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Abstract

Adopting a low spatial resolution remote sensing imagery to get an accurate estimation of land-use and
land-cover (LU/LC) is a very difficult task to perform. Image fusion plays a big role to map the LU/LC.
Therefore, This study aims to find out a refining method for the LU/LC estimating by adopting these
steps; (1) apply a three pan-sharpening fusion approaches to combine panchromatic (PAN) imagery has
high spatial resolution with multispectral (MS) imagery has low spatial resolution, (2) employing five
pixel-based classifier approaches on MS and fused images; artificial neural net (ANN), support vector
machine (SVM), parallelepiped (PP), Mahalanobis distance (Mah) and spectral angle mapper (SAM), (3)
Make a statistical comparison between classification results. The Landsat-8 image was adopted for this
research. There are twenty LU/LC thematic maps were created in this study. A suitable and reliable LU/LC
method was presented based on the obtained results. The validations of the results were performed by
adopting a confusion matrix. A comparison made between the classification results of MS and all fused
images levels. It proved that mapping the LU/LC produced by Gram-Schmidt Pan-sharpening (GS) and
classified by SVM method has the most accurate result among all other MS and fused images that
classified by the other classifiers, it has an overall accuracy about (99.85%) and a kappa coefficient of
about (0.98). However, the SAM algorithm has the lowest accuracy compared to all other adopted
methods, with overall accuracy of 53.41% and the kappa coefficient of about 0.48. The proposed
procedure is useful in the industry and academic side for estimating purposes. In addition, it is also a
good tool for analysts and researchers, who could interest to extend the technique to employ different
datasets and regions.

1. Introduction

An accurate thematic map of LU/LC plays a big role in different remote sensing applications such as;
change detection, environment managing and monitoring, LU/LC detection, hazard prediction, urban area
expansion, forest monitoring and other (Sang et al.,, 2014; Khatami et al., 2016; Dibs et al, 2017; Zhang et
al., 2018; Karar et al., 2020). Image fusion plays a big role to refine and improve the estimation of LU/LC.
In other hand, remote sensing is a powerful tool and very useful for mapping the LU/LC from using a
suitable satellite images with a good selecting of classification method. However, image classification
approaches consider as the best method to monitor, manage and estimate the LU/LC (Dibs, 2013; Sang et
al., 2014). To perform classification, it needs to involve different stages such as selection training and
testing samples, atmospheric correction, radiometric correction, geometric correction, objects extraction,
classifier method selection, post-classification process, and performing results validation (Singh et al.,
2014; Dixon et al., 2015; Hayder et al., 2018; Dibs, 2018).

The Selection of a reliable classifier technique is very critical to obtain an accurate LU/LC thematic map
(Dixon et al., 2015; Li et al., 2017). For LU/LC estimating there are large numbers of techniques and
methodologies to apply, some of these classifiers under pixel-based and other under object-based, these
algorithms such as the SVM, ANN, SAM, PP, Decision Trees (DT) as discussed by (Chasmer et al., 2014;
Elatawneh et al., 2014; lounousse et al., 2015; Hayder et al., 2015; Léw et al., 2015; Zhang et al., 2018).
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Additionally, many improved techniques have been applied to improve LU/LC mapping such as the image
pan-sharpening technique (Ghosh et al., 2014; Cavur et al., 2019). These approaches can be divided into
many categories; component substitution techniques, multi-resolution dataset analysis (Li et al., 2017).
Firstly, there are two basic types of fusion pan-sharpening methods; regarding color, statistical and
numerical algorithms (Ma et al., 2019). The most commonly adopted method is regarding to component
substitution. Intensity hue saturation spectral sharpening (IHS) method is one of the commonly employed
methods of the IHS group (Li et al., 2017). IHS works based on color space transformation (Paidamwoyo
et al., 2020). However, the GS method is a new generation of pan-sharpening approaches of deep
learning, it has been adopted widely in previous years, it relies on the applications of color transform and
it converts low-resolution multi-spectral band to a new color system that differences in both spatial and
spectral information and details (Paidamwoyo et al., 2020). The principal component analysis (PCA)
method is another one to use, and it works based on a statistical method, therefore, PCA is included under
the group of statistical methods (Cavur et al., 2019). The Brovey method is a multiplicative approach, it is
modified by normalization of the results (Elatawneh et al., 2014). Many studies discuss imagery pan-
sharpening between PAN and MS images (Sang et al, 2014; Khatami et al., 2016; Li et al., 2018; Hayder et
al,, 2020). The spatial resolution will enhance when, replacing the PAN imagery that has high-spatial
resolution by the MS image that has high-spectral resolution without saving all spectral information (Li et
al,, 2018; Azarang and Kehtarnava, 2020). The purposes behind using imagery pan-sharpening method
are; (1) upsurging of spatial resolution, (2) advancing of geometric accurateness, (3) improving
topography presentation, (4) refining of classification precision (Ma et al., 2019).

There are several pan-sharpening methods that have been adopted using remotely sensed data
throughout the world. However, some key unanswered questions: (a) does incorporate PAN imagery will
support the LU/LC mapping? (b) What is the best pansharpening fusion method between the Landsat MS
and PAN data? (c) What is the best algorithm to classify to produce LU/LC Landsat data? To address all
these questions, the current research focuses on investigating the pansharpening of PAN an MS Landsat
images and examine it with different pixel-based classification approaches to propose an improved
procedure for estimating LU/LC. The layout of this article will start with the used materials and methods
section, and then go through collecting the truth dataset, performing an image noise removal (geometric
and radiometric noise) for all images. The next step will be conducting the image fusion levels. Then,
apply different classification methods on the Multi-spectral and fused images. The Discussion section
will show the discuss in deep all the outcomes of these processing and analysis to get the most accurate
methodology to map the LU/LC.

The outcomes of this study will help to provide a big contribution to industry and academic fields.
Analysts and researchers can improve, develop and extend the present method to work and apply on
different dataset sources and regions.

2. Material And Methods
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For this research different processing, analyzing and integrating methods were adopted to find an
appropriate procedure for generating the LU/LC map. In this study, after downloading the used datasets
from Landsat—8 satellite PAN and MS imagery of 2018, the noise removed is starting to perform in order
to remove and reduce images radiometric and geometric errors. The next step, it was satellite images
resampling by using bilinear approach. Then the Landsat-8 PAN and MS images become ready for further
processing and analyzing stages. After that, the research has two different procedures to perform
estimating the LU/LC map of the study area. Firstly, the Landsat-8 MS images go classified with a five
pixel-based classifier approaches (PP, ANN, SVM, SAM, and Mah), with selecting training and testing sites
to conduct each classification algorithm. Secondly, the Landsat-8 PAN and MS satellite images were
analyzing and integrating together with a three different kinds of image fusion levels (Gram-Schmidt Pan-
sharpening, intensity hue saturation spectral sharpening and Brovey pan-sharpening method). Each level
of images fusion go through different the five pixel-based classification methods with using the same
collected training and testing sites of the PAN and MS satellite images to examine which methodology
will provide the most accurate result to produce LU/LC map. As indicated above the MS and fused
satellite images will be classified twenty times for the purpose of this study. After that, a confusion matrix
will apply on the results of the twenty classified images to validate their accuracy. Then, the outcomes of
all the previous stages will examine from making a statistical comparison between them. Figure 1
indicates the adopted method for this study.

2.1. Study Area Description

In this research, the Baghdad city in Iraq was selected as the study area. Baghdad city is a very famous
city in Iraqg, and it is considered as the second-largest city in the Arab world after Cairo city. It has a
location along the Tigris River. In the eighth century, Baghdad city has a golden history, it became the
Abbasid caliphate capital city that time. Baghdad has a significant in both commercial and cultural fields
in the Arab world. It has a population of about 6,719,500 person regarding to the estimate of 2018, this
population value makes this city as one of the biggest cities in there public of Iraq. It is located in 44° 27
54.37" Easting and 33° 23' 03.98" Northing. The area of Baghdad city is around 204.2 km?2. The altitude
ranges of Baghdad city in between (32-38) m above the mean sea level (MSL). Baghdad city is almost
covered by urban areas. Figure 2 indicates the location of an interesting area of this study (Hayder et al.,
2020).

2.2. Satellite images and Truth Dataset

The analyzed satellite imagery for this study was obtained from the Landsat-8 sensor. This sensor is
launched into space on 11/2/2013. Landsat sensor has carried two different sensors, the operational
land imager (OLI) and Thermal Infrared Sensor (TIRS). Landsat satellite data has (11) bands, some of
them have a spatial resolution of about 30m for each band of (1 to 7 & 9). However, the PAN channel (8
band), it has a spatial resolution of about 15m. In addition, the thermal bands (10 and 11) have a spatial
resolution of 100m. Table 1 describes the specifications of Landsat sensor bands. The dataset for this
research was freely downloaded from the Glovis website (https://glovis.usgs.gov/app) with path=168
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and row=37. The satellite image was captured on 20/2/2018 and it has level processing 1T standard
correction, UTM projection with zone 38 N, and datum a WGS 84. The processed image has no cloud.

The ground truth data must be observed to apply the pixel-based classifications. The truth data usually
collect from using different methods such as collecting GPS references in fieldwork and/or higher
resolution remotely sensed imagery (Lu, 2011; Hayder and Suhad, 2019; Hayder et al., 2020). However, in
this research, the authors used Google Earth Pro to collect the training and testing samples in the image
by visual interpretation process for each class. The Google Earth Pro image has a very high spatial
resolution, and that will help to discover the located features in the study area (Hayder et al., 2020). For
this study, five classes were selected to be used in estimating of LU/LC map, and they are; urban area,
water body, soil area, roads and vegetation, respectively. Selecting these five classes was made based on
the regular features that distribute in the study area as indicate in Figure 3. However, urban area defines
all build-up areas such as building areas and/or housing area or any other kind of buildings (commercial,
education, plaza and so on). In other side, water body class defines all water bodies located in the
research area such as (rivers, marshes, and lake) and soil class represents all the barren lands area.
However, the roads class represents the main roads located in the Baghdad city that covered by asphalt
layer. The last class was the vegetation class, and it represents evergreen lands and the area that covered
with vegetation, whether natural or cultivated by humans. Randomly training and testing sites procedure
were adopted for all the five class. The training and testing sites were equally distributed overall in the
image of the research area to ensure get an accurate classification outcome. For every single class, there
are more than 250 pixels were collected. Figure 3 indicates the ground truth datasets that collected to
involve in image classification processes.

2.3. Image Noise Removal

The geometric correction (GC) for any satellite images is required before performing any processing and
analyzing on satellite images (Zhang et al., 2018; Hayder and Suhad, 2019; Aysar et al., 2020). A good
selection of ground control points (GCPs) location should be done (Hayder and Suhad, 2019). In this
study, the geometric correction of Landsat MS and PAN images was performed using ten GCPs, which
regularly distributed throughout the image portions. These GCPs were collected using the Google Earth
image as mention in section (2.2). The first polynomial transformation and the nearest neighbor were
adopted to obtain a root mean square error (RMSE), and it was about 1.32 pixels. The next correction for
Landsat images was performed a radiometric correction. It is an essential algorithm for image
preprocessing to remove the effects of sun illumination (Bello and Parviz, 2013; Sang et al., 2014; Hayder
and Suhad, 2019; Hashim et al., 2020 a & b; Aysar et al., 2020) . The Dark Object Subtraction (DOS) was
adopted to remove the radiance errors of MS and Pan. Figure 4 (a & b) indicates the corrected MS and
PAN images after removing all kind of noise.

3. Image Fusion Levels

Page 5/27



After conducting image layer stacking and sub-setting, the MS and PAN images will integrate together
with using of a three different fusion pan-sharpening spectral methods. The first image fusion level was
performed using the IHS approach. The IHS spectral sharpening method is usually adopted in imagery
fusion to use the MS image complementary nature (Jain et al., 2019; Saha et al., 2019). For the spectral
IHS sharpening, each of R, G and B bands of the MS data were converted to this component (Zhong et al.,
2016).The PAN imagery histogram matched to the MS data intensity component (Jain et al., 2019;
Hayder et al., 2020). Then, the intensity component was replaced by the PAN data. Then, the inverse
transformation was conducted in order to get the MS image that has a high resolution. The pixel size of
the outcome RGB imagery will have the same as the input PAN image of high-resolution. Figure 5
describes the steps of the adopted method.

The second pan-sharpening level was applied with using the Brovey method. This method adopts a
mathematical combination to make integration between the high and low-resolution bands (Liu, 2018)
For this method, each MS band will multiply by a ratio of the band of high resolution, then divided by the
MS band. The outputs of IHS processing will automatically resample the three MS bands to the PAN pixel
size (Paidamwoyo et al., 2020). The result of RGB imagery will have the pixel size of the input high-
resolution data (Bovolo, 2010). The Brovey method equation is defined below:

DN DNy,
fused MSt ™ DNbl + Dsz + e+ Dan

DNpan (1)

where (DN) represents as a particular band digital number and (bi) is the MS image particular band (Ma
etal, 2019).

The third applied image fusion level was performed using Gram-Schmidt spectral sharpening (GS)
algorithm. The GS sharpening method enhances the MS band'’s spatial resolution by integrating high and
low image resolutions (Ma et al., 2019). The GS transformation conducts to the simulated high-resolution
PAN band with the MS low-resolution bands. The simulated PAN high-resolution image band is adopted
at the first. Then the PAN data will be replaced with the GS band (Paidamwoyo et al., 2020). The last step
is inversed transformation will apply to generate the spectral sharpened MS band (Yuan et al., 2018).
Figure 6 (a, b & c) shows the fused images after employed the IHS, Brovey and GS spectral sharpening
algorithms.

4. Classifications Of Multi-spectral And Pan-sharpening Images

Many classification approaches have been adopted and applied for mapping the LU/LC (Yifang and
Alexander, 2013). However, performing image classification needs to collect the training and testing
samples for each class to guide all the processes of classifications and accuracy assessments of the
output results (Rwanga and Ndambuki, 2017). All the training sites will comprise to the corresponding
group of the region of interests (ROIs). However, the candidates’ sample groups from the same class may
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be spectrally (Yifang and Alexander, 2013). Therefore, wide candidate pixels should be sampled
(Paidamwoyo et al., 2020) There are many different supervised classifiers adopted in different remote
sensing applications include PR minimum distance, ANN, Mah, spectral information divergence, SVM,
binary encoding and SAM methods (Zoleikani et al., 2017). In this study, five pixel-based classifier
methods (PP, ANN, SVM, SAM, and Mah) were adopted to classify the MS data and the three fusion
methods that have a good efficiency when apply on data has low spatial resolution (Taubenbdck et al.,
2012). The weights of the ANN method were used as uniform distribution. Values of about 0.001 and 100
were employed for learning rate for the output layer and hidden layer, respectively. So, the stopping
criteria on (0.001) were fixed. However, applying the SVM approach was employed based on the default
parameters, because authors for this research want to examine different classifiers, they not focus on
different parameters of the SVM method. The applied SVM parameters in this research, it included of
using a radial basis function as a kernel type, for gamma in kernel function. In other hand, the penalty
parameter and pyramid levels were 0.167, 100.00 and 0.00, respectively. The adopted classification
probability threshold value was zero. The five supervised pixel-based classification techniques were
evaluated for this research using the confusion matrix (Paidamwoyo et al., 2020; Zoleikani et al., 2017).
Both of overall accuracy and the kappa coefficient are widely used for quality assessment of
classification results (Li et al., 2012; Pushparaj et al., 2017). In this study, these observation methods and
their equations are presented below:

C
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where (n) is a total number of pixels, (n;;) equal to the classified pixels total number, (n;) is instances
number, label (i) that has been classified in the label (j).

4.1. Landsat-8 OLI Multi-spectral image Classification

The first stage of image classification was performed by applying the supervised classifiers to classify
the multispectral image of Landsat OLI by SVM, ANN, PP, Mah and SAM methods of Baghdad city and
then produce the LU/LC thematic maps. The results of these classifiers were five thematic maps. The
image processing steps were performed using the Envi 5.3 environment. The confusion matrix method
was adopted to validate the classification results (Li et al., 2010; Li et al., 2018; Azarang and Kehtarnava,
2020). The validation of all classifications indicates that the SVM has the highest accuracy compared to
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all other adopted methods with overall accuracy (93.25) and kappa coefficient (0.92), and in both sides
the statistically and visually. Figure 7 shows the thematic map of LU/LC. Table 2 indicates the overall
accuracies and kappa coefficients of all classifies.

4.2. Fused Images Classifications
4.2.1. IHS Sharpening Fused Image

The IHS pan-sharpening imagery generates from integrating the MS imagery that has low-spatial-
resolution and PAN imagery that has a high-spatial-resolution to refine and enhance the LU/LC mapping
of Baghdad city, and also to obtain the highest accuracy procedure of estimating the LU/LC. The pan-
sharpening fused image classified by employed methods of; Mah, ANN, SVM, SAM, and PP. The
confusion matrix was applied in order to perform results evaluation of the five output results. A statistical
comparison was made between the results of all above classifiers to get an accurate result. Statistically,
the SVM method illustrates the highest overall accuracy about (98.56%) and kappa coefficient about
(0.96) for IHS fused images as shown in Table 3. Figure 8 shows the results of LU/LC classifications of
the five classifiers on HIS fused image.

4.2.2. Brovey sharpening Fused Image Classification

Another fusion method is called the Brovey sharpening approach was adopted for this study to improve
and enhance the estimating and mapping of LU/LC. Several types of classification algorithms were
applied on the fused image by the Brovey sharpening approach; SVM, ANN, PP, Mah and SAM methods to
map LU/LC. The confusion matrix function once again was adopted to assess the result of the five
classifiers. Statistically, the SVM shows the highest OA about (98.7%) with a kappa coefficient of (0.97).
Then, the obtained results were compared the classification results between the only Landsat MS image
and the image fused by Brovey pan-sharpening method in order to assess the role of involving PAN data
for LU/LC mapping and to examine if the image fusion will improve and enhance the accuracy results of
LU/LC classification. Figure 9 and Table 4 reveal the LU/LC map produced by integrating PAN and MS
data and classified with using several types of supervised pixel base classifiers.

4.2.3. Gram-Schmidt Sharpening Fused Image Classification

The third spectral pan-sharpening method applied for this research was the GS sharpening algorithm.
The fused image was classified by applying also the same classification approaches for previous steps:
(SVM, SAM, Mah, PP and ANN) in order to estimate the LU/LC of Baghdad city. All the results of the fused
image classifications were evaluated using the confusion matrix technique. A statistical comparison was
performed to all the results of the five classifiers in order to determine which methodology has the most
accurate result. The comparison shows that using the SVM approach to classify the fused image has the
highest OA about (99.85%) with a kappa coefficient of (0.98). Figures 10 and Table 5 are illustrated the
integrating of the PAN and MS images. The GS spectral pan-sharpening method with the SVM
classification method reveals high improvement for image classification to generate the LU/LC maps.
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5. Discussion

Figures 11 and 12 are representing the results of all the applied classification methods; ANN, SVM, Mah,
PP and SAM in this research regarding to the level of overall accuracy and kappa coefficient that applied
on the MS and the three fused pan-sharpening image by each of (IHS, Brovey and GS) sharpening
algorithms. The comparison was made for this research regarding to the twenty created LU/LC thematic
maps and the results of all the overall accuracies and kappa coefficients of all the classifiers approaches
from the MS and the three image fusion levels. One of the most difficulties tasks that facing this research
for images fusion was the images has different spatial resolutions. The MS image has a low-spatial
resolution of about 30 m and for PAN image has a high-spatial resolution of about 15 m, and the image
fusion provides superior spatial details and information (Xing et al., 2018). Different researches deal with
imagery fusion between PAN and MS images, it conducts from combining the PAN image that has
features with high-frequency with the spectral information of MS image that has features with low-
frequency (Azarang and Kehtarnava, 2020). Replacing the MS image high-frequency features with the
PAN image high-frequency features, will enhance the spatial resolution with loss of some spectral
information (Azarang and Kehtarnava, 2020). Therefore, for this research as indicated previously in
Figure 1. Image resampling was made by using a bilinear approach and the resampling process was
performed with Envi software. So, by resampling the spatial resolution of MS image from using image
fusion with PAN image, it can be obtained a good results and also enhance the LU/LC estimation map.

Figure 12 indicates that the all-accurate assessment values were obtained for all the adopted approaches
form each classified image of the MS data and the three spectral pan-sharpening fused images. The
SVM method was provided the best performance when applied on data of MS Landsat and PAN when
they integrating together using the GS pan-sharpening technique. The classification outputs reveal that
the accuracy obtained from adopting the SVM approach provides the highest results, the overall accuracy
of about (99.85%) with a kappa coefficient of about (0.98) from image classification. However, the SAM
classification of the fused image using IHS spectral pan-sharpening method shows the lowest accuracy
overall images classifications by representing an overall accuracy of (53.41%) with the kappa coefficient
about (0.48). The research aims to investigate and find out the possibility of using the PAN data to
improve the estimation accuracy of the LU/LC thematic map. Therefore, based on all the results of this
study, it is found that the optimal methodology to obtain the highest results for generating the LU/LC
thematic map for Baghdad city is by performing image integration of MS and PAN data using GS spectral
pan-sharpening method and classify with the SVM method. Figure 13 illustrates the LU/LC estimated
map of Baghdad city, this thematic map has five different classes (urbanization area, vegetation area,
water bodies, soil area and roads).

6. Conclusion

This study investigates and analyzes the use of Landsat-8 OLI both of MS and PAN datasets in order to
find the best and an accurate method for LU/LC estimating in the area of Baghdad city, Iraq by
performing a statistical comparison between many classification approaches (SVM, SAM, Mah, PP and
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ANN) were applied on MS images and other three pan-sharpening fused images by IHS, Brovey and GS
methods. The refined producer was proposed for LU/LC mapping regarding to the obtained results. The
results validation was conducted by applying the confusion matrix. The obtained overall accuracy and
kappa coefficient from applying the SVM classifier on the fused imagery by the GS spectral sharpening
algorithm shows the highest accurate result over all other classifiers and the use of IHS and Brovey
spectral sharpening fusion methods. The SVM approach achieves the highest results among all
classification methods with different levels of image classifications; (1) with MS image, it is provided OA
about 93.25% and kappa coefficient 0.92; (2) with classification of integrating IHS pan-sharpening
spectral with MS image, SVM provides OA of 98.56% and kappa coefficient about 0.96; (3) with
classification of integrating Brovey sharpening spectral, it provides OA about 98.7% with a kappa
coefficient of 0.97, and (4) with Gram-Schmidt Sharpening, SVM achieves OA about 99.85% with a kappa
coefficient of 0.98. However, the SAM algorithm has the lowest accuracy compared to all other adopted
methods, with OA 53.41% and the kappa coefficient about 0.48. Therefore, the outcome results confirm
that the image fusion using the GS spectral algorithm and SVM classifier was determined as the best
technique to estimate the thematic map of LU/LC for this study. In future work, object-based approaches
and methods should be examined and compared to the results of classification methods of pixel base. In
addition, it should be trying to use satellite imagery has high spatial and spectral resolution; such as
QuickBird, worldview-3, SPOT series, and IKONOS satellite systems.
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Tables

Table 1. describes the specifications of Landsat bands.

Spatial

Bands spectral range (um) resolution (m)
Channel 1 00.44-0.45
Channel 2 00.45-0.51
Channel 3 00.53-0.59
Channel 4 00.64-0.67 30
Channel 5 00.85-0.88
Channel 6 01.57-1.65
Channel 7 02.11-2.29
Channel 8 00.50-0.68 15
Channel 9 01.36-1.38 30
Channel 10 10.60-11.19 100
Channel 11 11.50-12.51 100

Table 2. The overall accuracies and kappa coefficients of all classifiers.

Type of Data Classifiers Overall accuracy (%) Kappa coefficient
Multispectral Datasets ANN 71.23 0.69

SVM 93.25 0.92

PP 76.62 0.70

SAM 65.88 0.60

Mah 88.15 0.85

Table 3. Overall accuracies and kappa coefficients of all classification methods.
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Type of Data

IHS sharpening fused Image

Classifiers
ANN

SVM

PP

SAM

Mah

Overall accuracy (%)
87.23
98.56
81.95
53.41
96.52

Kappa coefficient
0.86
0.96
0.74
0.48
0.95

Table 4. the overall accuracies and kappa coefficients of all five classifications.

Type of Data Classifiers  Overall accuracy (%) Kappa coefficient
Brovey sharpening fused Image ANN 85.23 0.84
SVM 98.70 0.97
PP 83.22 0.76
SAM 86.28 0.81
Mah 96.99 0.96
Table 5. the overall accuracies and kappa coefficients of all classifies.
Type of Data Classifiers Overall accuracy (%) Kappa coefficient
ANN 95.91 0.93
GS sharpening fused Image SVM 99.85 0.98
PP 96.94 0.90
SAM 91.39 0.72
Mah 98.32 0.95

Figures
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Figure 1

Flowchart of adopted method.
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Figure 2

Location of the study area, Baghdad city, IRAQ. Note: The designations employed and the presentation of
the material on this map do not imply the expression of any opinion whatsoever on the part of Research
Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning
the delimitation of its frontiers or boundaries. This map has been provided by the authors.
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Figure 3

The collected ground truth dataset. Note: The designations employed and the presentation of the material
on this map do not imply the expression of any opinion whatsoever on the part of Research Square
concerning the legal status of any country, territory, city or area or of its authorities, or concerning the
delimitation of its frontiers or boundaries. This map has been provided by the authors.
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Figure 4

(A) The Multi-spectral geometric corrected imagery, (B) The Panchromatic geometric corrected imagery.
Note: The designations employed and the presentation of the material on this map do not imply the
expression of any opinion whatsoever on the part of Research Square concerning the legal status of any
country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or
boundaries. This map has been provided by the authors.
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Figure 5
IHS pan-sharpening imagery steps.
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Figure 6

Fusion algorithms: (A) IHS sharpening, (B) The Brovey Sharpening, (C) The GS spectral sharpening. Note:
The designations employed and the presentation of the material on this map do not imply the expression
of any opinion whatsoever on the part of Research Square concerning the legal status of any country,

territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This

map has been provided by the authors.
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Figure 7

Fusion algorithms: (A) IHS sharpening, (B) The Brovey Sharpening, (C) The GS spectral sharpening. Note:
The designations employed and the presentation of the material on this map do not imply the expression
of any opinion whatsoever on the part of Research Square concerning the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This
map has been provided by the authors.
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Figure 8

LU/LC maps produced using different classifiers on IHS sharpening fused Image. (A) SVM,(B) ANN. (C)
PP (D) SAM (E) Mah. Note: The designations employed and the presentation of the material on this map
do not imply the expression of any opinion whatsoever on the part of Research Square concerning the
legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its
frontiers or boundaries. This map has been provided by the authors.
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Figure 9

LU/LC maps produced applies several classifiers on Brovey sharpening fused image, (A) SVM,(B) ANN.
(C) PP (D) SAM (E) Mah. Note: The designations employed and the presentation of the material on this
map do not imply the expression of any opinion whatsoever on the part of Research Square concerning
the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of
its frontiers or boundaries. This map has been provided by the authors.
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Figure 10

LU/LC maps create using five classifiers onto GS spectral sharpening fused data by, (A) SVM (B) ANN (C)
PP (D) SAM (E) Mah. Note: The designations employed and the presentation of the material on this map
do not imply the expression of any opinion whatsoever on the part of Research Square concerning the
legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its
frontiers or boundaries. This map has been provided by the authors.
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The classification accuracies assessment of MS and fused data.
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Kappa coefficients of MS and fused data.
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Figure 13

Optimal LU/LC classification achieved by SVM method and GS sharpening fused image. Note: The
designations employed and the presentation of the material on this map do not imply the expression of
any opinion whatsoever on the part of Research Square concerning the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This
map has been provided by the authors.
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