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 63 

Abstract 64 

Beneficial interactions with microorganisms are pivotal for crop performance and resilience. However, 65 

it remains unclear how heritable the microbiome is with respect to the host plant genotype and to what 66 

extent host genetic mechanisms can modulate plant-microbe interactions in the face of environmental 67 

stress. Here, we surveyed 3,168 root and rhizosphere microbiome samples from 129 accessions of 68 

locally adapted Zea mays, sourced from diverse habitats and grown under control and different stress 69 

conditions. We quantified treatment and host genotype effects on the microbiome. Plant genotype and 70 

source environment were predictive of microbiome abundance. Genome wide association analysis 71 

identified host genetic variants linked to both rhizosphere microbiome abundance and source 72 

environment. We identified transposon insertions in a candidate gene linked to both the abundance of 73 

a keystone microbe Massilia and source total soil nitrogen, finding specific Massilia alone can contribute 74 

to root development, biomass production and nitrogen resilience. We conclude that locally adapted 75 

maize varieties exert patterns of genetic control on their root and rhizosphere microbiomes that follow 76 

variation in their home environments, consistent with a role in tolerance to prevailing stress. 77 

78 
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Introduction 79 

Microorganisms that colonize the rhizosphere surrounding plant roots, root surfaces and internal tissues 80 

play an important role in promoting plant health and fitness under biotic and abiotic stresses (Cheng et 81 

al., 2019; Oldroyd and Leyser 2020). Specific features of the root microbiome have been shown to 82 

modify root architecture (Finkel et al., 2020), regulate nutrient homeostasis (Salas-González et al., 83 

2020), protect against stress (Cheng et al., 2019) and impact ecosystem function (Banerjee et al., 2018). 84 

Although the overall root microbiome is largely shaped by soil properties (Bulgarelli et al., 2013), small 85 

host-mediated changes in microbiome composition can have large effects on plant fitness (Bulgarelli et 86 

al., 2012; Lundberg et al., 2012; Haney et al., 2015). Modification of crop microbiomes has been 87 

proposed as a contribution to promoting food security, while supporting a sustainable agroecosystem 88 

(de Vries et al., 2020; Singh et al., 2020). However, the extent to which host genetic mechanisms can 89 

modulate the microbiome under different environmental conditions and the genetic basis of any such 90 

control remains poorly characterized.  91 

The diversity of traditional crop varieties (“landraces”) provides a powerful resource to investigate 92 

heritable variation in crops (Meyer and Purugganan, 2013; Cordovez et al., 2019; Raaijmakers and 93 

Kiers 2022). Furthermore, long term selection in diverse, and often challenging environments can reveal 94 

subtle signals linking plant genetic and phenotypic variation to local conditions. Maize (Zea mays. L) is 95 

an excellent model for investigating the genetic basis and environmental signature of plant-microbe 96 

interactions due to the extensive climatic variation across its range (Navarro et al. 2017). The 97 

domestication of maize, began 9,000 years ago when Mexican farmers started to collect the seeds of 98 

the wild grass teosinte (Zea mays ssp. parviglumis; Hake and Ross-Ibarra, 2015). During maize 99 

domestication and improvement, the root system expanded its functionality and complexity (Yu et al., 100 

2016; Hochholdinger et al., 2018). Recent studies highlighted thatthe maize rhizosphere microbial 101 

community has also been substantially impacted by domestication (Szoboszlay et al., 2015; Brisson et 102 

al., 2019) and modern hybrid breeding (Wagner et al., 2020; Favela et al., 2021). Better understanding 103 

the genetic basis of host plant control of their microbiome and how these associations change under 104 

abiotic stress will benefit efforts promote crop resilience in the context of more sustainable agronomic 105 

practices. 106 

Here, we profiled 3,168 root and rhizosphere microbiome samples from 129 diverse Zea mays 107 

accessions grown under control, nitrogen-, phosphorus- and water-limited conditions using 16S rRNA 108 

gene and ITS gene sequencing. We assessed how the native habitat of traditional varieties was 109 

predictive of root and rhizosphere microbiota assembly under our common treatments. Understanding 110 

how plant traits modulate their microbiome to enhance tolerance to environmental constraints, the 111 

extent to which this plant trait-microbe association is heritable under abiotic stresses, and how this 112 

association is encoded in the genetic program provide novel insights into establishment of beneficial 113 

host–microbiome associations. Such insights will contribute towards the generation of environment-114 

tailored cultivars that recruit favourable microbial consortia for increasing agricultural productivity, 115 

resilience to climate change and sustainability. 116 

 117 

  118 
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Results 119 

The maize microbiome responds strongly to abiotic stresses 120 

Our goal was to investigate how plant genotype, impacts crop-microbiome associations and their 121 

capacity to influence plant performance under common stress conditions. We used 16S rRNA gene and 122 

ITS gene sequencing to characterize the root and rhizosphere microbiome of 129 Zea accessions, 123 

encompassing a wide range of maize and teosinte varieties. These analyses included 11 teosintes, 97 124 

landraces, 11 maize inbred lines and 10 maize hybrids (Supplementary Fig. 1) grown in control-, low 125 

phosphorous-, low nitrogen-, and drought-treatments in a soil sourced from a long-term field 126 

experimental station (See Methods) (Supplementary Fig. 2). We sampled root and rhizosphere 127 

compartments from the first whorl of shoot-borne crown roots (Supplementary Fig. 3), in addition to 128 

collecting bulk soil. Microbial community composition differed across samples for both bacteria and 129 

fungi, with compartment (bacteria, R2 = 0.756, P = 1.0e-4; fungi: R2 = 0.402, P = 1.0e-4) explaining the 130 

largest proportion of the variation followed by stress treatment (bacteria, R2 = 0.052, P = 1.0e-4; fungi: 131 

R2 = 0.021, P = 1.0e-4) (Fig. 1a). Plant genotype (bacteria, R2 = 0.01, P = 7.0e-4; fungi: R2 = 0.05, P = 132 

1.0e-4) was less important than either compartment or treatment (Fig. 1a). In the rhizosphere and roots, 133 

we observed significantly (Kruskal-Wallis test, Dunn’s post-hoc test with BH adjusted, P < 0.05) lower 134 

bacterial diversity under drought stress and nitrogen deficiency compared to control conditions 135 

(Supplementary Fig. 4a). In contrast, no significant differences in root bacterial community diversity 136 

were observed between phosphorus deficient and control conditions (Supplementary Fig. 4a). For 137 

fungal diversity, the only significant treatment difference was (Kruskal-Wallis test, Dunn’s post-hoc test 138 

with BH adjusted P < 0.05) lower diversity under nitrogen deficiency than control conditions in the root 139 

(Supplementary Fig. 4b). These results illustrate that both abiotic stresses and genotypes significantly 140 

explain the microbial variance although the compartment dominate the overall microbial composition. 141 

Within compartment, abiotic stress shows stronger effect on bacterial variance than genotypes based 142 

a large diversity panel. 143 

Keystone genera define the major differences in the microbiome 144 

Keystone microbial taxa are defined as the drivers of microbiome structure and function (Banerjee et 145 

al., 2018). We identified putative keystone microbes among the highly abundant amplicon sequence 146 

variants (ASVs) using co-occurrence network analysis (Supplementary Datasets 1-4). Overall, the 147 

number of associations and accumulative weights of ASVs were largely positive within the bacterial or 148 

fungal networks, but negative in the inter-kingdom network (Supplementary Fig. 5; Supplementary 149 

Dataset 5). This is consistent with previous reports that inter-kingdom interactions determine the overall 150 

assembly, stability, and fitness of the root microbiome in Arabidopsis (Durán et al., 2018). We also 151 

observed that a high proportion of the negative inter-kingdom associations were conserved across the 152 

stress treatments (Supplementary Fig. 6; Supplementary Dataset 6). Among those, keystone taxa in 153 

the bacterial genera Massilia, Sphingobium and Streptomyces were conserved across stress 154 

treatments (Supplementary Fig. 6). Functional prediction indicates that these bacterial genera are 155 

involved in ureolysis (Massilia) and aerobic chemoheterotrophy (Sphingobium and Streptomyces) 156 

(Supplementary Dataset 7). The fungal keystone taxa were mainly predicted to be decomposers (37%) 157 

and pathogens (25%; Supplementary Dataset 8). Overall, our co-occurrence network analyses revealed 158 

strong negative correlations between bacterial and fungal ASVs in maize roots, while keystone bacterial 159 

members are conserved in association with other microbial members regardless of abiotic stress 160 

treatment. 161 

Stress resulting in a less diverse but more heritable microbiome 162 

To estimate the influence of the plant genotype on microbiome composition, we estimated the 163 

correlation between the plant genetic distance matrix and the microbiome distance matrix using 97 164 

landraces, for both root and rhizosphere. There was a significant correlation (Mantel’s statistics) 165 

between the bacterial communities and plant genotypes in both compartments (Rhizosphere, R= 0.32, 166 

P = 1.0e−4; Root, R= 0.16, P = 0.0079). In contrast, fungi displayed a significant correlation with the 167 

plant genotype only in the rhizosphere (R= 0.23, P = 1.0e−4) (Supplementary Fig. 7). We estimated the 168 

broad-sense heritability (H2) for the microbiome at different taxonomic levels and for individual ASVs 169 

across the experiment and then separately for each compartment and treatment combination 170 

(Supplementary Dataset 9; see methods). Across treatments, H2 was higher for the rhizosphere (Family: 171 

H2 = 0.15; Genus: H2 = 0.14; ASV: H2 = 0.16) than the root (Family: H2 = 0.052; Genus: H2 = 0.049; ASV: 172 

H2 = 0.052) at the level of family (Fig. 1b), genus (Supplementary Fig. 8a) or ASV (Supplementary Fig. 173 

8b), respectively. Nutrient stress significantly (Kruskal-Wallis test, Dunn’s post-hoc test with BH 174 

adjusted P < 0.05) increased H2 (control, H2 = 0.078; low nitrogen, H2 = 0.16; low phosphorus, H2 = 0.18) 175 

for the bacterial rhizosphere microbiome, but not of the fungal microbiome. To identify plant genetic loci 176 
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affecting microbiome relative abundance, we performed genome-wide association (GWA) analysis for 177 

the relatively high heritable (H2 > 0.1) microbes at the level of overall diversity, family, genus and ASV 178 

(Supplementary Dataset 10). We did not recover significant markers in association with overall 179 

measures of microbial alpha-diversity (Shannon index) (Supplementary Dataset 11). We did, however, 180 

identify significant associations with individual ASVs (Supplementary Dataset 10). Overall in our 181 

experiment, these data indicate an increasing impact of the plant genotype on microbiome abundance, 182 

especially on the rhizosphere bacterial community under stress.  183 

Plant source habitats predict the root and rhizosphere microbiome 184 

To address the hypothesis that variation in plant modulation of the root microbiome is a kind of reflection 185 

of differences in native environments, we assessed the potential of environmental descriptors for the 186 

point of collection to predict the microbiome in our standardized growth chamber experiments 187 

(Supplementary Fig. 1; Supplementary Dataset 12). To reduce the complexity of the microbiome data, 188 

we used Spearman correlation analysis to define four microbial assemblies corresponding to dominant 189 

ASVs (Supplementary Figure 9). We then sought evidence of covariation among microbial assemblies 190 

and environmental descriptors (Supplementary Figure 10). We used structural equation modeling to 191 

quantify the cumulative effects of source environment, plant genetic diversity, stress treatment, 192 

domestication status and biomass on the four microbial assemblies. These analyses demonstrated an 193 

impact of plant genotype and source environment on specific assemblies of microbiome. Low nitrogen 194 

treatment, source mean annual temperature, source precipitation and plant genotype strongly impacted 195 

the microbiome assemblage (Supplementary Figure 11), one notable example being the abundance of 196 

the genus Massilia, which belongs to the previously mentioned Oxalobacteraceae (Supplementary 197 

Figure 12). We next applied different scenarios to predict the abundance of microbial ASVs using 198 

genomic model, environmental model and combined models (See Methods). Overall, prediction was 199 

better for bacterial data than for fungal data, and better for rhizosphere than root (Fig. 2a; 200 

Supplementary Fig. 13). Interestingly, microbiome composition could be predicted more accurately with 201 

environmental descriptors or a combination of these with plant genetic markers than with genetic 202 

markers alone (Fig. 2a; Supplementary Fig. 14−16). Under the conditions of our experiment, ecological 203 

modelling and prediction analyses show potential effects of source environment of locally adapted 204 

maize on the abundance of the rhizosphere bacterial communities.  205 

Consideration of the rhizosphere bacterial community improves prediction of plant traits 206 

To assess the relationship between the microbiome and plant growth and physiology, we used a two-207 

step strategy combining genomic prediction and Random Forest models based on environmental 208 

descriptors. First, we compared the genomic prediction ability of plant growth and nutrient accumulation 209 

traits using plant genotype alone or in combination with microbiome ASVs abundance. The combination 210 

of plant genotype and rhizosphere bacterial community composition provided the highest average 211 

prediction ability (29%) (Fig. 2b; Supplementary Datasets 13 and 14). We confirmed this result by 212 

employing an alternative approach to fit a ridge regression mixed model, observing ~10%−15% 213 

increase of prediction accuracy when using both genetic and microbiome data (Supplementary Figure 214 

17). As has been previously seen in foxtail millet (Wang et al., 2022), we showed a conserved pattern 215 

that the rhizosphere microbiome combined with genotype data increased the average prediction 216 

accuracy ~7% of 12 agronomic traits compared to genetic markers alone (Supplementary Figure 18).  217 

We then explored relationships among source environments, genetic differentiation and specific 218 

microbial taxa. As a measure for the pattern of similarity among samples, we calculated matrices of 219 

pairwise distance using the observed microbiome ASVs in different treatments, and two source 220 

environmental descriptors (elevation and geographical distance). Mantel tests were used to study the 221 

correlations between different distance matrices. We observed that the correlation between the 222 

rhizosphere microbiome and source environment was higher than that between the root microbiome 223 

and environment. On average, the correlations of inter-treatment and treatment-environment similarity 224 

patterns as characterized by bacterial communities were higher than by fungal communities 225 

(Supplementary Fig. 19). To reduce dimensionality, we extracted the first five principal components 226 

(PCs) from the microbiome ASV data. We then used a Random Forest (RF) approach to predict these 227 

PCs using different environmental descriptors as explanatory variables (Supplementary Dataset 12). 228 

We observed the highest accuracy for the rhizosphere bacteria PC2 (Supplementary Fig. 20a) using 229 

environmental predictors including photosynthetically active radiation and potential evapotranspiration 230 

(Supplementary Fig. 20b). Prediction of individual ASVs was less successful (Supplementary Fig. 21), 231 

although significant predictors were identified for specific examples belonging to the Oxalobacteraceae, 232 

including Massilia (Supplementary Fig. 22). These results suggest that source environment plays effect 233 

on plant genetic variation in regulation of the microbiome composition with an impact of plant traits.  234 
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A candidate gene linked to source environment associates with Oxalobacteraceae abundance 235 

and root branching  236 

Across our samples, we detected five highly abundant bacterial families (Pseudonocardiaceae, 237 

Streptomycetaceae, Chitinophagaceae, Oxalobacteraceae and Comamonadaceae; Fig. 3a), and three 238 

highly abundant fungal families (Aspergillaceae, Trichocomaceae and Nectriaceae; Supplementary Fig. 239 

23). In particular, the bacterial taxon Oxalobacteraceae is the only family under nitrogen limitation 240 

showed the highest H2 among all families in our experiment (Fig. 3b). Oxalobacteraceae have been 241 

previously proposed to play an important role in maize tolerance to nitrogen limitation when grown in 242 

nitrogen-deficient soils (Yu et al., 2021). To identify loci associated with variation in the microbiome and 243 

differences in source environment, we used our RF models to predict Oxalobacteraceae ASVs for 1781 244 

previously genotyped traditional varieties (Navarro et al. 2017) on the basis of associated source 245 

environmental descriptors and subsequently implemented GWA analyses (Fig. 4a). One of the best 246 

predictions (RF model R2 = 0.28) was for root abundance of ASV37, belonging to the genus Massilia 247 

(Oxalobacteraceae), in the low nitrogen treatment, consistent with our previous estimates of H2. 248 

Collectively, GWA hits from environmental predictions of ASV37 abundance for the 1,781 panel 249 

overlapped more than expected by chance with the hits from the observed ASV37 data in the smaller 250 

129 panel (Supplementary Fig. 24). The top GWA hit for predicted ASV37 root abundance under low 251 

nitrogen (SNP S4_10445603) fell within the gene Zm00001d048945 on chromosome 4 (Fig. 4a and b; 252 

Supplementary Dataset 15). Across the 1781 panel, the minor allele at SNP S4_10445603 was more 253 

abundant at higher predicted ASV37 abundance but lower source soil nitrogen content (Fig. 4c). These 254 

findings are consistent with a specific gene contributing to the geographical adaptation to nitrogen-poor 255 

soil by facilitating enhanced association with Massilia (Yu et al., 2021; Supplementary Fig. 25). The 256 

gene Zm00001d048945 is most strongly expressed in the root cortex (Fig. 4d; 257 

https://www.maizegdb.org/gene_center/gene/Zm00001d048945) and is predicted to encode a TPX2 258 

domain containing protein related to the WAVE-DAMPENED2 microtubule binding protein that functions 259 

in Arabidopsis root development (Yuen et al., 2003) and lateral root initiation (Qian et al., 2022). Using 260 

root architectural data available for the 97 landraces, we found a positive correlation between lateral 261 

root density and ASV37 abundance (r = 0.2, P = 0.03; Fig. 4e). To test the hypothesis that variation in 262 

Zm00001d048945 contributes to a root-architecture-related effect on ASV37, we identified transposon 263 

insertional mutants in two different genetic backgrounds (B73 and F7; Supplementary Fig. 26). Plants 264 

homozygous for transposon insertions in Zm00001d048945 showed a significant reduction in lateral 265 

root density (Fig. 4f and g). We interpret these results as evidence that variation at Zm00001d048945 266 

alleles, affect root traits and that this variation also affects Massilia abundance in the root under nitrogen 267 

limitation.  268 

The bacterial keystone taxon Massilia alone contributes to root and shoot performance 269 

To further explore the effect of root-microbe interactions on maize tolerance to low nitrogen, we focused 270 

more broadly on the Oxalobacteraceae, which contains the genus Massilia and have previously been 271 

characterized to be important under nitrogen limitation (Yu et al., 2021). GWA analyses demonstrated 272 

that the abundance of Massilia ASV37 and ASV49 can be explained at high probability by marker-trait 273 

associations (Sum R2 = 0.52 and 0.28, respectively), while significant associations were also identified 274 

in presence/absence GWA analysis for ASV49 (Fig. 4a). To characterize the relationship between 275 

maize growth and abundance of Massilia, we performed root inoculation experiments. We inoculated 276 

with Massilia specific ASV37 alone, with a 12-member synthetic bacterial community (SynCom) of 277 

Massilia isolates that did not include ASV37, or with a 13-member SynCom including the 12-members 278 

with the addition of ASV37 (Supplementary Dataset 16). We quantified root and shoot growth in wild 279 

types B73 and F7 and their respective lateral root mutants (D−0170 and F−0598) in nitrogen-poor soil. 280 

We found that Massilia alone were important to maintain the growth of lateral root mutants in nitrogen-281 

poor soil, especially one ASV37 is able to significantly induce the lateral root formation in both mutants 282 

with different genetic backgrounds (Fig. 5a). However, beneficial effect of Massilia is not necessary for 283 

the growth of wild type plants with well-developed lateral roots (Fig. 5a). These data together with 284 

previous finding (Yu et al., 2021) suggest that lateral root promotion might depend more on specific 285 

functions of Massilia at the strain level. Moreover, we identified that single inoculation of Massilia ASV37 286 

can significantly increase the relative content of leaf chlorophyll of both mutants under nitrogen deficient 287 

condition (Fig. 5b). In particular, we found that Massilia triggered lateral root promotion correlated tightly 288 

with that in shoot biomass and leaf chlorophyll under nitrogen-poor conditions (Fig. 5c). Significantly, 289 

the microbial hub taxon Massilia alone can contribute to lateral root formation, biomass production and 290 

nitrogen tolerance of maize, indicating the potential value of root trait interactions with keystone 291 

microbial taxa when breeding for crop resilience.  292 

https://www.maizegdb.org/gene_center/gene/Zm00001d048945
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Discussion 293 

During domestication plants have developed high productivity and environmental resilience, but may 294 

have also lost beneficial microbiome-associated traits compared with their wild relatives (Haney et al., 295 

2015; de Vries et al., 2020). Thus, bringing back important plant traits supporting beneficial microbes 296 

from wild relatives and broader crop diversity may contribute to adaptation of crops to future climatic 297 

challenges. In this study, we investigated the host-microbiome association and tried to understand 298 

whether and how source environments of traditional varieties relate to microbiome assembly under 299 

multiple abiotic stresses in maize. Examination of microbiomes across diverse germplasm 300 

demonstrated that plant genotype significantly impacts the microbiome, more so under abiotic stresses. 301 

Our genetic and environmental analyses support the hypothesis that plant genetic variation impacts 302 

microbiome assembly in crops (Deng et al., 2020; Escudero-Martinez et al., 2022; Meier et al., 2022; 303 

Oyserman et al., 2022; Wang et al. 2022). Rhizosphere microbial diversity supports rhizosphere 304 

function under harsh environments (Ramirez et al., 2018) and is heritable trait across environments 305 

(Walters et al., 2018). We report here a significant improvement in plant trait prediction when combining 306 

rhizosphere microbiome with plant genetic data. Binominal regression and correlation analyses 307 

between microbial traits and source environmental variables among traditional varieties suggest that 308 

microbiome assemblage may contribute to beneficial plant trait-microbe association underlying stress-309 

resilience. 310 

Although environmental conditions were dominant drivers of the crop microbiome, we found certain 311 

microbial taxa that were consistently influenced by genetic variability in maize, and whose abundance 312 

correlated with plant traits. The endogenous genetic program that underlies root development can 313 

coordinate microbiome assembly and plant mineral nutrient homeostasis (Salas-González et al., 2020). 314 

Notably, we found that environment-associated alleles may promote root differentiation and 315 

microbiome-driven nitrogen deficiency tolerance. These results provide strong support for a genetic 316 

basis for variation in the abundance of the bacterial taxon Massilia (Oxalobacteraceae) under nitrogen 317 

deficiency, illustrating the importance of specific bacteria for root development (Finkel et al., 2020), 318 

nitrogen nutrition (Zhang et al., 2019) and reciprocal interaction (Yu et al., 2021) at the strain level. 319 

Taken together, this study advances the current understanding of the plant-trait-microbiome interactions 320 

that connecting genetic variation to microbiome composition among a broad array of maize and their 321 

relatives in multiple environmental treatments, as well as identifying a specific gene with a compelling 322 

association with both the environment and a bacterial taxon Massilia. These findings help to close the 323 

knowledge gap between how plants impact the soil microbiome and how this functional interaction of 324 

the microbiome can be translated into crop resilience to nutrient limitation.  325 
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Material and Methods 326 

Plant material, soil collection and growth conditions 327 

The germplasm used in this study was selected to represent a broad diversity ranging from the maize 328 

progenitor teosinte to local open pollinating landraces and modern inbred lines and hybrids 329 

(Supplementary Dataset 17; Supplementary Fig. 1). We obtained the 11 geographically diverse teosinte 330 

accessions from the North Central Regional Plant Introduction Station (NCRPIS) and the International 331 

Maize and Wheat Improvement Center (CIMMYT). Moreover, we received the 97 landrace accessions 332 

from NCRPIS and these accessions were derived from the ten American countries which cover the 333 

major domestication areas of maize (Supplementary Fig. 1a). The modern breeding germplasm 334 

includes seven genetically diverse inbred lines (Baldauf et al., 2018) covering the major heterotic groups 335 

stiff-stalk and non-stiff stalk and four additional tropical inbred lines (Supplementary Fig. 1b). We have 336 

produced the ten hybrids by crossing the ten inbred lines with the reference inbred line B73 as the 337 

common mother plant (Supplementary Fig. 1c). Soil used for phytochamber pot experiments was dug 338 

from the Dikopshof long-term fertilizer field experiment established in 1904 near Cologne, Germany 339 

(50˚48′21′′N, 6˚59′9′′E) (Supplementary Fig. 2a). In this study, we collected soil subjected to three 340 

different fertilization managements including control soil fertilized with all nutrients, low nitrogen soil 341 

fertilized without nitrogen and low phosphorus soil fertilized without phosphorus as defined by Rueda-342 

Ayala et al. 2018. The general soil type is classified as a Haplic Luvisol derived from loess above sand. 343 

Approximately the first 0-20 cm of the soil were collected and placed in a clean plastic bag. 344 

Subsequently, collected soil was dried at room temperature in clean plastic trays for about one week 345 

and sieved with a 4 mm analytical sieve (Retsch, Haan, Germany) to remove stones and vegetative 346 

debris. The sieved soil for the whole experiment was then homogenized with a MIX125 concrete mixer 347 

(Scheppach, Ichenhausen, Germany) (Supplementary Fig. 2a). The air-dried soil was ground into 348 

powder for the analysis of carbon, nitrogen, phosphorus and five metal elements (K, Fe, Mn, Cu, Zn). 349 

Soil pH was measured in deionized water (soil: solution ratio, 1:2.5 w/v) using a pH-meter 766 (Knick, 350 

Berlin, Germany). The basic physical and chemical properties of these soils are provided in 351 

Supplementary Table 1. 352 

Local landraces are open-pollinated varieties and can vary largely on seed traits. Therefore, we covered 353 

a broad geographic area but also confirmed the homogeneity of the 97 landraces concerning seed size, 354 

seed color, and seed quality prior our phytochamber experiments (Supplementary Fig. 2b). Seeds were 355 

surface-sterilized with 6% NaClO for 10 min, and rinsed 3 times with sterile deionized water to eliminate 356 

any seed-borne microbes on the seed surface. The sterilized seeds were pre-germinated for 3 days in 357 

a paper roll system using germination paper (Anchor Paper Co., St. Paul, MN, USA) with sterile 358 

deionized water. Then seedlings with primary roots of ca. 1–2 cm length were transferred to soil-filled 359 

pots (7 × 7 × 20 cm3) in a 16/8-h light/dark, 26/18 °C cycle and were grown for 4 weeks in a walk-in 360 

phytochamber. A detailed sowing and transfer plan is provided in Supplementary Fig. 2c. No additional 361 

fertilizer was added.  362 

Experimental design and treatments 363 

The experiment was performed in a split plot design with three replications comprising four stress 364 

treatments on the main plots (trays) (Supplementary Fig. 27), e.g. fully fertilized control (CK) soil, no 365 

nitrogen fertilized low nitrogen (LN) soil, no phosphorus fertilized low phosphate (LP) and CK soil with 366 

drought (D) treatment. As controls, we used six pots without plants as ‘bulk soil’ samples (B), which 367 

were distributed across the main plots. Each tray contained a similar number of pots (subplots) with the 368 

different genotypes and bulk soil. The three replicates were performed at three different periods in the 369 

same growth chamber (Supplementary Fig. 27). For each stress treatment, we generated an alpha 370 

design for the genotypes and controls with three replicates and four incomplete blocks per replicate. 371 

The incomplete blocks were assigned to trays and replicates corresponded to the three replications of 372 

the experiment in time. To facilitate watering, pots subjected to the same treatment were allocated on 373 

the same tray. These trays were further randomized in the chamber. Distribution of all pots in each tray 374 

were randomized using a true random generator (excel function “RAND”), and trays were reshuffled 375 

every week in the growth chamber without paying attention to the pot labels. Since soil water availability 376 

will significantly affect the harvest of the rhizosphere and initiation of crown roots, we have performed 377 

a preliminary experiment with different water regimes (i.e. 33%, 22%, 17% water holding capacity) to 378 

ensure the establishment of suitable drought conditions and to facilitate rhizosphere harvesting and the 379 

optimal formation of the different whorls of crown roots (Supplementary Fig. 2c and 28). In brief, different 380 

volumes of sterilized water e.g. 60 ml, 40 ml, 30 ml were mixed with 500 g dry soil by spraying water 381 

and were then homogenized with a 4 mm sieve (Retsch). Each water regime was maintained by 382 

spraying water to the soil surface according to the weight loss of water during the 4-week culture. Plant 383 
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height, total leaf area, shoot and root fresh biomass from the representative genotypes B73 and Mo17 384 

were recorded. Moreover, the multifunctional device COMBI 5000 (STEP Systems, Nuremberg, 385 

Germany) was used to measure soil variables e.g. soil moisture and electronic conductivity directly in 386 

each soil pot during each experimental run. The covariates including sample harvest time, ID of person 387 

performing DNA extraction together with the determined soil variables were collected and used for 388 

downstream data analysis (Supplementary Dataset 18). 389 

Characterization of native collection sites of maize landraces  390 

Geographical coordinates and elevation information of the collection sites for maize landraces were 391 

retrieved from the public database of the U.S. National Plant Germplasm System (https://www.grin-392 

global.org/) and provided in Supplementary Dataset 17. Most of the landraces were received in the 393 

years 1980-1994 and were maintained by NCRPIS. To get the climate and soil variables based on the 394 

geographical coordinates for each site, we first compiled climatic and soil descriptors representative of 395 

the long-term averages of their point of origin, following methods in Lasky et al. 2015. All used 396 

databases are publicly available and have global coverage. Data was collected from WorldClim (Zomer 397 

et al. 2008), the NCEP/NCAR reanalysis project (https://psl.noaa.gov/data/reanalysis/reanalysis.shtml) 398 

(Kalnay et al., 1996), NASA SRB (https://asdc.larc.nasa.gov/project/SRB), Climate Research Unit (CRU) 399 

(New et al. 2002),  SoilGrids (Hengl et al. 2017) and the Global Soil Dataset (GSD) (Shangguan et al. 400 

2014). All 156 bioclimatic and soil variables were merged with the maize germplasm identity into the 401 

Supplementary Dataset 12. The related information of total soil nitrogen, available phosphorus, and 402 

annual precipitation are provided in the Supplementary Fig. 29. 403 

Determination of shoot phenotypic traits and ionome profile 404 

Aboveground phenotypic traits were determined for all 129 genotypes on the day of harvest in the 405 

phytochamber. The leaf area and chlorophyll index as measured by SPAD were determined as 406 

described accordingly (Yu et al., 2021) and are provided in Supplementary Dataset 19. The complete 407 

aboveground part of maize plants excluding the seed was harvested and heat treated at 105 °C for 30 408 

min, dried at 70 °C to constant weight, weighed as the shoot dry biomass and then ground into powder. 409 

Approximately 6 mg of ground material was used to determine total nitrogen concentration in an 410 

elemental analyzer (Euro-EA, HEKAtech). Data were then calculated into peak areas by the software 411 

Callidus, providing quantitative results using reference material as a calibration standard. The same 412 

plant material was used to determine the concentrations of 13 additional mineral nutrients. In brief, 413 

approximately 200 mg of same ground material was weighed into polytetrafluoroethylene digestion 414 

tubes, and concentrated nitric acid (5 ml, 67–69%; Bernd Kraft) was added to each tube. After 4 h of 415 

incubation, samples were digested under pressure using a high-performance microwave reactor 416 

(Ultraclave 4, MLS). Digested samples were transferred to Greiner centrifuge tubes and diluted with 417 

deionized (Milli-Q) water to a final volume of 8 ml. Element analysis was carried out by Inductively 418 

Coupled Plasma-Optical Emission Spectroscopy (iCAP 7400 duo; Thermo Fisher Scientific). For 419 

sample introduction a SC-4 DX autosampler with prepFAST Auto-Dilution System (ESI, Elemental 420 

Scientific) was used. A three-point external calibration curve was set from a certified multiple-standards 421 

solution (Custom Multi-Element Standard_PlasmaCAL, S-prep GmbH). The element Yttrium (ICP 422 

Standard Certipur®, Merck) was infused online and used as internal standard for matrix correction. All 423 

ionome data including concentrations and contents of all mineral nutrients are provided in the 424 

Supplementary Dataset 20. 425 

Root and rhizosphere samples harvest for microbiome analysis 426 

The root and rhizosphere samples collection were performed from 4-week-old maize plants as 427 

previously described (Yu et al., 2021). In brief, whole root systems were carefully taken out from each 428 

pot and vigorously shaken to remove all soil not firmly attached to the roots. During this stage, most 429 

genotypes have consistently started to form the 2nd whorl of shoot-borne crown roots with a length of 3-430 

10 cm. To synchronize the harvest for precise comparisons among genotypes, we collected the fully 431 

developed 1st whorl of shoot-borne crown roots initiated from the coleoptilar node for all maize 432 

genotypes (Supplementary Fig. 3a). These crown roots were identified similarly developmental status 433 

with mature lateral roots. Two dissected crown roots with tightly attached soil were placed into a 15 ml 434 

Falcon (Sarstedt) tube and immediately frozen in liquid nitrogen and stored at -80 °C before extraction 435 

of rhizosphere soil. The rhizosphere samples were defined and extracted into PowerBead tubes (Mo 436 

Bio Laboratories) as described previously (Yu et al., 2021). The root samples were harvested from 437 

another crown root from the same plant that immediately washed by tap water and rinsed with three 438 

times of sterilized water followed by tissue drying and placed in PowerBead tubes (Supplementary Fig. 439 

3b). Sample processing steps for root and rhizosphere have been performed by a designated person 440 

to avoid systematic errors. The bulk soil samples were also collected from the unplanted pots. DNA 441 

https://paperpile.com/c/jHvuxa/81sM
https://paperpile.com/c/jHvuxa/81sM
https://psl.noaa.gov/data/reanalysis/reanalysis.shtml
https://asdc.larc.nasa.gov/project/SRB
https://paperpile.com/c/jHvuxa/o6wO
https://paperpile.com/c/jHvuxa/AFaY
https://paperpile.com/c/jHvuxa/kiTX
https://paperpile.com/c/jHvuxa/kiTX
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extractions were performed soon after root and rhizosphere samples were harvested, following the 442 

PowerSoil DNA isolation kit (Mo Bio Laboratories) protocol.  443 

Amplicon library preparation and sequencing 444 

Amplicon library construction was processed with a similar workflow as previously described (Yu et al., 445 

2021) (Supplementary Fig. 3c). In brief, for bacterial 16S rRNA gene libraries, the V4 region was 446 

amplified using the universal primers F515 (5′ GTGCCAGCMGCCGCGGTAA 3′) and R806 (5′ 447 

GGACTACHVGGGTWTCTAAT 3′) (Caporaso et al. 2011). For fungal amplicon sequencing, the ITS1 448 

gene was amplified by the primer pair F (5′ CTTGGTCATTTAGAGGAAGTAA 3′) and R (5′ 449 

GCTGCGTTCTTCATCGATGC 3′). PCR reactions were performed with Phusion High-Fidelity PCR 450 

Master Mix (New England Biolabs) according to the manufacturer’s instructions. Subsequently, only 451 

PCR products with the brightest bands at 400-450 base pairs (bp) were chosen for library preparation. 452 

Equal density ratios of the PCR products were mixed and purified with the Qiagen Gel Extraction Kit. 453 

Sequencing libraries were generated using the NEBNext Ultra DNA Library Pre Kit for Illumina, following 454 

the manufacturer’s recommendations and with the addition of sequence indices. The library quality was 455 

checked on a Qubit 2.0 Fluorometer (Thermo Scientific) and Agilent Bioanalyzer 2100 system. Finally, 456 

the qualified libraries were sequenced by 250-bp paired-end reads on a MiSeq platform (Illumina). 457 

16S rRNA gene and ITS gene sequence processing 458 

Raw sequencing reads were processed following a similar workflow as previously described (Yu et al. 459 

2021). Briefly, paired-end 16S rRNA amplicon sequencing reads were assigned to samples based on 460 

their unique barcode and truncated by cutting off the barcode and primer sequence. Paired-end reads 461 

were merged using FLASH (v1.2.7) (Magoč and Salzberg 2011) and the splicing sequences were called 462 

raw tags. Sequence analyses were performed by QIIME 2 software (v2020.6) (Bolyen et al. 2019). Raw 463 

sequence data were demultiplexed and quality filtered using the q2‐demux plugin followed by denoising 464 

with DADA2 (Callahan et al. 2016) (via q2‐dada2). Sequences were truncated at position 250 and each 465 

unique sequence was assigned to a different ASV. Taxonomy was assigned to ASVs using the q2‐466 

feature‐classifier (Bokulich et al. 2018) and the classify‐sklearn naïve Bayes taxonomy classifier against 467 

the SSUrRNA SILVA 99% OTUs reference sequences (v138) (Yilmaz et al. 2014) at each taxonomic 468 

rank (kingdom, phylum, class, order, family, genus, species). Mitochondria- and chloroplast-assigned 469 

ASVs were eliminated. Out of the remaining sequences (only features with >10 reads in ≥2 samples) 470 

were kept to build an ASV table. In order to study phylogenetic relationships of different ASVs, multiple 471 

sequence alignments were conducted using mafft (via q2‐alignment) (Katoh et al., 2002) and the 472 

phylogenetic tree was built using fasttree2 (via q2‐phylogeny) (Price et al., 2010) in QIIME 2. Those 473 

sequences that did not align were removed. ITS amplicon data were processed the same as 16S 474 

amplicon data except that used the UNITE 99% ASVs reference sequences (v10.05.2021) (Abarenkov 475 

et al., 2021) to annotate the taxonomy.  476 

Statistical analyses for microbial community assembly 477 

In consideration of experimental design, here we treated the trays as the main plots for different 478 

treatments as a random effect. There were four trays per period/replicate, and a replicate effect was 479 

considered to account for differences between the three replicates. All downstream analyses were 480 

performed in R (v4.1.0) (R Core Team, 2021). Briefly, ASV tables were filtered with ≥10 reads in 481 

≥2samples. For α-diversity indices, Shannon index was calculated using ASV tables rarefied to 1,000 482 

reads. For all the following analyses ASVs which express ≤0.05% relative abundance within ≤5% 483 

samples were filtered. After filtering taxa, the samples with ≤1000 reads were also removed. Bray–484 

Curtis distances between samples were calculated using ASV tables that were normalized using 485 

‘varianceStabilizingTransformation’ function from DESeq2 (v1.34.0) package (Love et al., 2014) in R. 486 

Constrained ordination analyses were performed using the ‘capscale’ function in R package vegan 487 

(v2.5-7) (Oksanen et al., 2020). To test the effects of compartment, treatment and genotype on the 488 

microbial composition community, variance partitioning was performed using Bray–Curtis distance 489 

matrix between pairs of samples with a permutation-based PERMANOVA test using ‘adonis’ function 490 

in R package vegan (Oksanen et al., 2020).  491 

Inter-kingdom associations by network analysis 492 

The method SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference) 493 

implemented in SpiecEasi (v1.1.2) R package was used to construct the inter-kingdom microbial 494 

associations (Kurtz et al., 2015) and network was visualized by Cytoscape (v3.9.1). For this network 495 

inference, only ASVs with relative abundance >0.05% in ≥10% samples were used. The filtered 496 
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bacterial and fungal ASV table were combined as the input followed by the default centered log-ratio 497 

(CLR) transformation. The neighborhood selection measured by the Meinshausen and Bühlmann (MB) 498 

method (Meinshausen and Bühlmann 2006) was selected as the inference approach. The number of 499 

subsamples for the Stability Approach to Regularization Selection (StARS) was set to 99.   500 

Genotyping of 129 maize genotypes 501 

Genomic DNA was extracted from leaves of bulked maize seedlings subjected to different treatments 502 

and replicates for each genotype (Supplementary Fig. 3). The genetic variation across the maize 503 

genotypes was characterized using a GenoBaits Maize40K chip containing 40 K SNP markers, which 504 

was developed using a genotyping by target sequencing (GBTS) platform in maize (Guo et al., 2019). 505 

In brief, DNA fragmentation, end-repair and adding A-tail, adapter ligation and probe hybridization were 506 

performed. After ligation of the adapters and clean up, fragment size selection was done with Beckman 507 

AMPureBeads and a PCR step to enrich the library. Quantity and quality of the libraries were 508 

determined via Qubit™ 4 Fluorometer (Invitrogen) and Agilent 2100 Bioanalyzer, respectively. In total, 509 

129 qualified and enriched libraries were sequenced as 250-400 bp on an MGISEQ-2000 (MGI, 510 

Shenzhen, China). The quality of raw sequencing reads was assessed and filtered by fastp 511 

(version0.20.0, www.bioinformatics.babraham.ac.uk/projects/fastqc/) with the parameters (-n 10 -q 20 512 

-u 40). The clean reads were then aligned to the maize B73 reference genome v4 using the Burrows-513 

Wheeler Aligner (BWA) (v0.7.13, bio-bwa.sourceforge.net) with the MEM alignment algorithm. The 514 

SNPs were then called using the UnifiedGenotyper tool from Genome Analysis Toolkit (GATK, v3.5-0-515 

g36282e4, software.broadinstitute.org/gatk) SNP caller. The genetic distance matrix was calculated 516 

based on pairwise Rogers’ distance (Rogers 1972). A principal component analysis (PCA) was 517 

performed based on the filtered SNPs by GCTA software (Yang et al., 2011). A phylogenetic tree 518 

(Supplementary Fig. 30) was generated using the neighbour-joining method as implemented in Mega 519 

10.0.4 with 1,000 bootstraps using MEGA-X (Kumar et al., 2018). 520 

Analyses of phenotypic data 521 

For the three plant phenotypes (SPAD, leaf area and biomass), we first performed the outlier test using 522 

the following model for a given stress treatment: 523 𝑦𝑖𝑗𝑘 = 𝜇 + 𝛽𝑡(𝑖) + 𝑔𝑖 + 𝑟𝑗 + 𝑏𝑗𝑘 + 𝑒𝑖𝑗𝑘 , (1) 524 

where 𝑦𝑖𝑗𝑘 is the observation of the i-th genotype in the k-th block of the j-th complete replicate. 𝜇 is the 525 

general mean, 𝛽𝑡(𝑖) is the effect of the t(i)-th subpopulation (t(i) indicates the subpopulation that the i-th 526 

genotype belongs to. There are four subpopulations: teosinte, landraces, inbred lines and hybrids.), 𝑔𝑖 527 

is the effect of the i-th genotype, 𝑟𝑗 is the effect of the j-th replicate, 𝑏𝑗𝑘 is the effect of the k-th block 528 

nested within the j-th replicate and 𝑒𝑖𝑗𝑘 is the residual term. All effects except the general mean were 529 

assumed to be random and follow an independent normal distribution. 530 

After fitting the model, the residuals were standardized by the rescaled median of absolute deviation 531 

from the median (MAD) and then a Bonferroni-Holm test was applied to flag the outliers (Bernal-532 

Vasquez et al., 2016). 533 

For all traits including fitness phenotypes and microbial traits, we estimated the broad-sense heritability 534 

(also referred as repeatability in this case) in each treatment. The following model was used to estimate 535 

the heritability: 536 𝑦𝑖𝑗𝑘 = 𝜇 + 𝑔𝑖 + 𝑟𝑗 + 𝑏𝑗𝑘 + 𝑒𝑖𝑗𝑘 , (2) 537 

where all notations were the same as in (1).  538 

The heritability was calculated using the following formula:                              539 𝐻2 = 𝜎𝑔2𝜎𝑔2 + 𝜎𝑒2 𝑅⁄ , (3) 540 

where 𝜎𝑔2 and 𝜎𝑒2 are the estimated genotypic and residual variance, R is the number of replications. 541 

The best linear unbiased estimations (BLUEs) of all genotypes for each trait in each treatment were 542 

obtained by fitting Model (2) once more, assuming the general mean and genotypic effects are fixed 543 

and all other effects are random. All linear mixed models were fitted using the software ASReml-R 4.0 544 

(Butler et al., 2017). 545 

Statistical framework for GWAS 546 
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Prior to GWAS, we first performed quality control for the genotypic data. In brief, the missing genotypic 547 

values were imputed using the software Beagle 5.2 (Browning et al., 2018). After imputation, we 548 

removed the markers with minor allele frequency (MAF) <0.05. As heterozygous loci were very common 549 

in our data set, we also removed markers whose maximum genotype frequency is >0.95. In total, 550 

157,785 SNP markers were used for GWAS. For all traits, GWAS was performed separately for each 551 

treatment (i.e., using the BLUEs within the treatment as the response variable). For microbiome ASVs 552 

and alpha-diversity traits, only those with a heritability >0.1 were used for GWAS. 553 

A standard “Q+K” linear mixed model (Yu et al., 2006) was used in GWAS. More precisely, the model 554 

is of the following form: 555 𝒚 = 𝑿𝜷 + 𝒎𝑎 + 𝒈 + 𝒆, (4) 556 

where 𝒚 is the n-dimensional vector of phenotypic records (i.e. BLUEs within a certain treatment, n is 557 

the number of genotypes), 𝜷 is the k-dimensional vector of fixed covariates including the common 558 

intercept and the subpopulation effects. 𝑿 is the corresponding n × k design matrix allocating each 559 

genotype to the subpopulation it belongs to. 𝑎 is the additive effect of the marker being tested, 𝒎 is the 560 

n-dimensional vector of marker profiles for all individuals. The elements in 𝒎 are coded as 0, 1 or 2, 561 

which is the number of minor alleles at the SNP. 𝒈 is an n-dimensional random vector representing the 562 

genetic background effects. We assume that 𝒈~𝑁(0, 𝑮𝜎𝑔2), where 𝜎𝑔2 is the genetic variance component, 563 𝑮 is the VanRaden genomic relationship matrix (VanRaden et al., 2008). 𝒆 is the residual term and 564 𝑒~𝑁(0, 𝑰𝜎𝑒2), where 𝜎𝑒2 is the residual variance component and 𝑰 is the n × n identity matrix. After solving 565 

the linear mixed model, the marker effect was tested using the Wald test statistic 𝑊 = �̂�2 var(�̂�)⁄ , which 566 

approximately follows a 𝜒2-distribution with one degree of freedom. 567 

Strictly, the model needs to be fitted once for each marker to get the precise test statistic for each 568 

marker. But to reduce the computational load, we implemented a commonly used approximate 569 

approach, namely the “population parameters previously determined” (P3D) method (Zhang et al., 570 

2010). That is, we only fit the model once without any marker effect (the so-called “null model”), and 571 

then we fixed the estimated the variance parameters 𝜎𝑔2 and 𝜎𝑒2 throughout the testing procedure. Then, 572 

the test statistic for each marker can be efficiently calculated. GWAS was implemented using R codes 573 

developed by ourselves. The variance parameters were estimated by the Bayesian method using the 574 

package BGLR (Pérez et al., 2014).  575 

For microbial traits, the significant marker-trait association (MTA) was identified with a threshold of p 576 

<0.05 after Bonferroni-Holm correction for multiple test (Holm et al. 1979). For fitness phenotypes and 577 

alpha-diversity, we used a more liberal threshold of p <0.1 after Benjamini-Hochberg correction 578 

(Benjamini and Hochberg 1995). For each trait, the proportion of phenotypic variance explained by each 579 

MTA (𝑅2) was calculated as follows: A liner regression model was fitted with all MTAs identified for the 580 

trait under consideration. Then, the sum of squares for each MTA as well as the total sum of squares 581 

was calculated by ANOVA. The 𝑅2 for each MTA was estimated as the sum of squares of the MTA 582 

divided by the total sum of squares. 583 

GWAS for the presence/absence mode 584 

For microbial traits, we performed in addition a GWAS based on the presence/absence mode (PA-585 

GWAS) in each treatment. Each ASV or taxonomy is considered as present if it is present in more than 586 

two replicates (including two). As in the GWAS for abundance, ASVs and taxa with repeatability below 587 

0.1 were filtered out. Those with a presence rate above 95% or below 5% were considered as non-588 

segregated and were also excluded from the analysis. The model for PA-GWAS is a logistic linear 589 

mixed model (Chen et al., 2016). Briefly, the model can be described as follows. 590 logit(𝝅) = 𝑿𝜷 + 𝒎𝑎 + 𝒈, (5) 591 

where 𝑿, 𝜷, 𝒎, 𝑎 and 𝒈 are the same as in (6). 𝝅 is the vector of conditional probabilities given the 592 

covariates, marker effects and the genetic background effects. More precisely, for the i-th individual, 593 𝝅𝑖 = 𝑃(𝑦𝑖 = 1|𝑿𝑖 , 𝑚𝑖, 𝑔𝑖), where 𝑦𝑖  is the binary variable indicating the presence (𝑦𝑖  = 1) and absence 594 

(𝑦𝑖  = 0), 𝑿𝑖  is the i-th row of the matrix 𝑿, 𝑚𝑖  is the i-th entry of the vector 𝒎 and 𝑔𝑖  is the i-th component 595 

of the random vector 𝒈. The logit function is defined as logit(𝑥) = ln (𝑥/(1 − 𝑥)). 596 

Similar to the P3D approach, a null logistic linear mixed model logit(𝝅0) = 𝑿𝜷 + 𝒈  was fitted using the 597 

penalized quasi-likelihood method (Breslow and Clayton, 1993). The estimated variance components 598 

were then fixed throughout the test procedure. A score test was applied to assess the significance of 599 

the marker effects. 600 

The PA-GWAS was conducted using the R package GMMAT (Chen et al., 2016). 601 
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Prediction for microbial traits using the genomic data and environmental descriptors 602 

To see the correlation between host genetics and microbiome assemblage, Mantel test was first 603 

performed between Rogers’ genetic distance matrix and microbial composition distance matrix only for 604 

landraces. After removing the treatment effect using linear model for  605 

normalized microbial abundances, the mean value of the residual for each  606 

genotype was used to calculate the Euclidean distance. Spearman correlation  607 

method was used in mantel function in R. Permutations = 9999.  608 

Next, we investigated the prediction abilities for all microbial traits within each treatment using both the 609 

genomic data and the environmental characters. The following three models were implemented. To 610 

eliminate the noise of subpopulation effects, we only used the 97 landraces for this part of analysis. 611 

Model 1 (genomic prediction). We applied the genomic best linear unbiased prediction (GBLUP) 612 

(VanRaden, 2008) which is the most commonly used model in genomic prediction. The model can be 613 

described as follows. 614 𝒚 = 𝑿𝜷 + 𝒈 + 𝒆, (6) 615 

where the notations are the same as in (4). Note that by the use of the VanRaden genomic relationship 616 

matrix as the covariance matrix of 𝒈, it implicitly modeled the additive effects of all markers. 617 

Model 2 (prediction purely based on the environmental characters). In this model, the genetic effects 618 

were replaced by the effects of the environmental characters, which were modeled in a similar way to 619 

the GBLUP. More precisely, the model has the following form: 620 𝒚 = 𝑿𝜷 + 𝒍 + 𝒆, (7) 621 

where 𝒍 is the n-dimensional random vector representing the E-determined values for all individuals. 622 

We assume that 𝒍~𝑁(0, 𝜮𝜎𝑙2) where 𝜎𝑙2  is the corresponding variance component, 𝜮 is a covariance 623 

matrix. Assuming that 𝑳 is the n × s matrix of standardized environmental character records (s is the 624 

number of environmental characters), we have 𝜮 = 𝑳𝑳′/𝑐 where 𝑐 is the mean of all diagonal elements 625 

in the matrix 𝑳𝑳′. 626 

Model 3 (prediction based on both genomics and environmental characters). In this approach, we 627 

combined the genomic data and the Es in a multi-kernel model, which is of the following form: 628 𝒚 = 𝑿𝜷 + 𝒈 + 𝒍 + 𝒆, (8) 629 

where the notations were inherited from (6) and (7). 630 

The prediction abilities of the above three models were assessed in a leave-one-out cross-validation 631 

scenario. That is, each individual was predicted once using a training set consisting of all other 632 

individuals. Thus, for each trait the prediction model was fitted n times. After we obtained the predicted 633 

values of all individuals, the prediction ability was calculated as the correlation between the predicted 634 

and observed values. The standard error was estimated using the bootstrap approach (Efron, 1979). 635 

All prediction models were implemented using the R package BGLR (Pérez et al., 2014) and rrBLUP 636 

(Carley et al., 2017). 637 

Prediction for plant phenotypes using the genomic and microbiome data 638 

We explored the possibility of predicting the three fitness phenotypes and ionome traits in each 639 

treatment using the genomic data and microbiomes. As in the last subsection, we focused on the 640 

subpopulation of 97 landraces. 641 

Scenario 1 (prediction based on microbiomes only). In this scenario, we considered 9 cases, in which 642 

the phenotypes were predicted using bacteria in the root sample (BA_RO), in the rhizosphere sample 643 

(BA_RH), fungi in the root sample (FU_RO), in the rhizosphere sample (FU_RH), bacteria in both 644 

samples (BA), fungi in both samples (FU), both types of microbiomes in the root sample (RO), in the 645 

rhizosphere sample (RH), and both types of microbiomes in both samples (ALL). The model can be 646 

uniformly described as follows: 647 𝒚 = 𝟏𝑛𝜇 + ∑ 𝒎𝑖𝑘𝑖=1 + 𝒆, (9) 648 

where 𝒎𝑖 is an n-dimensional trait values for all individuals determined by a certain type of microbiome 649 

in a specific sample, k can be 1 (BA_RO, BA_RH, FU_RO, FU_RH), 2 (BA, FU, RO, RH), or 4 (ALL), 650 

other notations are the same as in (8). We assume that 𝒎𝑖~𝑁(0, 𝑽𝑖𝜎𝑚𝑖2 ), where 𝜎𝑚𝑖2  is the corresponding 651 
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variance component, 𝑽𝑖 is a covariance matrix derived from the microbiome ASVs. Assuming that 𝑴𝑖 652 

is the n × t matrix of standardized records of microbiome ASVs (t is the number of different ASVs), we 653 

have 𝑽𝑖 = 𝑴𝑖𝑴𝑖′/𝑐𝑖 where 𝑐𝑖 is the mean of all diagonal elements in the matrix 𝑴𝑖𝑴𝑖′. 654 

Scenario 2 (prediction based on both microbiomes and genomic data). In this scenario, the 9 cases in 655 

Scenario 1 were combined with genomic data (G_BA_RO, G_BA_RH, G_FU_RO, G_FU_RH, G_BA, 656 

G_FU, G_RO, G_RH, G_ALL). The models are of the following form: 657 𝒚 = 𝟏𝑛𝜇 + 𝒈 + ∑ 𝒎𝑖𝑘𝑖=1 + 𝒆, (10) 658 

where the notations were adopted from (8) and (11). 659 

As in the last subsection, the prediction abilities were evaluated in a leave-one-out cross-validation 660 

scenario. Prediction models were implemented using the R package BGLR. 661 

Effects of source environmental factors on specific microbial assemblies 662 

To explore the environmental legacy of native habitats in relation to specific microbial variations among 663 

landraces, we performed network analyses of rhizosphere and root microbial indicators. We then aimed 664 

to understand the connections between bacterial and fungal taxa intimately associated with the 665 

microbiome of roots and rhizospheres. To this end, we used the function “multipatt” in the R package 666 

indicspecies (De Cáceres et al., 2020) to identify those microbial phylotypes that were significant 667 

indicators of microbial zASVs roots and rhizosphere (i.e., roots, rhizosphere or roots + rhizosphere) 668 

compared with bulk soil. We then conducted a correlation network conformed by taxa associated with 669 

the root and rhizosphere microbiomes. We calculated all pairwise Spearman correlation coefficients 670 

among these microbial taxa and kept all positive correlations. We further identified microbial modules 671 

(clusters of taxa highly correlated with each other) using Gephi (https://gephi.org/). We determined the 672 

proportion of modules by calculating the standardized (0−1) average of all taxa within each module, so 673 

that all taxa equally contribute to each module. This information was then correlated (Spearman) with 674 

environmental conditions. Mean annual temperature and precipitation were obtained from the 675 

WorldClim database (https://www.worldclim.org/). Other environmental descriptors were determined as 676 

explained above. Structural equation modelling (SEM) was conducted to provide a system-level 677 

understanding on the direct and indirect associations between environmental factors, the proportion of 678 

modules and that of selected taxa from above-explained analyses. Because some of the variables 679 

introduced were not normally distributed, we used bootstrap tests in these SEMs. We evaluated the fit 680 

of these models using the model χ2-test, the root mean squared error of approximation and the Bollen–681 

Stine bootstrap test. 682 

Environmentally adaptive loci and microbiome relatedness across abiotic stresses 683 

To determine if the environmentally associated loci are contributing to microbiome adaptation to abiotic 684 

stresses, we used a representative set of natural varieties e.g. 97 landraces accessions covering typical 685 

geographical range. Prior to analysis, PCA was conducted based on the BLUEs for each treatment and 686 

compartment to extract major sources of variance from bacterial and fungal microbial community data. 687 

The first five PCs were obtained for downstream analyses. PCA was performed using the prcomp 688 

function in R. In addition, we selected 18 individual ASVs belonging to Oxalobacteraceae to be 689 

predicted by Random Forest models. To improve model accuracy, feature selection was conducted 690 

prior to model building to eliminate unimportant or redundant environmental variables by identifying 691 

those with significant associations to an outcome variable. The feature selection method Boruta was 692 

employed to identify environmental aspects that describe significant variation in the PCs and ASVs 693 

using Boruta::boruta() (v7.0.0) (Kursa and Rudnicki, 2010).  694 

The subset of boruta-identified environmental variables (Supplementary Dataset 12) for each ASV were 695 

used for Random Forest model construction. This model works under the expectation that a response 696 

variable can be described by several explanatory variables through the construction of decision trees. 697 

Thus, each Random Forest model is representative of the non-linear, unique combination of explanatory 698 

variables that describe variation in a response variable. Random Forest models were built using 699 

RandomForest::randomForest() function under default parameters, 5000 trees were built and one third 700 

of the number of explanatory variables were tried at each split (Liaw and Wiener et al., 2002). Random 701 

Forest models were trained with 80% of the data and validated with the remaining 20% test set. Model 702 

success was evaluated with percent error explained, Nash-Sutcliffe efficiency (NSE), mean absolute 703 

error (MAE), and mean squared error (MSE). Using constructed Random Forest models, ASVs were 704 

predicted for 1,781 genotyped landraces in Mexico. These landraces were genotyped as a part of the 705 

Seeds of Discovery project (SeeD).   706 

https://gephi.org/
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We conducted genome wide association studies (GWAS) to measure the associations between SNPs 707 

of landrace genotypes and predicted microbial traits, as well as the associations between SNPs and 708 

the environmental variables used to predict the microbial traits. SNPs were filtered for minor allele 709 

frequency >1%. We applied the method as previously described (Gates et al., 2019), using a linear 710 

model to fit the genotypic data and each microbial trait and environmental variable for Mexican landrace 711 

accessions. The first five eigenvectors of the genetic relationship matrix were included in the model to 712 

control for population structure. To control for the number of false positive tests, we re-calibrated the p-713 

values using the false discovery rate (FDR) control algorithm  (François et al., 2016) and selected 714 

significant SNPs based on the calibrated results. To test if GWA hits based on the prediction is 715 

significantly better in capturing top GWA hits of observed data than random, we conducted a 716 

permutation test and compared the median p-value of GWA hits of observed data that are around 200kb 717 

of the top 100 prediction-based GWA hits and the median p-value of random selected GWA hits based 718 

on 10000 permutations.    719 

Association of allele frequency with soil nitrogen and microbial taxa 720 

To identify whether the microbiome is associated with environment and maize phenotypes, we 721 

performed allelic variation analysis of Zm00001d048945 using an SNP dataset of CIMMYT landraces 722 

accessions obtained from a previous study (Navarro et al., 2017). We extracted the genotypic 723 

information of top SNPs of the target gene Zm00001d048945 for all tested landraces. We divided maize 724 

landraces into 20 groups based on the total soil nitrogen content (%) of their sampling sites (Shangguan 725 

et al. 2014). We calculated the mean total nitrogen, the minor allele frequencies (MAF) of the target 726 

SNPs, and the mean predicted ASV abundance for each group of landraces. Pearson correlation was 727 

conducted to test the correlations between MAF and total nitrogen content, and between MAF and ASV 728 

abundance.    729 

Candidate gene validation by independent transposon insertion alleles 730 

Gene expression for Zm00001d048945 was explored in qTeller (https://qteller.maizegdb.org/), which 731 

allows to compare gene expression across different tissues from multiple data sources. Gene 732 

expression data was extracted from different organs (seed, root, tassel/silk, internodes and leaf) and 733 

specific tissues such as the root meristematic zone, elongation zone, stele and cortex. The gene 734 

encoded protein annotation was inferred from UniProt database (https://www.uniprot.org/). We next 735 

identified potential loss-of-function mutations by exploring the sequence indexed collection BonnMu 736 

(Marcon et al., 2020). Induced maize mutants of the BonnMu resource derive from Mutator-tagged 737 

F2−families in various genetic backgrounds, such as B73 and F7. We identified two insertion lines, 738 

BonnMu−8−D−0170 (B73) and BonnMu−F7−2−F−0598 (F7), harboring insertions 1,264 bp upstream 739 

of the start codon ATG and in the second exon of Zm00001d048945, respectively. These two families 740 

were phenotyped in paper-roll culture (Yu et al., 2021) and the seedling plants were scanned using the 741 

scanner Expression 12000XL (Epson, Suwa, Japan). Lateral roots were counted and the density was 742 

normalized with the measure number of lateral roots per cm length of primary root. Statistical analyses 743 

were performed by pair-wise Students t test with F statistics. 744 

Association of relative abundance of Massilia with lateral root density 745 

To understand the relationship between Massilia and the formation of lateral roots, root system 746 

architecture and morphology of 97 maize landraces was scanned with an Epson Expression 12000XL 747 

scanner. Lateral root density was determined by manual calculation as the number of emerged lateral 748 

roots per length (cm) of the main root. The linear correlation was plotted between lateral root density 749 

and relative abundance data of Massilia ASVs using R (v4.1.0). 750 

Synthetic community, root bacterial inoculation and plant fitness assay 751 

To explore effects of specific Massilia ASV37 on root development and nitrogen uptake, a growth 752 

promotion assay by inoculation with a synthetic community of Massilia isolates (Supplementary Dataset 753 

16) was performed on two maize wild types (B73 and F7) and their mutants (D−0170 and F−0598) in 754 

nitrogen-poor soil pots. Before inoculation of these Massilia strains, we first mapped the sequences of 755 

in total 13 Massilia strains to the 16S sequence of the ASV37 using HSAT2 756 

(http://daehwankimlab.github.io/hisat2/) with default parameters. We applied three different synthetic 757 

communities e.g. all 13 Massilia isolates, 12 Massilia isolates excluding Isolate13 which has 100% 758 

identity with Massilia ASV37, only Isolate13 under nitrogen-poor condition. The natural soil was dug 759 

from a natural field at Campus Klein-Altendorf (University of Bonn), then sieved, homogenized and 760 

mixed with 50% quartz sand (WF 33, Quarzwerke Weferlingen, Germany) to reduce the nitrogen 761 

content of the recipient soil. The soil mixtures were then sterilized and conditioned for one week prior 762 

to use. The seed sterilization, isolates preparation, root inoculation and growth assay were done 763 

https://paperpile.com/c/E5L5Fk/pbmK
http://daehwankimlab.github.io/hisat2/
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according as previously reported (Yu et al., 2021). Different genotypes were grown in the phytochamber 764 

(16/8 h light/dark and 26/18 °C) for 1 month and plants were harvested, and the length and weight of 765 

crown root, lateral root density and shoot fresh weight were determined. Chlorophyll content was 766 

determined as the average of 10 measurements with a SPAD-502 chlorophyll metre (Konica Minolta) 767 

in the middle third of the newest expanded leaf in the longitudinal direction. The linear correlation was 768 

plotted between different root traits and shoot fresh weight and chlorophyll content using R (v4.1.0). 769 

Data availability 770 

All raw maize genotyping data, bacterial 16S and fungal ITS data in this paper were deposited in the 771 

Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under the BioProject ID PRJNA889703. The 772 

SSUrRNA database from SILVA database (release 138, 2020, https://www.arb-silva.de/) and UNITE 773 

database (v8.3, 2021, https://unite.ut.ee/) were used for analysing the bacterial 16S and fungal ITS 774 

sequences, respectively. We deposited customized scripts in the following GitHub repository: 775 

https://github.com/Danning16/MaizeMicrobiome2022. All statistical data are provided with this paper.   776 
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Main figures 777 

778 

Figure 1. Overall diversity and heritability of microbiome among abiotic stresses. a, Constrained 779 

analysis of principle coordinate (CAP) ordination using Bray–Curtis dissimilarity with permutational 780 

analysis of variance (PERMANOVA) was applied to visualize significant microbiome differences across 781 

three compartments, four treatments and genotypes (n = 129). Datapoints for bacteria (n = 3138) and 782 

fungi (n = 3168) are color coded according to the four treatments. Compartments are shape coded. 783 

Only ASVs with reads >10 in ≥6 samples were included in the dataset. b, Heritability estimates of 784 

individual families under four treatments for both bacteria and fungi. The broad-sense heritability (H2) 785 

was calculated using highly abundant bacterial (n = 131) and fungal (n = 59) families across all samples. 786 

CK, control; D, drought; LN, low nitrogen; LP, low phosphorus. Significances are indicated among 787 

treatment groups for each compartment with Benjamini-Hochberg adjusted P < 0.05 (Kruskal-Wallis 788 

test, Dunn’s post-hoc test). Boxes span from the first to the third quartiles, centre lines represent the 789 

median values and whiskers show data lying within 1.5× interquartile range of the lower and upper 790 

quartiles. Data points at the ends of whiskers represent outliers. The pie charts indicate the proportional 791 

distributions of heritability frequencies.  792 
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  793 

Figure 2. Genomic, environmental and microbial prediction of host-microbe interactions and 794 

plant traits. a, Microbiome traits prediction using genetic markers and environmental characters. Inner 795 

pie charts describe the proportion of ASVs with four different magnitudes of prediction accuracies from 796 

different treatments across compartments. Outer circles define the best prediction patterns observed 797 

by applying the genetic markers (G_best) alone, environmental characters (E_best) alone or combined 798 

genetic markers and environmental characters (G+E_best). The numbers denote the average 799 

prediction accuracies for microbial ASVs from different treatments across compartments. Only ASVs 800 
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with heritability (H2) >0.1 were considered in prediction analysis. PA, prediction accuracy. Bar plots 801 

indicate the proportions of predictable (PA >0.1) and unpredictable (PA <0.1) ASVs from the total 802 

predictions. CK, control; D, drought; LN, low nitrogen; LP, low phosphorus. b, Plant traits prediction 803 

using genetic markers and microbiome traits. A curved line describes the average prediction accuracy 804 

for plant traits using microbiome data alone, genomic data alone or combined genomic and microbiome 805 

traits data. A heatmap illustrates the standardized prediction accuracy for fitness traits across different 806 

microbiome features combined with genetic markers. Shoot traits include the biomass, leaf area and 807 

chlorophyll measured by SPAD value. Nutrient uptake properties include the concentration and content 808 

of macronutrients (nitrogen, phosphorus, potassium, calcium, magnesium and sulfur), micronutrients 809 

(iron, manganese, zinc and boron) and beneficial elements (aluminium and sodium). 810 

  811 



20 

 

 812 

 813 

Figure 3. Dominated and heritable bacterial families of maize root and rhizosphere microbiome 814 

under abiotic stresses. a, Maximum-likelihood phylogeny of dominant bacterial families (n > 5). Circle 815 

sizes along the branches of the tree indicate the number of ASVs observed in association with microbial 816 

families. Colour coded families are clustered at the phylum level. Bar plots describe the prevalence 817 

according to the proportional sample size. The heatmaps illustrate the standardized mean relative 818 

abundance and the estimated heritability of microbial families from the root to the rhizosphere. Triangles 819 

represent the enrichment or depletion of microbial families, and increased or decreased heritability from 820 

the root to the rhizosphere. The significance levels were controlled at two levels (*: p <0.05; **: p <0.01). 821 
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b, Phylogenetic tree of dominant bacterial ASVs (n = 126) of roots grown under nitrogen-poor condition. 822 

Dot size corresponds to relative abundance. Inner heatmap from inside to outside indicates heritability 823 

(H2 >0.1) at the family, genus and ASV level. Red bar plots describe the explained variance by GWAS. 824 

The outer heatmap indicates the predictions by genomic best linear unbiased prediction (GBLUP), or 825 

based on the environmental best linear unbiased prediction (EBLUP) or prediction based on both 826 

genomics and environment (EGBLUP). Triangles indicate significant associations with the 827 

presence/absence (P/A) GWAS. Color coded tree branches of ASVs are clustered at the family level. 828 

Box plot indicates significantly higher heritability of Oxalobacteraceae compared to other families. 829 
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 830 

Figure 4. Source habitats facilitate microbiome-driven root phenotypic association with nitrogen 831 

availability. a, Manhattan plots showing environmental GWAS of specific Massilia ASV37. b, Linkage 832 

disequilibrium (LD) plot for SNPs within 2.5kb of gene Zm00001d048945. Exons in the gene model are 833 

indicated by black bins. All significant SNPs are linked (red) to the LD plot (P < 1.0 × 10−7). Arrows 834 

indicate the positions of the peak SNPs. The colour key (grey to red) represents linkage disequilibrium 835 

values (r2). Blue triangles indicate the transposon insertion positions of the two mutant alleles D-0170 836 

and F-0598. c, Pearson correlation coefficient analysis of allele frequency (S4_10445603) with soil total 837 



23 

 

nitrogen content (purple) and predicted relative abundance of ASV37_Root_LN (orange) across 1,781 838 

geographical locations worldwide. d, Tissue-specific expression of gene Zm00001d048945 according 839 

to the eFP Browser database. e, Pearson correlation coefficient analysis of lateral root density with 840 

relative abundance of ASV37_Root_LN (orange) among 97 maize landraces. Scatter plots show best 841 

fit (solid line) and 95% confidence interval (colour shading) for linear regression. f and g, Root 842 

phenotypes and lateral root density of two independent Mu-transposon insertion mutant alleles (D-0170 843 

and F-0598) in comparison to the corresponding wild types (B73 and F7). Significances are indicated 844 

between wild type and mutant for different genetic backgrounds (two-tailed Student’s t-tests). Boxes 845 

span from the first to the third quartiles, centre lines represent the median values and whiskers show 846 

data lying within 1.5× interquartile range of the lower and upper quartiles. Data points at the ends of 847 

whiskers represent outliers.  848 
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 849 

Figure 5. Massilia alone can modulate lateral root development and growth performance under 850 

the nitrogen-poor soil. a, Specific Massilia ASV37 is able to promote lateral root formation of lateral 851 

root defected mutants (D−0170 and F−0598) by root inoculation of different synthetic communities 852 

(SynCom). Representative images of 1st whorl of crown roots illustrate the more emerged lateral roots 853 

by Massilia strains. Different letters indicate significantly different groups (ANOVA, Tukey’s HSD). n = 854 

4 biologically independent samples. Scale bar = 1 cm. b, Massilia inoculations are able to alleviate the 855 

nitrogen deficient phenotype. Nitrogen deficient phenotype was evaluated by relative leaf chlorophyll 856 

concentration measured by the SPAD value of the last fully expanded leaf. Each individual leaf was 857 

measured 10 times. Different letters indicate significantly different groups (ANOVA, Tukey’s HSD). n = 858 

4 biologically independent samples. Scale bar = 1 cm. c, Correlation between lateral root density and 859 

shoot performance after inoculation with different SynComs for maize genotypes grown in nitrogen-860 

poor soil. Scatter plots show the best fit (solid line) and 95% confidence interval (grey shading) for linear 861 

regression. Dots indicate the shoot fresh weight and triangles indicate the leaf chlorophyll. 862 
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