Becraft PW, Stinard PS, and McCarty DR (1996) CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273:1406–1409. https://doi.org/10.1126/science.273.5280.1406
Boutrot F, Chantret N, and Gautier MF (2008) Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genom 9:86. https://doi.org/10.1186/1471-2164-9-86
Brand U, Fletcher JC, Hobe M, Meyerowitz EM, and Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619. https://doi.org/10.1126/science.289.5479.617
Czyzewicz N, Nikonorova N, Meyer MR, Sandal P, Shah S, Vu LD, Gevaert K, Rao AG, and De Smet, I. (2016). The growing story of (ARABIDOPSIS) CRINKLY 4. Journal of Experimental Botany 67, 4835–4847. https://doi.org/10.1093/jxb/erw192
De Smet I, Vassileva V, De Rybel B, Levesque MP, Grunewald W, Van Damme D, Van Noorden G, Naudts M, Van Isterdael G, De Clercq R, Wang JY, Meuli N, Vanneste S, Friml J, Hilson P, Jurgens G, Ingram GC, Inze D, Benfey PN, and Beeckman T (2008). Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322, 594–597. https://doi.org/10.1126/science.1160158
Gifford ML, Robertson FC, Soares DC, and Ingram GC (2005) ARABIDOPSIS CRINKLY4 function, internalization, and turnover are dependent on the extracellular crinkly repeat domain. Plant Cell 17:1154–1166. https://doi.org/10.1105/tpc.104.029975
Grienenberger E, and Fletcher JC (2015) Polypeptide signaling molecules in plant development. Curr Opin Plant Biol 23:8–14. https://doi.org/10.1016/j.pbi.2014.09.013
Jin, P., Guo, T., and Becraft, P.W. (2000). The maize CR4 receptor-like kinase mediates a growth factor-like differentiation response. Genesis 27, 104–116. https://doi.org/10.1002/1526-968x(200007)27:3<104::aid-gene30>3.0.co;2-i
Kinoshita A, Nakamura Y, Sasaki E, Kyozuka J, Fukuda H, and Sawa S (2007) Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa. Plant & Cell Physiology 48, 1821–1825. https://doi.org/10.1093/pcp/pcm154
Kondo T, Kajita R, Miyazaki A, Hokoyama M, Nakamura-Miura T, Mizuno S, Masuda Y, Irie K, Tanaka Y, Takada S, Kakimoto T, and Sakagami Y (2010) Stomatal density is controlled by a mesophyll-derived signaling molecule. Plant Cell Physiol 51:1–8. https://doi.org/10.1093/pcp/pcp180
Lease KA, and Walker JC (2006) The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol 142:831–838. https://doi.org/10.1104/pp.106.086041
Matsubayashi Y (2014) Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol 65:385–413. https://doi.org/10.1146/annurev-arplant-050312-120122
Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, and Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815. https://doi.org/10.1146/annurev-arplant-050312-120122
Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, and Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236. https://doi.org/10.1038/cr.2013.123
Nagasawa N, Miyoshi M, Kitano H, Satoh H, and Nagato Y (1996) Mutations associated with floral organ number in rice. Planta 198:627–633. https://doi.org/10.1007/BF00262651
Ohmori Y, Yasui Y, and Hirano HY (2014) Overexpression analysis suggests that FON2-LIKE CLE PROTEIN1 is involved in rice leaf development. Genes Genet Syst 89:87–91. https://doi.org/10.1266/ggs.89.87
Ohmori Y, Tanaka W, Kojima M, Sakakibara H, and Hirano HY (2013) WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice. Plant Cell 25:229–241. https://doi.org/10.1105/tpc.112.103432
Ou Y, Lu X, Zi Q, Xun Q, Zhang J, Wu Y, Shi H, Wei Z, Zhao B, Zhang X, He K, Gou X, Li C, and Li J (2016) RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res 26:686–698. https://doi.org/10.1038/cr.2016.63
Pearce G, Moura DS, Stratmann J (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci USA 98:12843–12847. https://doi.org/10.1073/pnas.201416998, and Ryan, C.A., Jr
Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, Kohr WJ, Aggarwal BB, and Goeddel DV (1984) Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312:724–729. https://doi.org/10.1038/312724a0
Pu CX, Ma Y, Wang J, Zhang YC, Jiao XW, Hu YH, Wang LL, Zhu ZG, Sun D, and Sun Y (2012) Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation. The Plant Journal: for Cell Molecular Biology 70:940–953. https://doi.org/10.1111/j.1365-313X.2012.04925.x
Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, and Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644. https://doi.org/10.1016/s0092-8674(00)80700-x
Shiu SH, and Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 2001, re22. https://doi.org/10.1126/stke.2001.113.re22
Song W, Liu L, Wang J, Wu Z, Zhang H, Tang J, Lin G, Wang Y, Wen X, Li W, Han Z, Guo H, and Chai J (2016) Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth. Cell Res 26:674–685. https://doi.org/10.1038/cr.2016.62
Stahl Y, and Simon R (2009) Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4? Plant Signaling Behavior 4:634–635. https://doi.org/10.1016/j.cub.2009.03.060
Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, and Hirano HY (2006) Conservation and diversification of meristem maintenance mechanism in Oryza sativa: Function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiology 47:1591–1602. https://doi.org/10.1093/pcp/pcl025
Tanaka H, Watanabe M, Watanabe D, Tanaka T, Machida C, and Machida Y (2002) ACR4, a putative receptor kinase gene of Arabidopsis thaliana, that is expressed in the outer cell layers of embryos and plants, is involved in proper embryogenesis. Plant Cell Physiology 43:419–428. https://doi.org/10.1093/pcp/pcf052
Tanaka H, Onouchi H, Kondo M, Hara-Nishimura I, Nishimura M, Machida C, and Machida Y (2001) A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128:4681–4689. https://dev.biologists.org/content/128/23/4681.long
Tanaka H, Watanabe M, Sasabe M, Hiroe T, Tanaka T, Tsukaya H, Ikezaki M, Machida C, and Machida Y (2007) Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in Arabidopsis. Development 134:1643–1652. https://doi.org/10.1242/dev.003533
Tian Q, Olsen L, Sun B, Lid SE, Brown RC, Lemmon BE, Fosnes K, Gruis DF, Opsahl-Sorteberg HG, Otegui MS, and Olsen OA (2007) Subcellular localization and functional domain studies of DEFECTIVE KERNEL1 in maize and Arabidopsis suggest a model for aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1. Plant Cell 19:3127–3145. https://doi.org/10.1105/tpc.106.048868
Wang J, Yan LL, Yue ZL, Li HY, Ji XJ, Pu CX, and Sun Y (2020) Receptor-like kinase OsCR4 controls leaf morphogenesis and embryogenesis by fixing the distribution of auxin in rice. Journal of Genetics Genomics = Yi chuan xue bao 47:577–589. https://doi.org/10.1016/j.jgg.2020.08.002
Watanabe M, Tanaka H, Watanabe D, Machida C, and Machida Y (2004) The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. The Plant Journal: for Cell Molecular Biology 39:298–308. https://doi.org/10.1111/j.1365-313X.2004.02132.x
Yang YZ, Peng H, Huang HM, Wu JX, Ha SR, Huang DF, and Lu TG (2004) Large-scale production of enhancer trapping lines for rice functional genomics. Plant Sci 167:281–288. https://doi.org/10.1016/j.plantsci.2004.03.026