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Abstract: Solar energy offers several environmental, economic, and energy security advantages. Parasitic parameters 

and shading on solar panels can reduce efficiency. This paper presents a bio-inspired Enhanced Slime Mold (ESM) 

algorithm search strategy to find the optimal power point by simulating the behaviour of slime molds in a virtual 

environment. In a solar panel, proposed ESM provides not only for parameter extraction but also serves as Maximum 

Power Point Tracking (MPPT) during Partial Shading Conditions (PSC). Proposed ESM dynamic behaviour is 

examined under solar irradiation and various temperature conditions. The effectiveness of proposed technique has 

been validated by extracting parameters from conventional polycrystalline and monocrystalline modules in the form 

of a 5S-5P arrangement. In the instance of MPPT operation, the proposed ESM algorithm is compared with Ant Bee 

Colony and Perturb& Observe (ABC-PO) to determine its efficacy. Moreover, during extraction of unknown 

parameters of solar cell ESM is compared with existing optimization algorithms such as Artificial Bee Swarm 

Optimization (ABC SO), Genetic Algorithm (GA), Covariant Matrix (CM), Ant Bee Colony (ABC), and Advanced 

Particle Swarm Optimization (APSO). In this connection, proposed ESM algorithm is superior to above-mentioned 

algorithms due to high accuracy, a smaller number of computations, and minimum computational time. 

 

Keywords: Maximum Power Point Tracking (MPPT), Triple Diode Model (TDM), Objective function, Penalty factor, 

Artificial Bee Swarm Optimization (ABSO) 

 

1. Introduction 

Solar energy is rapidly gaining popularity worldwide as an affordable, clean, and renewable source of energy. The 

International Energy Agency (IEA) has projected that solar energy will become the largest source of electricity in the 

world by 2050, accounting for almost one-third of global electricity production [1]. As of 2021, the installed solar 

energy capacity worldwide is over 770 GW, with an additional 170 GW expected to be added in 2022 alone [2]. The 

global solar energy market has been driven by declining solar panel costs, supportive government policies, and the 

need to address climate change. In recent years, countries like China, the United States, and India have emerged as 

major solar energy producers. According to a report by the Solar Energy Industries Association (SEIA), the United 

States added 15.9 GW of solar energy capacity in 2020, while China added 48.2 GW. while India stands 4th globally 

in Renewable Energy Installed Capacity, 4th in Wind Power capacity & 4th in Solar Power capacity (as per REN21 

Renewables 2022 Global Status Report) [3],[4].  

Direct current is produced by a solar cell when it is exposed to sunlight. Photovoltaic (PV) modules low conversion 

efficiency can be attributed to the nonlinear characteristics of solar cells. So, it is essential to utilize all the energy 

generated by the PV cells. Also, the maximum power produced by a PV module varies based on elements including 

temperature, irradiance level, dirt, and the installation requirements, such as the local geography and climate [5]. It is 

vital to research issues related to precise weather forecasting because solar energy happens naturally and without 

expense to humanity. Both grid-connected and off-grid generators can use PV systems. These units provide electricity 

to places that lack access to or have subpar grid power. It has been discovered that the solar cell's Power-Voltage (P-

V) characteristics change depending on the atmosphere in the area (i.e., solar insolation and temperature). At that time, 

the cell's output is at its maximum [6]. 



 
 

Fig. 1 Standard PV system for utility grid. 

 

Based on considering how quickly they can monitor maximum output under partial shading circumstances, the 

amount it will cost to implement, how difficult it is, and other factors. The three main types of these meta-heuristic 

MPPT algorithms are differential evaluation, swarm intelligence (SI), and bio-inspired (BI) (DE). SI contains the 

following algorithms: slap swarm algorithm (SSA), emperor penguin optimization (EPO), cat swarm optimization 

(CSO), whale optimization (WOA), Gray Wolf Optimisation (GWO), artificial bee colony (ABC), particle swarm 

optimisation (PSO), and Jaya algorithm (JA). Cuckoo search (CSA), moth flame optimisation (MFO), bat search 

algorithm (BA), grasshopper optimisation (GOA), and the firefly method (FFA) are examples of approaches used in 

business intelligence (BI). Genetic algorithms and differential evolution (DE) are both being studied in relation to EC 

approaches (GA) [7]-[9]. In [10] proposed fuzzy adaptive differential evolution algorithm for identification of PV 

module parameters. While improving convergence parameter adjustment strategy is constructed to improve the local 

search capability of PV module.  

The unknown parameters extraction is essential for obtaining better performance of PV panels. Coyote 

Optimization is helpful to extract unknown parameters and estimated parameters in an accurate manner [11]. Various 

solar panels such as single-diode, double-diode, and triple-diode models have eliminated parameters. The extraction 

is based on P-V and I-V characteristic data. Sairaj et al., [12] proposed a Tabu search optimization for eliminating the 

parasitic or unknown parameters from PV modules such as polycrystalline, monocrystalline, and thin film. The 

Enhanced Slime Mold (ESM) optimization algorithm addresses solar panel modelling and tracking behaviour. The 

conventional grid integrated PV system is shown in Figure 1. This paper mainly contributes the performance of PV 

panel under various insolation levels and temperature regions. Structure-wise, this article goes as follows: Partial 

shading and changes in the I-V and P-V curves of a solar cell were explored together with their corresponding circuit 

models in Section 2. In section 3, the implementation of the suggested SM MPPT algorithm as well as its results are 

compared with that of ABC-PSO. The simulation results of proposed ESM algorithm are presented in Section 4. 

Finally, the conclusion is provided in section 5. 

 

2. Modelling of solar cell 

2.1. Single diode model 

The photo generated current is parallelized using the current source from the Single Diode Model (SDM) solar cell, 

and the diode acts as the half-wave rectifier. The model is easy to implement, but required information is not available 

from SDM [13].  Figure 2 depicts the design of SDM PV cell. In SDM involves photo generated current (IPh), while 

shunt resistance (RSh) represents the PN junction leakage current and is in parallel with diode, diode current (ID), series 

resistance (RS) reflects about the resistance of surface of electrode, V0 is obtained in the form of output voltage. 

Therefore, from Figure 2, according to Kirchhoff’s current law, the output current (I0) is represented as  

 

0 ph d shI I I I= − −       (1) 



 

Fig. 2 Equivalent circuit for SDM solar cell. 

The diode current (ID) equation is based on Shockley equation computed as 
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Where Irs is the reverse saturation current, n is the ideality factor, k is the Boltzmann’s constant i.e., 1.380× 10-23 

J/K, q denotes the charge of an electron (1.602×10-19 C) and T denotes the cell absolute temperature. The shunt 

resistance current (ISh) is calculated as  
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By substituting Eq. (2) and Eq. (3) into Eq. (1), the solar cell output current is represented as 

 

0

( )
exp 1S S

ph rs

Sh

q V I R V I R
I I I

n k T R

 +  +  = − − −                                     

(4) 

 

2.2. Double diode model 

The Double Diode Model (DDM) consists of seven unknown parameters, i.e., Photocurrent (II
Ph), diffusion current 

(Irs1), reverse saturation current (Irs2), penalty factors (n1 and n2), Rs and RSh. Figure 3 depicts the equivalent circuit of 

DDM solar cell [14]. The output current equation is calculated using Eq. (5).  
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Fig. 3 Equivalent circuit for DDM solar cell. 

 

 



2.3. Three diode model 

Including the effects of leakage currents and grain boundaries in PV models using the TDM is suggested for 

enhancing overall accuracy [15]. The configuration of TDM is same as DDM except for the third shunted diode. The 

schematic of TDM is depicted in Figure 4.  

 
Fig.4 Equivalent circuit for TDM solar cell. 
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The parameter extraction issue is solved by employing the objective function (JI), and the halting criteria is readily 

met as a result. The root-mean-square Error (RMSE) is used to help define the objective function. RMSE defines JI, 

which in turn is applied to proposed SM Technique. Therefore, the extraction of data is identified in a quick manner. 

RMSE is formulated as 
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Where, F (VE, IE, λ) is the error function, VE, IE is the experimental values of voltage and current. The difference 

between experimental and estimated values is calculated. NI denotes the data set of parasitic parameters, and λ denotes 

the undetermined vector parasitic parameters. such as for SDM λ is (IPh, Id, n, Rs, and Rsh), for DDM the λ is (IPh, Irs1, 

Irs2, n1, n2, Rs, and Rsh) and in TDM the parasitic parameters are (IPh, Isd1, Isd2, Isd3, n1, n2, n3, Rs, and Rsh). The convergence 

pattern of SDM, DDM, and TDM are shown in Figure 5 for 500 iterations. 

 



 
(a) 

 
(b) 

 

Fig.5 RMSE convergence trends for solar cells and PV modules under consideration using the proposed ESM 

method -based models: (a) Monocrystalline (STP250S), (b) Polycrystalline (SPR-P5-220UPP). 

 

The parameters of a solar panel depend on several factors, including the type of solar cell technology used, the 

size of the panel, and the operating conditions. The common parameters of solar panels are Maximum Power (Pmax), 

Voltage at maximum Power (VMP), Open Circuit Voltage (VOC), Short Circuit Current (ISC), Cell Efficiency (%), and 

Operating temperature. The electrical parameters of monocrystalline and polycrystalline solar panels are represented 

in Table 1. 

Table 1 Electrical parameters of solar cell 

Parameters Monocrystalline 

(STP250S) 

Polycrystalline 

(SPR-P5-220UPP) 

Maximum Output Power (Pmax) 250W 250W 

Voltage at Maximum Power 

(VMP) 

29.63V 

 

27.97V 

Current at maximum Power (IMP) 7.18A 9.26A 

Open Circuit Voltage (VOC) 32.01V 29.7V 

Short Circuit Current (ISC) 8.07A 8.12A 

Cell Efficiency (%) 22.89 16-18% 

Operating Temperature -40°C to +85°C -40°C to +85°C 

 

2.4. Effect of environmental factors on solar cell 

2.4.1. Effect of temperature variations 

There is a direct relationship between temperature and solar cell efficiency. Figures 6(a) and 7(a) depict P-V and I-V 

curves of monocrystalline and polycrystalline solar cells. These solar cells said characteristics are analyzed under 

450C,250C and 100C and it clearly shows that when the temperature on solar cells increases the open circuit voltage 

falls in both monocrystalline and polycrystalline but there is drastic change in polycrystalline solar cell P-V & I-V 

curves [16]. 

 



  
(a) 

 

 
(b) 

 

Fig.6 P-V and I-V characteristics of (a) Monocrystalline (b) Polycrystalline solar cell.  

 

 

2.4.2. Effect of insolation variations 

Here we have analyzed P-V & I-V characteristics with 1000,750 and 500 insolation levels. Figures 6(b) and 7(b) 

are clearly showing that when the insolation level rises the short circuit current will increase correspondingly. and if 

the level of insolation is fallen the maximum power point will be decreasing in both monocrystalline and 

polycrystalline cells. and it is evidenced that polycrystalline solar cell’s short circuit and maximum power point is 
drastically changing compared to monocrystalline solar cells under similar insolation variations [17]. 

 

2.5. Partial shading conditions 

Partial-Shadow State to put it simply, partial shadowing is a common problem for photovoltaic systems. Any 

obstruction that partially blocks the sun's rays from reaching surfaces (like a PV panel) produces an image known as 

a shadow on that surface (PSC). Therefore, constant uniform irradiance is impossible due to weather variations such 

as clouds, rain, storms, etc. Not only can trees and buildings cast shadows, but they cast several kinds of shadows. 

Therefore, due to this effect, a series-connected solar array cannot receive the same amount of incident irradiance [18]. 

The output power generation of the Photovoltaic modules drops because of shade on the PV array. Figure 8(a) and 

8(b) clearly shows that Various local peaks (LMPPs) on the P-V curve can be attributed to the Photovoltaic module's 

nonlinear output I-V characteristics. As a result, hotspots result from shadowing, severely damaging these cells.  

Major disadvantages of shading include current imbalance within a Photovoltaic string & voltage imbalance 

between parallel modules. Variables such as PV string configuration, module type, bypass diode location, different 

shading patterns, and shading intensity all contribute to the overall magnitude of the effect of shade [19]. When another 

partially covers one cell, the current through that cell is reduced relative to the other cells in the string. To compensate, 

more electricity will flow through the exposed cells. This causes the cell to behave as a reverse diode.  



As a result, the darkened cell restricts the amount of electricity that may travel along the string. Therefore, the PV 

string's output power decreases. It is important to note that the drop in output power produced by the PV string is more 

noticeable as the number of partial shadings rises. As the percentage of shaded modules rises, the P-V curve becomes 

more complex, with the number of peaks. The shading effect can be reduced by adding a bypass diode across a series-

connected string of specific cells. 

 

  
(a) (b) 

 

Fig.7 P-V and I-V characteristics of (a) Monocrystalline (b) Polycrystalline solar cell. 

 

  
(a) (b) 

 

Fig.8 Monocrystalline and polycrystalline solar panel (a) I-V Curve, (b) P-V Curve. 

 

3. Proposed Enhanced Slime Mold algorithm 

In recent years, a novel technique has emerged that utilizes the behavior of slime molds to optimize the power 

output of solar panels. ESM inspired by the behavior of slime molds, which exhibit a unique ability to find the shortest 

path between two points. Researchers studying the behavior of SM, they were able to create an algorithm that could 

solve optimization problems in a similar manner.  



 

 
 

Fig. 9 Proposed ESM used in PV array. 

 

Proposed ESM technique takes inspiration from the way SM seeks out food sources. SM grows in a pattern of 

branching tubes, and when it encounters a food source, it reorganizes its tubes to create the most efficient network for 

transporting nutrients. In case of MPPT technique, the solar panel is represented as a food source, and the MPPT 

algorithm mimics the behavior of SM to find the optimal path to the maximum power point. The algorithm creates a 

network of tubes that represent the different voltage levels of the solar panel, and the SM-like process determines the 

most efficient path to the maximum power point by finding the path with the least resistance [20]. The advantage of 

ESM technique is that it can handle non-linear and non-convex power-voltage curves, which are often found in real-

world solar panels. Additionally, this technique is computationally efficient and can converge to the maximum power 

point quickly. ESM MPPT technique is a promising optimization technique for solar power systems as represented in 

Figure 9.  

 

3.1. The Quest for Food 

The following mathematical formulation can be used to describe and explain the slime mould convergence pattern. 
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where XI(t) is current position of SM, vb and vc are random numbers between [a, -a] & [-1,1], XI
A(t) and XI

B(t) are 

two random individuals, XI
b (t) is the optimal adaptation, t is current number of iterations, w is weight of coefficient, 

and p represents as 

tanh ( )p S i DF= −       (12) 

 

Where i is in the range [1, n], SI(i) is the adaption value of the lower i Mucor individuals, and DF is the population 

member with the best adaptation. 
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where Pr represents the first half of the individual rank, Ot represents the leftover individuals, r is a random number 

among [0,1], wF represents the worst fitness value, bF represents the best fitness value for the latest number of 

iterations, and SI (i) represents the fitness sequence, which denotes the increasing series. 

 

3.2. Food Wrapping 

An example of the formula used to monitor the movement of every slime mould is as follows: 

( ) ,

( 1) ( ( ) ( )),

( ),

I I I I

b A B

I

rand uB LB LB rand z

X t X vb W X t X t r p

vc X t r p

 − + 
+ =    − 
  

    (16) 

where z is the restricted value (0.03), rand is a random number among [0, 1], and UB and LB are the higher and 

lower bounds of the current iteration count, respectively. 

 

3.3. Obtaining Food 

The amount of vc fluctuates between [-1, 1], and the value of vb is randomly picked between [-a, a], finally convergent 

to 0. The following is the formula: 

[ , ]vc b b= −        (17) 

1
b

b
T

= −        (18) 

After first extracting the parasitic parameters from SDM, DDM, and TDM solar panels, the proposed ESM 

optimisation algorithm then performs MPPT by continually changing the operating point of the solar panel to maintain 

it at the MPP under PSC conditions. The process flow of proposed ESM is depicted in Figure 10. 

 

 

3.1. Modified SEPIC converter  

Most of the research in residential applications is concentrated on module-integrated converters, which transport 

energy produced by one Photovoltaic module to the grid via a dedicated converter incorporated with the PV module. 

The modularity of this PV production system allows for easy expansion of installed power, individual MPPT, and 

mitigation of partial shadowing and panel imbalance effects, all of which improve energy collecting capability. Yet, 

there are significant design issues in an ac module construction, such as increasing efficiency, lowering costs, and 

ensuring dependable functioning over the module's lifetime. Because of the low input voltage, high input current, high 

output voltage, and static gain of the dc-dc converter, high efficiency operating is a difficulty [21]. The static gain of 

the proposed converter is higher than the obtained with the classical boost is represented as  
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Fig.10 Flow chart of Proposed SM optimization algorithm. 

The maximum switch voltage is equal to the VCM voltage. Therefore, the switch voltage will be lower than the 

converter output voltage is obtained as  

1
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The voltage across the Cs capacitor is calculated by (3) 
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However, the static gain, as well as the CM & CS capacitor voltages operated in DCM, are shown in (22), (23), & 

(24), respectively. 
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Commercial monocrystalline and polycrystalline PV typically have a maximum output power (PMPP) of less than 

350W. Maximum power point voltage (VMPP) ranges from 15 to 40V. PMPP = 100 W with VMPP = 15 V, PMPP = 200 W 

with VMPP = 30 V, and PMPP = 300 W with VMPP = 40 V are common specifications based on the number of photovoltaic 

cells. The specification PMPP = 210 W with VMPP = 40 V was used in this investigation, but raising the PV module 

power increases the voltage at the maximum power point. Under this circumstance, the dc-dc converter input current 

and conduction losses remain nearly constant.  In this study, we have been using a Modified SEPIC converter for the 

implementation of ESM strategy . The typical option is to employ separate dc-dc converters whenever a large step-up 

ratio is required for the execution of the first power stage. We can raise the converter static gain by adjusting the 

transformer turns ratio.  

The isolated approach, however, has certain drawbacks, including efficiency degradation brought on by power 

transformer losses & inherent variables such leakage inductance. The weight and volume of the converter are 

significantly influenced by the power transformer as well. Because of the high cost of power output, such as solar 

modules or fuel cells, power converters utilised with renewable energy sources must be very efficient. The converter 

power density is an important design consideration for embedded systems as well as portable devices. As a result, 

solutions that allow the power transformer to be removed can improve the system's efficiency and power density. The 

classical non-isolated dc dc-dc converters, on the other hand, have a finite step-up static gain (q = Vo /Vi). The boost 

converter, a classic non-isolated step-up dc-dc converter, normally performs with adequate both static and dynamic 

performances at a duty cycle close to D = 0.8, providing an output voltage four times the input voltage. A static gain 

of q = 4 is a limited value for the applications studied in this research. 

 

 

 

4. Results and Discussions 

The performance of the proposed ESM optimization algorithm is validated through approximation of model 

parameters of two PV cells which are Monocrystalline (DS-500M6-96), and Polycrystalline (SPR-P5-500-UPP) under 

various irradiance and temperature. Residual error is evaluated to attain accuracy in PV panel. The suggested ESM 

optimisation algorithm is controlled by the following parameters: maximum number of iterations, 500 iterations, and 

500 slime moulds. The suggested ESM model is run on a MATLAB 2021a platform with an Intel(R) Core (TM) i5-

8350U CPU at 1.70GHz and 16GB RAM. Figure 8 depicts RMSE convergence curves with respect to computational 

time. ABSO is the method that requires the most computing time due to its most intricate organisational structure. In 

contrast, the computational time required by other algorithms such as GA, CM, ABC, and APSO progressively 

decreases. The iteration time required by the proposed ESM method to calculate the parameters is the smallest possible 

amount as seen in Figure 11. 

 



 
 

Fig.11 Convergence behaviour of proposed ESM algorithm. 

 

 

 

Fig.12.  Feasible and Non-feasible data extraction. 

The fitness factor decides the effectiveness of extraction process, so the much amount of feasibility is present in 

proposed ESM technique. The term feasibility means the parameters are easily managed towards the computation 

process without any complexity. Therefore, the convenient extraction process is obtained using proper computations. 

The non feasible parameters are filtered out initially during the data extraction process. Figure 12, depicts the feasible 

parameters are in green colour and non-feasible parameters are represented in red colour. 

 

4.1. ESM for Parasitic parameter extraction 

To know about the flexibility and accuracy of proposed ESM technique is represented in the form of union 

parameter. The convergence time is determined by the type of iterations executed for existing and proposed ESM 

technique. The time consumption for ABSO algorithm is more than proposed ESM technique, which represents the 

proposed algorithm has fast convergence operation as compared to other existing algorithms for optimum number of 

iterations. According to Table 2, the suggested ESM technique has the fewest iterations and takes the least amount of 

time for a 220W Polycrystalline SDM solar module (SPR-P5-250UPP), which is 314 seconds.  



Because of the large number of iterations, the ABSO method takes 489 seconds to compute. Simulated data is used 

as a comparison for other existing techniques throughout the first execution process. The derived ABSO parameters 

are (0.774A, 0.64785A, 0.072479, 82.572, and 1.51), whereas the proposed ESM method values are (0.759A, 

0.43197A, 0.048632, 84.235, and 1.44). As a result, when compared to other current algorithms, the suggested ESM 

technique has the best optimum performance levels. In the same way, Table 3 describes that simulated comparison of 

data for 220W Monocrystalline (STP250S) SDM PV module. The information retrieved from ABSO technique for 

the parameters IPh, Irs, RS, RSh, and n1 are 0.574A, 0.34791μA, 0.062519Ω, 92.143Ω, 1.51. The extracted parameter 

data obtained from proposed ESM algorithm are IPh (0.519A), Irs (0.33117μA), RS (0.049272Ω), RSh (74.548Ω), 
and a1 (295 sec) Observation shows that the pre-existing predicted values has substantially identical numerical values 

to the suggested ESM technique when compared to ABSO, GA, CM, ABC, & APSO. 

 

Table 2 Estimated model parameters for SDM of (SPR-P5-250UPP) polycrystalline solar cell. 

Algorithm IPh (A) Irs (μA) RS (Ω) Rsh(Ω) a1 Time (S) 

ABSO [22] 0.774 0.64785 0.072479 82.572 1.51 489 

GA [23] 0.770 0.59752 0.069624 76.329 1.48 446 

CM [24] 0.768 0.53183 0.065379 78.914 1.47 398 

ABC [25] 0.768 0.49529 0.058542 66.482 1.46 383 

APSO [26] 0.760 0.47494 0.053632 92.752 1.45 367 

       Proposed ESM 0.759 0.43197 0.048632 84.235 1.44 314 

 

Table 3 Estimated model parameters for SDM of (STP250S) Monocrystalline solar cell. 

Algorithm IPh Irs (μA) RS (Ω) Rsh(Ω) a1 Time (S) 

ABSO 0.574 0.34791 0.062519 92.143 1.51 452 

GA 0.560 0.39753 0.059321 106.467 1.38 441 

CM 0.558 0.38104 0.055874 68.652 1.37 381 

ABC 0.542 0.37509 0.054327 76.124 1.36 373 

APSO 0.530 0.36414 0.051432 82.542 1.55 342 

Proposed ESM 0.519 0.33117 0.049272 74.548 1.34 295 

 

The characteristics of 220W polycrystalline DDM solar panel are represented in Table 4. In ABSO algorithm and 

ESM algorithm the extracted parameters IPh, Irs1, Irs2, RS, RSh, a1, and a2 are (0.764A, 0.44785μA, 0.5495μA, 0.0579Ω, 
84.572Ω, 1.34, and 1.59), and (0.76A, 0.33197 μA, 0.5372μA, 0.0521Ω, 64.235Ω,1.38, and 1.62). According to the 

table, the suggested ESM technique has the shortest computation time, 324 seconds, when compared to other existing 

approaches such as ABSO (429 seconds), GA (416 seconds), CM (388 seconds), ABC (363 seconds), and APSO (357 

sec). In ABSO technique huge computational time i.e., 412 sec is shown in Table 5. The remaining techniques are GA 

(404 seconds), CM (398 seconds), ABC (373 seconds), and APSO (373 seconds) (347 sec). As a result, it is important 

to keep in mind that the suggested ESM method has the shortest computational time, 317 seconds. ABSO method 

yielded the parasitic parameters (0.621A, 0.4587A, 0.4239A, 0.0287, 64.572, 1.24, and 1.49). The APSO approach is 

tied for second place. for eliminating extracted parameters and obtained numerical values are (0.592A, 0.34947μA, 
0.4009μA, 0.0295Ω, 69.637Ω,1.24, and 1.32). Finally, the proposed ESM technique has preferable both in terms of 

effectiveness and parasitic quantitative data are 0.586A (IPh), 0.31196μA (Irs1), 0.3974μA (Irs2), 0.0277Ω (RS), 61.715Ω 

(RSh), 1.21, and 1.32. Table 6 shows the retrieved parameters of a 220W TDM PV module. According to the table, the 

ABSO algorithm has a large computing time of 402 seconds.  



The remaining strategies are GA (384 seconds), CM (368 seconds), ABC (343 seconds), & APSO (327 sec). As a 

result, it is noteworthy to note that the suggested ESM technique has the shortest computational time, which is 297 

seconds. From the ABSO method, the parasitic factors IPh, Irs1, Irs2, Irs3, RS, RSh, a1, a2, & a3 are (0.498A, 0.293A, 

0.247A, 0.239A, 0.0143, 74.198, 1.94, 1.99, and 1.99). The proposed ESM approach performs well, with parasitic 

numerical values of 0.422A (IPh), 0.227A (Irs1), 0.211A (Irs2), 0.154A (Irs3), 0.0099 (RS), 51.115 (RSh), 1.91(a1), 1.92 

(a2), and 1.91 (a3) (a3). In ABSO algorithm and ESM technique the extracted parameters IPh, Irs1, Irs2, Irs3, RS, RSh, a1, a2, 

and a3 (0.498A, 0.293μA, 0.247μA, 0.239μA, 0.0143Ω, 74.198Ω, 1.94, 1.99, 1.99), and (0.292A, 0.194μA, 0.175μA, 
0.112μA, 0.007Ω, 44.101Ω, 1.92, 1.94, and 1.95). According to Table 7, the suggested ESM technique has the shortest 

computation time, 277 seconds, when compared to those other existing techniques like ABSO (392 seconds), GA (374 

seconds), CM (358 seconds), ABC (328 seconds), and APSO (293 sec). 

 

Table 4 Estimated model parameters for DDM of (SPR-P5-250UPP) Polycrystalline solar cell. 

Algorithm IPh (A) Irs1 (μA) Irs2 (μA) RS (Ω) Rsh(Ω) a1 a2 Time (S) 

ABSO 0.764 0.44785 0.5495 0.0579 84.572 1.34 1.59 429 

GA 0.760 0.39752 0.5274 0.0524 96.329 1.31 1.68 416 

CM 0.765 0.38183 0.5579 0.0537 98.914 1.36 1.72 388 

ABC 0.763 0.39529 0.5816 0.0542 76.482 1.42 1.83 363 

APSO 0.761 0.37494 0.5464 0.0563 72.752 1.4 1.71 357 

Proposed ESM 0.76 0.33197 0.5372 0.0521 64.235 1.38 1.62 324 

 

Table 5 Estimated model parameters for DDM of (STP250S) polycrystalline solar cell. 

Algorithm IPh Irs1 (μA) Irs2 (μA) RS (Ω) Rsh(Ω) a1 a2 Time (S) 

ABSO 0.621 0.4587 0.4239 0.0287 64.572 1.24 1.49 412 

GA 0.653 0.3973 0.4274 0.0281 86.153 1.31 1.38 404 

CM 0.689 0.38274 0.4195 0.0275 76.176 1.26 1.42 398 

ABC 0.632 0.36529 0.4104 0.0289 72.753 1.32 1.33 373 

APSO 0.592 0.34947 0.4009 0.0295 69.637 1.24 1.32 347 

Proposed ESM 0.586 0.31196 0.3974 0.0277 61.715 1.21 1.32 317 

 

Table 6 Estimated model parameters for TDM of (SPR-P5-250UPP) Polycrystalline solar cell. 

Algorithm IPh Irs1 (μA) Irs2 (μA) Irs3(μA) RS (Ω) Rsh(Ω) a1 a2 a3 Time (S) 

ABSO 0.498 0.293 0.247 0.239 0.0143 74.198 1.94 1.99 1.99 402 

GA 0.487 0.275 0.239 0.224 0.0132 77.378 1.91 1.98 1.97 384 

CM 0.476 0.259 0.228 0.195 0.0121 66.276 1.96 1.92 1.94 368 

ABC 0.463 0.261 0.220 0.174 0.0111 62.653 1.92 1.93 1.98 343 

APSO 0.457 0.249 0.219 0.169 0.0101 59.697 1.94 1.92 1.95 327 

Proposed SM 0.422 0.227 0.211 0.154 0.0099 51.115 1.91 1.92 1.91 297 

 

 



Table 7 Estimated model parameters for TDM of (STP250S) Monocrystalline solar cell. 

Algorithm IPh Irs1 (μA) Irs2 (μA) Irs3(μA) RS (Ω) Rsh(Ω) a1 a2 a3 Time (S) 

ABSO 0.398 0.273 0.232 0.212 0.0128 94.218 1.95 1.99 1.99 392 

GA 0.377 0.255 0.213 0.202 0.0113 67.548 1.92 1.98 1.99 374 

CM 0.366 0.231 0.206 0.187 0.0102 58.226 1.94 1.96 1.97 358 

ABC 0.343 0.216 0.198 0.152 0.0094 47.123 1.93 1.94 1.96 328 

APSO 0.317 0.201 0.184 0.137 0.0082 45.547 1.95 1.96 1.97 293 

Proposed SM 0.292 0.194 0.175 0.112 0.0074 44.101 1.92 1.94 1.95 277 

 

 

4.2. ESM for MPPT tracking 

The simulation results for the Enhanced Slime Mold MPPT (ESM-MPPT) technique and the ABC-based PSO 

MPPT technique were compared for their performance under normal and partial shading conditions. The performance 

was measured in terms of the output power of the PV system. Under normal conditions, in monocrystalline solar arrays 

the ESM-MPPT technique produced an average output power of 5 kW, while the ABC-based PSO MPPT technique 

produced an average output power of 4.95 kW. Figure 13(a) shows that the ESM-MPPT technique was able to produce 

1% higher output power compared to the ABC-based PSO MPPT technique under normal conditions. In 

polycrystalline solar arrays, the ESM-MPPT technique produced an average output power of 4.95 kW, while the ABC-

based PSO MPPT technique produced an average output power of 4.9 kW. Figure 13 (c) shows that the ESM-MPPT 

technique was able to produce 5% higher output power compared to the ABC-based PSO MPPT technique under 

normal conditions. Under partial shading conditions, we have taken irradiance range from 1000 w/m2 to 100w/m2.  
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Fig. 13 Maximum Output power of (a) Monocrystalline under Normal STC, (b) Monocrystalline under PSC and (c) 

Polycrystalline under Normal STC, (d) Polycrystalline under PSC. 



 

 

Both in monocrystalline and polycrystalline solar arrays, the ESM-MPPT technique produced better output power 

compared to the ABC-based PSO MPPT technique. Figures 13(b) and 13(d) show that the ESM-MPPT technique was 

able to produce higher output power at each irradiance condition compared to the ABC-based PSO MPPT technique 

even under the least irradiance level that we have considered. To investigate the computational efficiency of proposed 

ESM technique has less amount of absolute error for Mono Crystalline, Poly Crystalline solar panels. The absolute 

error values for various existing algorithms such as ABSO, GA, CM, ABC, and APSO are shown in Fig. 14 (a)-(f). 

From figure, it is confirmed that proposed ESM technique has faster convergence, and lower RMSE content. 
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Fig.14 Comparison of RMSE behaviour for Proposed ESM and existing algorithms.   

 

 

 

 

 

 

 

 

 



5. Conclusion 

Eliminating unknown parameters is crucial for accurately maintaining the maximum power point of a solar panel. 

This paper suggests utilizing an Enhanced Slime Mold (ESM) optimization algorithm to tackle these challenges. It is 

essential to eliminate the unknown parameters in solar panel and maintains maximum power accurately. This paper 

presents the Enhanced Slime Mold (ESM) optimization algorithm to resolve the above-mentioned issues.  Model the 

solar panel and its parasitic parameters as an optimization problem, with the objective of maximizing the power output 

of the panel under partial shading conditions. Apply the SMO algorithm to the optimization problem, where the 

algorithm simulates the behavior of slime molds to search for the optimal solution. During the optimization process, 

the algorithm adjusts the parasitic parameters to reduce the impact of partial shading and maximize the power output 

of the panel. Once the optimization process is complete, the extracted parasitic parameters can be used to design more 

efficient solar panels that are less affected by partial shading. Overall, the ESM algorithm can efficiently search for 

optimal solutions in complex optimization problems, such as the extraction of parasitic parameters and reduction of 

partial shading effects in solar panels. To evaluate the performance of proposed ESM algorithm in determining model 

parameters for SPR-P5-250UPP polycrystalline modules, as well as STP250S monocrystalline modules. The results 

indicate that ESM algorithm can achieve optimal identification results with the least computational effort compared 

to other existing algorithms, such as ABSO, GA, CM, ABC, and APSO.  
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