sfcic

=

{

γp × log(αp × qostc + βp) + θp, t ∈ {1, 2, .., k}

γn × e(αn×qostc+βn) + θn, t ∈ {k + 1, k + 2, .., L}
(23)

It is worth noting that the constant parameters αp, βp, γp, θp, αn, βn, γn and θn may
be used to achieve fine adjustment of the quantitative inter-dependency between
QoE and QoS. Notice also that QoEt

sfcic
denotes the QoE gain related to the tth

QoS metric of sfcic.
• P rn

sfcic
(Eq.(24)) [35]: is the QoS constraints penalty given by:

P rn
sfcic

= P · e
−
√

∑

L
t=1

∥QoSt
sfcic

−QoSt
rn

∥2

(24)

20

4.3.2 The Building Blocks

A well-designed reward model will certainly contribute to efficient and effective learn-
ing. From this perspective, We adopt a modular approach for building the reward
model based on separated building blocks where each block is designed to perform a
specific task. The advantage of such approach is to enable reward modeling flexibility
fostering easier reward extensions. We can easily extend the proposed reward model
by accounting for an additional building block quantifying the OPEX cost related to
SR deployment. This is out of the scope of this paper. In the rest of this paragraph,
we consider and we detail two main building blocks potentially in the global formula
of the proposed reward model (see paragraph 4.3.1). These building blocks concern
QoE Gain and QoS constraints penalty.

QoE Gain (QoEsfcic): The QoE gain is conceived according to QoE control
mechanism based on measurable QoS parameters bringing positive experience. The
objective of such mechanism is to:

• Identify key performance QoS metrics that affect the user’s QoE (such as delay,
bandwidth)

• Implement continuous monitoring tools enabling effective measure of QoS metrics
• Set a mapping between QoS and QoE. Such mapping will be useful to establish a
correlation between high latency in a video streaming for example and poor video
quality and/or a negative user experience [47] [48].

• Set QoS thresholds to ensure that the QoE remains within an acceptable range.
• Establish a control mechanism enabling dynamic adjustment of network and appli-
cation parameters in order to preserve QoS into an acceptable range accounting for
the defined thresholds and to enhance QoE.

It is worth mentioning that QoE assessment may be based on subjective or objective
QoS measures. In our context and for cost and complexity reasons, we focus only on
objective measures. The main QoS objectives measures are established according to
two major mathematical models referred to as WFL and IQX [45] [46]. They provide
mapping between QoS and QoE in telecommunications and networking through non-
linear relationships. Weber-Fechner Law (WFL) [46] [49] establishes a logarithmic
dependency between QoS metrics and the resulting QoE whereas the IQX hypothesis
expresses the generic Exponential Inter-dependency between QoE and measurable
QoS (Eq.(23)). WFL is used for mapping positive QoS metrics (i.e. bandwidth) where
the larger the value, the better the QoS, while IQX is used for mapping negative
QoS metrics (i.e. delay) [45] where the smaller the value, the better the QoS. The
major difference between mapping in WFL and IQX is that WFL mapping is based
on differential function, whereas IQX mapping is based on an exponential function.
Each model is used according to the specific requirements of the QoS and QoE metrics
being assessed.

The QoS Constraints Penalty (P rn
sfcic

): The reward formulation is conceived
in order to enable the DRL agent to seek through trials and errors, exploration and
exploitation the ’best’ SFC instance, among all the SFC instances of the PSN, having
the highest QoE while meeting QoS requirements. These requirements lead indeed to
two paradoxical needs. On one hand, we tend to consume more resources to further

21

improve QoE gain and on the other hand we need to take care to rationalize as much
as possible resources consumption to avoid unnecessary wastes. Consuming larger
resources while avoiding QoS constraint violations fosters providing closer distance
between SFC instance QoS metrics and SR QoS requirements. Therefore, whenever
QoS constraints are met, the closer the distance, the smaller the penalty should be.
Such penalty (P rn

sfcic
) is formulated as an exponential function of the square of the

Euclidean distance between QoS metrics of sfcic (QoSt
sfcic

∈ {Bwsfcic , Dsfcic}) (see

Table 1) and the SR QoS constraints (QoSt
rn
∈ {Bwrn , Drn}) (see Table 1) (Eq.

(24)). To summarize, whenever QoS requirements are met two possibilities are to be
considered. The first one corresponds to the case where the difference between QoS
metrics and QoS constraints is zero the reward in such case is equals to the QoE gain.
The second one corresponds to the case where this difference is not null, and in order
to discourage such behavior a proportionate penalty is assigned and the reward value
is given by Eq.(24). Also, in order to severely penalize any QoS violations our choice
has been made towards a sufficiently large constant value of the penalty P . These
violations may occur whenever an imbalance could arise between the two sides of the
equation Eq.(10) and/or Eq.(13). Notice also that any QoS constraint transgression
leads without fail to the strictest penalty (P). It should be pointed out that QoS
metrics of sfcic may concern bandwidth and/or delay and each QoS metric violation
may be penalized in an appropriate way in order to attain the predefined goal.

4.4 DRL Driven QoE/QoS Aware SFC Orchestration

The NP hard stochastic optimization problem related to QoE/QoS aware SFC orches-
tration is then established as a Markov decision process (MDP) and will be solved
according to a DRL approach. Indeed, taking into consideration the complex and
large-scale nature of the decision-making problems related to the QoE.QoS aware SFC
orchestration and given the scalability issues of Q-learning we adopt in the rest of
this paper the DRL approach for solving the MDPs. This choice is justified by the
DRL ability to handle high-dimensional state spaces, complex patterns of the reward
structures, and long-term dependencies in sequential decision-making problems. By
adopting the DRL approach and through using the action value function the expected
reward (to maximize) of each action (i.e., selecting a specific VNF instance) to take
in a given state may be evaluated. In this regard the VNF selection is dynamically
adapted to changing network conditions and resource constraints. This enables opti-
mizing accordingly the network service deployment in real-time, leading to better
network performance and streamlining resource utilization. In the rest of this subsec-
tion we provide first a detailed description of the VNF instances selection process, we
describe next the action value function pf our reinforcement learning problem before
presenting the proposed algorithm.

4.4.1 Action Value Function

RL algorithms require an exact representation of the two major components referred to
as value function and policy that are used by the agent in decision making. Whenever
the state-action space is small enough to be represented in a table, tabular methods

22

such as Q-learning are suitable to keep track of the states, actions, and their expected
rewards. In such case the agent updates the Q-values in the table to represent its
updated estimate of the expected reward for taking each action in each state. However
in complex environments with large-scale or continuous state space, tackling the RL
problem exactly or incrementally it is often prohibitive. The action value function
Q(s, a) is used to define the long term as the sum of all the discounted immediate
rewards r. As soon as a VNF instance vnfij is selected, immediate reward rij is
assigned, and accordingly used to update the current value of action value function
Q(s, vnfij). Given that the QoE/QoS state space is continue, tabular based RL are
inconvenient for storage and updates and DRL implementations via DQN and its
variants are used to fit each long-term reward Q(s, vnfij) from a given state s and
the corresponding immediate reward rij . Instead of storing all state-action pairs in a
Q-table like in Q-learning, DQN, a variant of Q-learning, relies on Neural Network
(NN) (Convolutional NN (CNN) or Deep NN (DNN)) to approximate complex and
nonlinear function, referred to as action value function Q(s, a).

DQN relies on two separate and structurally identical networks, namely evaluation
network (eval-net) (or online network) and target network (target-net). DQN aims
through such separation to enhance the learning process stability and to attenuate and
to prevent oscillations and divergence in the estimated Q-values. The target network
delivers a stable target for the eval-net to learn from, since the Q-values estimated by
the eval-net may rapidly change while updating its parameters. The eval-net is used
to select actions and estimate the Q-values for each state-action pair, while the target
network is used to generate the target values for updating the evaluation network’s
weights.At the end of each iteration, eval-net updates its parameter θ whereas the
target-net, which is a fixed copy of the evaluation network, temporarily frozen its
parameter θ− and updates it periodically after a set iterations C.

DQN algorithm [50] may be seen as a black-box function taking as input the state
of the environment and outputs a Q-value (the expected reward) for each possible
action. It is worth mentioning also that the neural network is used to map for each
action the state of the environment to a Q-value. The goal of the DQN algorithm is
to learn the optimal Q-value function enabling to know the best action in a certain
state and following a given policy thereafter and such information may be used by the
agent for real time decision making. The update of the Q-value function is achieved
through trial-and-error, and based on the experiences stored in a replay memory to
progressively enhance the Q-value predictions accuracy. During the training process
DQN agent adopts the Temporal Difference (TD) Error as a loss function is defined as
the Mean Square Error (MSE) to quantify the difference between the expected reward
for a given state-action pair (as predicted by the network) and the actual reward
obtained once the action in that state is taken. This difference is afterwards leveraged
for updating the network’s weights and performing better predictions. The TD Error
relies on the Bellman Equation to define the expected return for each state-action pair
in a Markov Decision Process. Optimizing the TD Error (MSE loss function) with
respect to the network’s weights enables the DQN agent to learn the optimal Q-value
function, which in turn enables to find the best action to perform in each state. The
loss function minimization is being possible through updating the weights. Optimizing

23

loss function by using a gradient (Eq.(26)) is then leveraged to minimize the training
of neural network.

L(θ) = E[(rij + γmaxvnf ′

ij
Q(s′, vnf ′

ij ; θ
−)−Q(s, vnfij ; θ))

2] (25)

∂L(θ)

∂θ
= E[(rij + γmaxvnf ′

ij
Q(s′, vnf ′

ij ; θ
−)−Q(s, vnfij ; θ))

∂Q(s, vnfij ; θ)

∂θ
] (26)

4.4.2 VNF Instances Selection

The DRL agent strives to learn how to map PSN states to actions so as to maxi-
mize a numerical reward signal that quantifies the numerical feedback for the actions
taken in uncertain environment. The objective of the learning process is to choose
the convenient VNF instance by alternating between exploration and exploitation.
This enables to seek for good balance between trying new strategies (exploration) and
sticking with successful strategies already found in the past (exploitation). To han-
dle the exploration-exploitation dilemma we opt for a simple and effective exploration
strategy based on the ϵ-greedy algorithm. This algorithm is used in the Multi-Armed
Bandit (MAB) problem to balance the trade-off between exploring different (new)
arms (actions) to acquire new knowledge and exploiting the best arm based on existing
knowledge. It’s also used in simple tabular reinforcement learning, to find a compro-
mise between exploring new actions selected at random to collect information about
the environment, and exploiting the best actions providing the maximum future reward
based on the available information gathered so far. In ϵ-greedy algorithm the agent
randomly alternates between exploration and exploitation. The choice of randomly
choosing to explore a new action with probability ϵ whereas exploitation consists in
choosing the best action based on current knowledge with probability 1− ϵ (Eq.(27)).
In our case study, exploration seeks to try out new VNF instances that have not been
yet executed, whereas exploitation attempts satisfy the need to stick to the known suc-
cessful VNF instances by choosing the best VNF instance among those known enabling
to obtain the maximum known return with a relatively conservative approach.

π =

{

1− ϵ+ ϵ
Mi

, if vnfij = argmaxMi

j=1Q(s, vnfij)
ϵ

Mi
, if vnfij ̸= argmaxMi

j=1Q(s, vnfij)
(27)

4.4.3 Implementations of the DRL Driven QoE/QoS Aware SFC
Orchestration Algorithm

Based on the modeling approach described above, we propose in what follows a
DRL implementation of the tackled QoS/QoE-aware SFC orchestration problem. This
implementation (Algorithm 1) concerns Double DQN algorithm (detailed in subsec-
tion 3.5) and aims to evaluate the DRL agent behavior along the training process. In
the algorithm 1, we use the following parameters:

• BS (mini-Batch Size) is the mini-batch size.
• RS (Replay buffer Size) is the buffer size of the replay memory D.
• Q is a vector of dimension Mi representing Q(s, vnfij)s for i

th VNF instance vnfi.

24

• E specifies the number of training episodes (E = 5000).
• Req defines the number of SRs used during the training process (Req = 100).
• QoESc−Th is a threshold score. It quantifies a QoE learning quality to reach (on
average) by the DRL agent along the last 100 runs.

These algorithms will be extensively explored by simulation in the next section in
order to highlight the DRL agent behavior along the training process for different
hyper-parameters and performance metrics.

Algorithm 1 Double DQN QoS/QoE SFC

initialize replay memory D to capacity RS, τ << 1
initialize action value function Qθ, with random weights θ
initialize target action value function Qθ′ with weights θ

′

initialize QoESc−Th, Sum = 0
for episode = 1..E do

reset environment

Sumr = 0
for sfc req = 1..Req do

/*Sampling phase

initialize chain c and observe initial observation s
for i = 1..N do

select a connected instance vnfij by eq.(27)
observe s by QoS and observe rij by eq.(19)
store transition (s,vnfij,rij,s

′) in D
s=s′

end for
Sumr+ = rij
/*Learning phase

if enough experiences in D then
for each update step do

sample mini-batch of BS transitions (s, vnfij , rij , s
′) from D

compute target Q value: Q∗(s, vnfij) ≈ rij +
γQθ(s

′, argmaxvnf ′

ij
Qθ′(s′, vnf ′

ij))

perform a gradient descent step on (Q∗(s, vnfij) −
Qθ(s, vnfij))

2

update target network parameters: θ′ ← τ ∗ θ + (1− τ) ∗ θ′

end for
end if

end for
calculate Sum the sum of last 100 mean rewards ((Sumr/Req))
if (Sum/100) ≥ QoESc−Th then

break
end if

end for

25

5 Performance Evaluation

In this section, we provide a simulation-based performance analysis to evaluate the
RL effectiveness of the proposed algorithm dealing with online incremental QoE/QoS
aware SFC orchestration problem. This algorithm uses Double DQN and aims to
achieve the optimal deployment scheme of each incoming SR. We conduct several
simulation experiments to evaluate and test the learning capacity of the DRL agent to
reach a predefined QoE score used as a performance training metric. We particularly
focus on finding a suitable compromise between performance in terms of learning
quality and convergence of the training process. In the rest of this section we give first
the mains assumptions considered for the DRL agent environment. We detail next
the different experimental results related to the effect of both PSN scaling and hyper-
parameters (referred to as batch size and learning rate) on performance-convergence
trade-off.

5.1 Main Assumptions

The definition of the simulation environment and the input parameters involves speci-
fying the main assumptions related to hyper-parameters (Table 3), the PSN topology,
the workload (the incoming SFC requests (SR)), and the considered performance
metrics to investigate.

• PSN assumptions:

– PSN nodes: Each PSN node is assumed of unlimited capacity and can host one
or more VNF(s).

– PSN links: Each PSN link is assumed with limited bandwidth capacity (Bwlink)
and non zero transmission delay (Dlink). It may handle one or more Vlink(s).
Bwlink is randomly chosen in the range of [768−1280]Mbps, andDlink is randomly
selected in [10− 20]ms.

• PSN attributes:

– M : The number of nodes in PSN (M=5).
– Mlink: The number of links in PSN (Mlink = M ∗ (M − 1)/2 = 10), (PSN nodes
are assumed fully interconnected via PSN links).

• SR attributes:

– NV NF : The number of VNF instances (NV NF=5) involved in the SR. We assume
that the embedding of each VNF instance on PSN node requires no CPU capacity
and no processing delay. Obviously this assumption may be easily relaxed to
assign a non null processing capacity and non null time delay in the PSN node.
This is out of the scope of this paper.

– NV link: The number of Vlinks (NV link=4).
– Bwr: End-to-End Bandwidth varies randomly in the range of [16− 256]Mbps.
– Dr: End-to-End Delay varies randomly in the range of [50− 90]ms.

• Evaluation metric for online DRL: Is used for evaluation during training (learn-
ing) phase. It measures the quality of the learned policy (or RL algorithm) and is

26

quantified by the average learning level (i.e., QoE Threshold Score (QoESc Th)) or
the cumulative reward to be reached by the DRL agent in the last 100 runs of the
training phase.

• Scenario: The attributes of each incoming SR and the PSN change rapidly over time
and the agent needs to adapt quickly and dynamically to these new conditions.

5.2 Experimental Results

5.2.1 Effect of PSN Scaling on Performance-Convergence Trade-off

We investigate in the rest of this subsection performance-convergence trade-off along
the training process of the DRL agent and how the PSN scaling impacts this trade-off.
In this respect, we examine two sets of experiments (PSN with 5 (set1) and 10 (set2)
PSN nodes respectively). The agent training process is examined along one episode
(one episode = 5000 runs). For the two sets, the DRL agent aims to reach as soon as
possible a predefined learning quality quantified by the evaluation metric (QoESc Th).
For each experiment, the DRL agent may attain or not the desired learning quality.
In order to distinguish between experiences where the agent succeeded in reaching
QoESc Th from experiences where the agent fails in reaching QoESc Th during the
same episode, we intentionally split each set into two separated subsets (set1 into sub-
set11 and subset12 and set2 into subset21 and subset22). Subset11 and subset21 cover
experiments where the DRL agent succeeded in reaching QoESc Th before an episode
ends. Whereas the subset12 and subset22 cover experiments where the DRL agent
fails in attaining the desired quality within one episode. Reaching the learning quality
objective may require one episode, more than one episode or may be never achieved
at all regardless of the number of runs (in this case the convergence is not ensured
in a finite number of episodes). Toward the different experiences, we investigate per-
formance and convergence issues of the DRL agent for different QoESc Th. In order
to attempt to learn the best (optimal or near-optimal) policy, we progressively and
incrementally increase the QoESc Th and we intend to see for each experience how
this impacts simultaneously the learning quality and the learning convergence speed.

In set1 we distinguish between two subsets: subset11 (fig.2: fig.2a, fig.2b, fig.2c,
fig.2d and fig.2e) and subset12 (fig.3: fig.3a and fig.3b). Notice that in subset11 rising
QoESc Th does not automatically lead to a longer learning phase. Indeed, for example,
increasing QoESc Th from 2000 (fig.2a) to 2250 (fig.2b) yields a growth of the required
number of runs from 700 to 1150 to attain the desired QoESc Th . Conversely, increas-
ing QoESc Th from 2250 (fig.2b) to 2350 (fig.2c) yields a decrease of the required
number of runs from 1200 to 670 to reach the predefined QoESc Th . This behavior may
be explained by the following justifications. Along the training phase, the agent learns
through trial and error, and incrementally builds online decision making by choosing
randomly between exploration and exploitation in a probabilistic manner according to
ϵ-greedy algorithm. In a nutshell, the training process is stochastic and the learning
phase may last for experiences with the same setting more or less long period. The
above explanation fully justifies the agent behavior in subset11 for different QoESc Th.

In subset12, for QoESc Th relatively high (2700 in fig.3a) and 3000 in fig.3b),
obviously the learning episode may finish without allowing the agent to attain the

27

(a) QoESc−Th = 2000 (b) QoESc−Th = 2250 (c) QoESc−Th = 2350

(d) QoESc−Th = 2450 (e) QoESc−Th = 2500

Fig. 2: QoE score versus number of runs (M = 5)

desired learning quality. Therefore the agent is very likely unable and tries in vain to
perform actions, during the last 100 runs of the training phase, that make it more
profitable to improve the training performance. Such behavior is due probably to
the performance limitation of the neural network model and/or the DRL algorithm
(Double DQN).

(a) QoESc−Th = 2700 (b) QoESc−Th = 3000

Fig. 3: QoE score versus number of runs (M = 5)

28

In a second set of experiments (set2: fig.4 and fig.5), we adopt similar setting as
in set1 (fig.2 and fig.3) but with a larger PSN scale (a number of PSN nodes=10)).
Through numerical investigations (fig.2–fig.5), we attempt, for a given QoESc Th

preliminary defined, bringing convincing answers to the following question: How
increasing PSN scale impacts performance and convergence of the DRL agent?

For relatively low QoESc Th (QoESc Th = 2000, 2250, ..., 2500), the convergence
is guaranteed for the two sets (set1 and set2) in a number of runs less than 5000
(One episode = 5000). On the other hand, set2 provides slower convergence than set1.
For relatively high QoESc Th the agent converges (for QoESc Th=2700 (fig.4d), 2750
(fig.4e) in set2) in a number of runs less than one episode, whereas for QoESc Th=2700
(fig.3a in set1) the agent fails in converging in a laps of time within the same
episode. For higher QoESc Th, the agent convergence is unreachable within an episode
(QoESc Th = 3000 (fig.3b) of set1 and QoESc Th = 2800 (fig.5a), 3000 (fig.5b) in set2).

(a) QoESc−Th = 2000 (b) QoESc−Th = 2250 (c) QoESc−Th = 2500

(d) QoESc−Th = 2700 (e) QoESc−Th = 2750

Fig. 4: QoE score versus number of runs (M = 10)

Two major lessons can be learned from increasing the network scale (the PSN state
space becomes larger) and when comparing set2 to set1. First, in set2, the DRL agent
needs more exploration and hence more time to converge to an optimal policy. This is
illustrated by comparing the two curves (fig.2a, fig.4a), indeed for the same algorithm
(Double DQN) a larger network scale involves slower convergence (for example the
convergence speed to reach the learning quality (QoESc Th = 2000) decreases signifi-
cantly from 700 to 2500). Second, the DRL agent has greater opportunities to find a

29

suitable SFC instance among the set of SFC instances meeting SFC request require-
ments and hence has more chance to reach higher QoESc Th. This fact is significantly
highlighted by comparing ((fig.3a, fig.4d).

(a) QoESc−Th = 2800 (b) QoESc−Th = 3000

Fig. 5: QoE score versus number of runs (M = 10)

5.2.2 Effect of Hyper-parameters on Performance-Convergence
Trade-off

(a) LR = 10−1 (b) LR = 10−2 (c) LR = 10−3

(d) LR = 2.5 ∗ 10−4 (e) LR = 10−5 (f) LR = 10−7

Fig. 9: QoE score versus number of runs by Double DQN Algorithm (QoESc Th =
2500, M = 5, BS = 256)

30

(a) LR = 10−1 (b) LR = 10−2 (c) LR = 10−3

(d) LR = 2.5 ∗ 10−4 (e) LR = 10−5 (f) LR = 10−7

Fig. 6: QoE score versus number of runs by Double DQN Algorithm (QoESc Th =
2500, M = 5, BS = 32).

In RL, hyper-parameters such as the learning rate (LR) and batch size (BS) can
impact significantly performance and convergence of the algorithm. LR may be
adjusted to tune the updating rate of the model parameters after each iteration.
A higher LR (for example fig.6a (LR = 10−1, BS = 32) and fig.7a (LR = 10−1,
BS = 64)) yields faster parameters updates, however it may also bring undesirable
overshooting of the optimal values leading to oscillations, divergence and instability in
the learning process. On the other hand, a lower LR (for example fig.8f (LR = 10−7,
BS = 128) and fig.9f (LR = 10−7, BS = 256)) can lead to slow convergence and
a longer training phase of the agent. Therefore, in order to find convenient trade-off
between convergence speed and stability it is important to establish the right choice
of the LR with respect to the context. BS is another important hyper-parameter that
enables to control how many samples are used in each update of the model parameters.
A larger BS (for example fig.9c (LR = 10−3, BS = 256) and fig.9d (LR = 2.5 ∗ 10−4,
BS = 256)) can bring further accuracy in estimating the gradient and more stability
to the learning process, but it may also require additional memory and computational
resources. On the other hand, a smaller BS (for example fig.6c (LR = 10−3, BS = 32)
and fig.6d (LR = 2.5∗10−4, BS = 32)) can lead to faster updates and more exploration
of the state space, but it may also cause more noise and slower convergence. Unsuit-
able hyper-parameter choices can result in slow convergence, instability, over-fitting,
and memory issues and as a result can cause significant performance degradation of
RL algorithms and the overall learning process. In this respect and in order to address
this challenge and to mitigate the negative impact on the final training outcome, it is

31

(a) LR = 10−1 (b) LR = 10−2 (c) LR = 10−3

(d) LR = 2.5 ∗ 10−4 (e) LR = 10−5 (f) LR = 10−7

Fig. 7: QoE score versus number of runs by Double DQN Algorithm (QoESc Th =
2500, M = 5, BS = 64)

important to carefully select these hyper-parameters based on problem specificity and
the investigated context.

In what follows, we fix a learning quality goal (QoESc Th = 2500) to reach by
the DRL agent and we investigate through extensive experiences how changing hyper-
parameters (LR and BS) may impact the model performance in terms of performance-
convergence trade-off. In this direction, we keep constant the BS = 32 and we assess
the learning curve of the reward sum for different LRs (10−1 ... 10−7) (fig.6, fig.10a).
This process is repeated for different BSs (64 (fig.7, fig.10b), 128 (fig.8, fig.10c) and
256 (fig.9, fig.10d)).

As a synthesis of hyper-parameters effect on performance-convergence trade-off,
we can draw the best pairs of LR and BS (fig.6b (LR = 10−2, BS = 32), fig.6f
(LR = 10−7, BS = 32), fig.7d (LR = 2.5 ∗ 10−4, BS = 64), fig.7f (LR = 10−7,
BS = 64), fig.8e (LR = 10−5, BS = 128), fig.9b (LR = 10−2, BS = 256) that lead to
the best training results. These results are better illustrated through representing the
learning process evolution of a fixed BS and different LR in the same figure (fig 10).
They confirm the default choice (LR = 2.5 ∗ 10−4, BS = 64 in table ??) that we had
established along the investigated experiments.

32

(a) LR = 10−1 (b) LR = 10−2 (c) LR = 10−3

(d) LR = 2.5 ∗ 10−4 (e) LR = 10−5 (f) LR = 10−7

Fig. 8: QoE score versus number of runs by Double DQN Algorithm (QoESc Th =
2500, M = 5, BS = 128)

6 Conclusion and Future Work

Achieving SFC orchestration and deployment that maximizes QoE while meeting QoS
requirements regarding end-to-end bandwidth and end-to-end delays represents a cru-
cial step toward a broader adoption of the NFV concept. We investigate in this paper
an online QoE/QoS aware SFC orchestration problem in NFV/SDN-enabled networks
based on DRL. The DRL combines DL and RL and aims to yield more effectiveness
and stability to function approximations, particularly for high-dimensional and large
scale problems. The DRL approach adopted in this paper is implemented through
Double DQN by considering extended assumptions about server sharing and limited
resources and capacities. These limitations concerns PSN nodes and PSN links, the
maximum number of instances per VNF licence.... We illustrate through extensive
numerical results the effectiveness of the proposed modeling and analysis method to
solve multi-objective sequential making decision problem related to SFC orchestration
and deployment by assessing the learning quality of the DRL agent and by highlight-
ing the impact of PSN scaling and hyper-parameters such as batch size and learning
rate on performance and convergence. We considered that the learning quality of the
agent is satisfactory enough whenever the average score reaches a predefined thresh-
old level on the last 100 runs of each learning experience. In future works we intend
to take into consideration affinity and anti-affinity rules in recommending or prevent-
ing certain VNFs from sharing the same PSN resource. We also plan to investigate
multi-domain context and dependability issues such as robustness in solving the SFC
orchestration problem.

33

(a) BS = 32 (b) BS = 64

(c) BS = 128 (d) BS = 256

Fig. 10: QoE score versus number of runs by Double DQN Algorithm (QoESc Th =
2500, M = 5)

Declarations

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

• Funding ‘Not applicable’
• Conflict of interest/Competing interests (check journal-specific guidelines for which
heading to use) ‘Not applicable’

• Ethics approval ‘Not applicable’
• Consent to participate ‘Not applicable’
• Consent for publication ‘Not applicable’
• Availability of data and materials ‘Not applicable’
• Code availability ‘Not applicable’
• Authors’ contributions ‘Not applicable’

References

[1] Benzekki, K., El Fergougui, A., Elbelrhiti Elalaoui, A.: Software-defined net-
working (sdn): a survey. Security and communication networks 9(18), 5803–5833

34

(2016)

[2] Rowshanrad, S., Namvarasl, S., Abdi, V., Hajizadeh, M., Keshtgary, M.: A sur-
vey on sdn, the future of networking. Journal of Advanced Computer Science &
Technology 3(2), 232–248 (2014)

[3] Herrera, J.G., Botero, J.F.: Resource allocation in nfv: A comprehensive survey.
IEEE Transactions on Network and Service Management 13(3), 518–532 (2016)

[4] Bonfim, M.S., Dias, K.L., Fernandes, S.F.: Integrated nfv/sdn architectures:
A systematic literature review. ACM Computing Surveys (CSUR) 51(6), 1–39
(2019)

[5] Barakabitze, A.A., Ahmad, A., Mijumbi, R., Hines, A.: 5g network slicing using
sdn and nfv: A survey of taxonomy, architectures and future challenges. Computer
Networks 167, 106984 (2020)

[6] Bhamare, D., Jain, R., Samaka, M., Erbad, A.: A survey on service function
chaining. Journal of Network and Computer Applications 75, 138–155 (2016)

[7] Hantouti, H., Benamar, N., Bagaa, M., Taleb, T.: Symmetry-aware sfc framework
for 5g networks. IEEE Network 35(5), 234–241 (2021)

[8] Özdem, M., Alkan, M.: Subscriber aware dynamic service function chaining.
Computer Networks 194, 108138 (2021)

[9] Carpio, F., Dhahri, S., Jukan, A.: Vnf placement with replication for loac balanc-
ing in nfv networks. In: 2017 IEEE International Conference on Communications
(ICC), pp. 1–6 (2017). IEEE

[10] Cevallos Moreno, J.F., Sattler, R., Caulier Cisterna, R.P., Ricciardi Celsi, L.,
Sánchez Rodŕıguez, A., Mecella, M.: Online service function chain deployment
for live-streaming in virtualized content delivery networks: A deep reinforcement
learning approach. Future Internet 13(11), 278 (2021)

[11] Sun, G., Li, Y., Liao, D., Chang, V.: Service function chain orchestration across
multiple domains: A full mesh aggregation approach. IEEE Transactions on
Network and Service Management 15(3), 1175–1191 (2018)

[12] Mirjalily, G., Luo, Z.: Optimal network function virtualization and service
function chaining: A survey. Chinese Journal of Electronics 27(4), 704–717 (2018)

[13] Chen, J., Chen, J., Zhang, H.: Drl-qor: Deep reinforcement learning-based
qos/qoe-aware adaptive online orchestration in nfv-enabled networks. IEEE
Transactions on Network and Service Management 18(2), 1758–1774 (2021)

[14] Mijumbi, R., Serrat, J., Gorricho, J.-L., Latre, S., Charalambides, M., Lopez,
D.: Management and orchestration challenges in network functions virtualization.

35

IEEE Communications Magazine 54(1), 98–105 (2016)

[15] Liu, Y., Lu, Y., Qiao, W., Chen, X.: Reliability-aware service chaining mapping
in nfv-enabled networks. Etri Journal 41(2), 207–223 (2019)

[16] Yang, S., Li, F., Trajanovski, S., Chen, X., Wang, Y., Fu, X.: Delay-aware virtual
network function placement and routing in edge clouds. IEEE Transactions on
Mobile Computing 20(2), 445–459 (2019)

[17] Pei, J., Hong, P., Xue, K., Li, D.: Efficiently embedding service function chains
with dynamic virtual network function placement in geo-distributed cloud sys-
tem. IEEE Transactions on Parallel and Distributed Systems 30(10), 2179–2192
(2018)

[18] Bari, F., Chowdhury, S.R., Ahmed, R., Boutaba, R., Duarte, O.C.M.B.: Orches-
trating virtualized network functions. IEEE Transactions on Network and Service
Management 13(4), 725–739 (2016)

[19] Lee, G., Kim, M., Choo, S., Pack, S., Kim, Y.: Optimal flow distribution in service
function chaining. In: The 10th International Conference on Future Internet, pp.
17–20 (2015)

[20] Li, D., Hong, P., Xue, K., Pei, J.: Virtual network function placement and resource
optimization in nfv and edge computing enabled networks. Computer Networks
152, 12–24 (2019)

[21] Sahhaf, S., Tavernier, W., Rost, M., Schmid, S., Colle, D., Pickavet, M.,
Demeester, P.: Network service chaining with optimized network function embed-
ding supporting service decompositions. Computer Networks 93, 492–505 (2015)

[22] Li, D., Hong, P., Xue, K., et al.: Virtual network function placement considering
resource optimization and sfc requests in cloud datacenter. IEEE Transactions on
Parallel and Distributed Systems 29(7), 1664–1677 (2018)

[23] Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F., Davy, S.:
Design and evaluation of algorithms for mapping and scheduling of virtual net-
work functions. In: Proceedings of the 2015 1st IEEE Conference on Network
Softwarization (NetSoft), pp. 1–9 (2015). IEEE

[24] Bouet, M., Leguay, J., Combe, T., Conan, V.: Cost-based placement of vdpi
functions in nfv infrastructures. International Journal of Network Management
25(6), 490–506 (2015)

[25] Sallam, G., Gupta, G.R., Li, B., Ji, B.: Shortest path and maximum flow prob-
lems under service function chaining constraints. In: IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, pp. 2132–2140 (2018). IEEE

36

[26] Ahvar, S., Phyu, H.P., Buddhacharya, S.M., Ahvar, E., Crespi, N., Glitho, R.:
Ccvp: Cost-efficient centrality-based vnf placement and chaining algorithm for
network service provisioning. In: 2017 IEEE Conference on Network Softwariza-
tion (NetSoft), pp. 1–9 (2017). IEEE

[27] Wu, Y., Zhou, J.: Dynamic service function chaining orchestration in a multi-
domain: A heuristic approach based on srv6. Sensors 21(19), 6563 (2021)

[28] Xu, L., Hu, H., Liu, Y.: Heuristic strategy of service function chain deploy-
ment based on n-base continuous digital coding in network function virtualization
environment. Electronics 11(3), 331 (2022)

[29] Shi, R., Zhang, J., Chu, W., Bao, Q., Jin, X., Gong, C., Zhu, Q., Yu, C., Rosen-
berg, S.: Mdp and machine learning-based cost-optimization of dynamic resource
allocation for network function virtualization. In: 2015 IEEE International
Conference on Services Computing, pp. 65–73 (2015). IEEE

[30] Lin, S.-C., Akyildiz, I.F., Wang, P., Luo, M.: Qos-aware adaptive routing in multi-
layer hierarchical software defined networks: A reinforcement learning approach.
In: 2016 IEEE International Conference on Services Computing (SCC), pp. 25–33
(2016). IEEE

[31] Nakanoya, M., Sato, Y., Shimonishi, H.: Environment-adaptive sizing and place-
ment of nfv service chains with accelerated reinforcement learning. In: 2019
IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
pp. 36–44 (2019). IEEE

[32] Chen, J., Chen, J., Hu, R., Zhang, H.: Qmora: A q-learning based multi-objective
resource allocation scheme for nfv orchestration. In: 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring), pp. 1–6 (2020). IEEE

[33] Sun, J., Huang, G., Sun, G., Yu, H., Sangaiah, A.K., Chang, V.: A q-learning-
based approach for deploying dynamic service function chains. Symmetry 10(11),
646 (2018)

[34] Pei, J., Hong, P., Pan, M., Liu, J., Zhou, J.: Optimal vnf placement via deep
reinforcement learning in sdn/nfv-enabled networks. IEEE Journal on Selected
Areas in Communications 38(2), 263–278 (2019)

[35] Chen, X., Li, Z., Zhang, Y., Long, R., Yu, H., Du, X., Guizani, M.: Reinforce-
ment learning–based qos/qoe-aware service function chaining in software-driven
5g slices. Transactions on Emerging Telecommunications Technologies 29(11),
3477 (2018)

[36] Carofiglio, G., Grassi, G., Loparco, E., Muscariello, L., Papalini, M., Samain,
J.: Characterizing the relationship between application qoe and network qos for
real-time services. In: Proceedings of the ACM SIGCOMM 2021 Workshop on

37

Network-Application Integration, pp. 20–25 (2021)

[37] Sutton, R.S., Barto, A.G., et al.: Introduction to reinforcement learning (1998)

[38] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature 518(7540), 529–533 (2015)

[39] Lin, L.-J.: Reinforcement Learning for Robots Using Neural Networks. Carnegie
Mellon University, ??? (1992)

[40] Sarker, I.H.: Deep learning: a comprehensive overview on techniques, taxonomy,
applications and research directions. SN Computer Science 2(6), 1–20 (2021)

[41] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

[42] Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30 (2016)

[43] Hasselt, H.: Double q-learning. Advances in neural information processing systems
23 (2010)

[44] ETSI, G.: Network functions virtualisation (NFV) release 4; management and
orchestration; VNF descriptor and packaging specification. ETSI

[45] Fiedler, M., Hossfeld, T., Tran-Gia, P.: A generic quantitative relationship
between quality of experience and quality of service. IEEE Network 24(2), 36–41
(2010)

[46] Reichl, P., Egger, S., Schatz, R., D’Alconzo, A.: The logarithmic nature of qoe and
the role of the weber-fechner law in qoe assessment. In: 2010 IEEE International
Conference on Communications, pp. 1–5 (2010). IEEE

[47] Zinner, T., Hohlfeld, O., Abboud, O., Hoßfeld, T.: Impact of frame rate and
resolution on objective qoe metrics. In: 2010 Second International Workshop on
Quality of Multimedia Experience (QoMEX), pp. 29–34 (2010). IEEE

[48] Isuwa, S., Dey, S., Ortega, A.P., Singh, A.K., Al-Hashimi, B.M., Merrett, G.V.:
Quarem: Maximising qoe through adaptive resource management in mobile mpsoc
platforms. ACM Transactions on Embedded Computing Systems (TECS) (2022)

[49] Nuka, S.: Investigation of Multi-dimensional QoE Models with the Impact of
Resolution Vs Stalls for Video Streaming (2018)

[50] Li, J., Chen, Y., Zhao, X., Huang, J.: An improved dqn path planning algorithm.

38

The Journal of Supercomputing 78(1), 616–639 (2022)

39

Table 1: List of key notations and parameters

Variables Description

Virtual network attributes

VN Virtual network (a set of VNFs of different types interconnected via virtual links)
VNF The set of VNF instances in VN

vnfi The VNF instance of VNF type i, vnfi ∈ VNF (i ∈ {1...N})
N The number of VNF types in VN

VL The set of virtual links in VN

V Link(i, l) The virtual link interconnecting vnfi to vnfl, V Link(i, l) ∈ VL (i, l ∈ {1...N} where i ̸= l)
PSN attributes

NFVI NFV infrastructure (a set of PSN nodes and PSN links)
nfvij The jth PSN node, nfvij ∈ NFVI (j ∈ {1...M})
M The number of PSN nodes in NFVI

D
vnf

rn
i

nfvij
The average processing delay for mapping vnf

rn
i in nfvij

Cnfvij The residual available capacity of nfvij (in CPU cores)

Link(j, k) The PSN link connecting nfvij to nfvik (j, k ∈ {1...M} with j ̸= k)
Dj,k The communication latency on PSN link Link(j, k)
Bwj,k The average PSN link bandwidth of Link(j, k)

SFC request attributes

R The set of SFC incoming requests
rn The nth SFC request rn ∈ R (n ∈ {1...SFC}), rn={Inrn , Enrn , V NFrn , V LINKrn , Bwrn , Drn}
SFC The number of SFC requests in R

Inrn The ingress node of rn
Enrn The egress node of rn
V NFrn The set of ordered VNF instances specified in rn
vnf

rn
i The VNF instance of VNF type i instantiated by rn, vnf

rn
i ∈ V NFrn (i ∈ {1...Nrn})

V LINKrn The set of virtual links specified in rn
V Link(i, l)rn The virtual link joining vnf

rn
i to vnf

rn
l

, V Link(i, l)rn ∈ V LINKrn (i, l ∈ {1...Nrn})
Nrn The number of VNF types of rn
Lvnf

rn
i

The maximum number of VNF instances actually deployed for each type of vnfrn
i simultaneously

vnf
rn
ij The jth VNF instance of VNF type i (j ∈ {1...Lvnf

rn
i

})

Cvnf
rn
i

The requested capacity by vnf
rn
i (in CPU cores)

Bwrn The rn end-to-end bandwidth
Drn The rn end-to-end network delay
Dlrn The sum of delays incurred by each link involved in rn
Dnrn The sum of delays incurred by each VNF instantiated by rn

SFC instance attributes

SFCI The set of all SFC instances
sfcic The cthSFC instance, sfcic ∈ SFCI (c ∈ {1...C})
C The number of SFC instances in SFCI

QoEsfcic The QoE of sfcic
QoSsfcic The QoS of sfcic

Decision boolean variables

x
rn,vnf

rn
i

sfcic,nfvij

{

1, if vnfi specified in rn is located in nfvij

0, otherwise

y
rn,i,l
sfcic,j,k

{

1, if V Link(i, l)rn is embedded on Link(j, k)

0, otherwise

40

Table 2: Problem formulation of Online QoS/QoE-driven SFC Orchestration

Objective function:

maxc∈CRQoE−QoS , ∀rn ∈ R (6)

Constraints:

VNF License:

1 ≤

Mi
∑

j=1

x
rn,vnf

rn
i

sfcic,nfvij
≤ Lvnf

rn
i

, vnf
rn
i ∈ V NFrn (7)

VNF Placement:
N
∑

i=1

Mi
∑

j=1

x
rn,vnf

rn
i

sfcic,nfvij
≥ Nrn (8)

PSN Node Capacity:

x
rn,vnf

rn
i

sfcic,nfvij
.Cvnf

rn
i

≤ Cnfvij , vnf
rn
i ∈ V NFrn , nfvij ∈ NFV I (9)

PSN Link Capacity:

y
rn,i,l
sfcic,j,k

.Bwj,k ≥ Bwrn , V Link(i, l)rn ∈ V LINKrn , Link(j, k) ∈ NFV I (10)

Delay:

Dnrn =

N
∑

i=1

Mi
∑

j=1

x
rn,vnf

rn
i

sfcic,nfvij
.D

vnf
rn
i

nfvij
(11)

Dlrn =

N−1
∑

i=1

N
∑

l=i+1

Mi−1
∑

j=1

Mi
∑

k=j+1

y
rn,i,l
sfcic,j,k

.Dj,k (12)

Dnrn +Dlrn ≤ Drn (13)

Table 3: Default Double DQN Hyper-
parameters

Hyper-parameter Value

Number of Frames State Number
Discount Factor γ 0, 95
Batch Size (BS) 64
Loss Function L2

Optimizer Adam
Learning Rate (LR) 2, 5 ∗ 10−4

Target Q Update Frequency 100 SFC requests
Replay Buffer Prioritized
Replay Buffer Size (RS) 20K
Initial ϵ 0, 8
ϵ decay 0, 99

41

	Introduction
	NFV Resource Allocation and SFC Orchestration
	NFV Resource Allocation
	NFV-RA stages
	NFV-RA and SFC orchestration: scenarios, strategies and deployment

	SFC Orchestration
	SFC Orchestration Approaches
	QoE/QoS Aware SFC Orchestration

	RL and DRL: Training, Testing and Implementation
	Reinforcement Learning (RL)
	Training and Testing in Online and Episodic RL Process
	RL implementation via Q-learning: Scalability Issues
	DRL Implementation via DQN
	DRL Implementation via Double DQN

	RL Driven QoE/QoS Aware SFC Orchestration
	System Model and Problem Formulation
	System Model
	Problem formulation

	MDP Based QoE/QoS Aware SFC Orchestration
	MDP Specification
	MDP Process Description

	The Reward Model: Global Formula and Building Blocks
	The Global Formula
	The Building Blocks

	DRL Driven QoE/QoS Aware SFC Orchestration
	Action Value Function
	VNF Instances Selection
	Implementations of the DRL Driven QoE/QoS Aware SFC Orchestration Algorithm

	Performance Evaluation
	Main Assumptions
	Experimental Results
	Effect of PSN Scaling on Performance-Convergence Trade-off
	Effect of Hyper-parameters on Performance-Convergence Trade-off

	Conclusion and Future Work

