[1] G. Lofrano, S. Meric, G.E. Zengin, D. Orhon, Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review, Sci. Total. Environ. 461-462 (2013) 265-281. https://doi.org/10.1016/j.scitotenv.2013.05.004
[2] Covington and D. Anthony, Modern tanning chemistry, Chem. Soc. Rev. 26 (1997) 111. https://pubs.rsc.org/en/content/articlehtml/1997/cs/cs9972600111
[3] S. Hokkanen, A. Bhatnagar, E. Repo, S. Lou, M. Sillanpää, Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution, Chem. Eng. J. 283 (2016) 445-452. https://doi.org/10.1016/j.cej.2015.07.035
[4] N. Meunier, P. Drogui, C. Montane, R. Hausler, G. Mercier, J.F. Blais, Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate, J. Hazard. Mater. 137 (2006) 581-590. https://doi.org/10.1016/j.jhazmat.2006.02.050
[5] Y. Yang, G. Wang, Q. Deng, D.H. Ng, H. Zhao, Microwave-assisted fabrication of nanoparticulate TiO(2) microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange, ACS Appl. Mater. Interfaces 6 (2014) 3008-3015. https://doi.org/10.1021/am405607h
[6] P. Religa, A. Kowalik, P. Gierycz, Application of nanofiltration for chromium concentration in the tannery wastewater, J. Hazard. Mater. 186 (2011) 288-292. https://doi.org/10.1016/j.jhazmat.2010.10.112
[7] D. Wang, G. Zhang, Z. Dai, L. Zhou, P. Bian, K. Zheng, Z. Wu, D. Cai, Sandwich-like nanosystem for simultaneous removal of Cr(VI) and Cd(II) from water and soil, ACS Appl. Mater. Inter. 10 (2018) 18316-18326. https://doi.org/10.1021/acsami.8b03379
[8] S. Elabbas, L. Mandi, F. Berrekhis, M.N. Pons, J.P. Leclerc, N. Ouazzani, Removal of Cr(III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: Eggshell and powdered marble, J. of Environ. Manage. 166 (2016) 589-595. https://doi.org/10.1016/j.jenvman.2015.11.012
[9] J. Liu, K. Huang, K. Xie, Y. Yang, H. Liu, An ecological new approach for treating Cr(VI)-containing industrial wastewater: Photochemical reduction, Water Res. 93 (2016) 187-194. https://doi.org/10.1016/j.watres.2016.02.025
[10] Y. Ye, Z. Jiang, Z. Xu, Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism, Water Res. 126 (2017) 172-178. https://doi.org/10.1016/j.watres.2017.09.021
[11] D. Wang, Y. Ye, H. Liu, H. Ma, W. Zhang, Effect of alkaline precipitation on Cr species of Cr(III)-bearing complexes typically used in the tannery industry, Chemosphere 193 (2018) 42-49. https://doi.org/10.1016/j.chemosphere.2017.11.006
[12] J. Qiu, S. Dong, H. Wang, C. Xu, Z. Du, Adsorption performance of low-cost gelatin-montmorillonite nanocomposite for Cr(III) ions, RSC Adv. 5 (2015) 58284-58291. https://pubs.rsc.org/en/content/articlepdf/2015/ra/c5ra08781c
[13] C.O. Ijagbemi, M.H. Baek, D.S. Kim, Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions, J. Hazard. Mater. 166 (2009) 538-546. https://doi.org/10.1016/j.jhazmat.2008.11.085
[14] Z. Dong, F. Zhang, D. Wang, X. Liu, J. Jin, Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal, J. Solid State Chem. 224 (2015) 88-93. https://doi.org/10.1016/j.jssc.2014.06.030
[15] K.S. Abou-El-Sherbini, M.M. Hassanien, Study of organically-modified montmorillonite clay for the removal of copper(II), J. Hazard. Mater. 184 (2010) 654-661. https://doi.org/10.1016/j.jhazmat.2010.08.088
[16] F. Di Natale, A. Erto, A. Lancia, D. Musmarra, Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon, J. Hazard. Mater. 281 (2015) 47-55. https://doi.org/10.1016/j.jhazmat.2014.07.072
[17] K. Gong, H. Qian, Y. Lu, L. Min, Z. Guo, Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr(VI) removal from wastewater, ACS Sustainable Chem. Eng. 6 (2018) 7283-7291. https://doi.org/10.1021/acssuschemeng.7b04421
[18] P. Yu, H.Q. Wang, R.Y. Bao, Z. Liu, W. Yang, B.H. Xie, M.B. Yang, Self-assembled sponge-like chitosan/reduced graphene oxide/montmorillonite composite hydrogels without cross-linking of chitosan for effective Cr(VI) sorption, ACS Sustainable Chem. Eng. 5 (2017) 1557-1566. https://doi.org/10.1021/acssuschemeng.6b02254
[19] W. Cheng, C. Ding, X. Nie, T. Duan, R. Ding, Fabrication of 3D macroscopic graphene oxide composites supported by montmorillonite for efficient U(VI) wastewater purification, ACS Sustainable Chem. Eng. 5 (2017) 5503-5511. https://doi.org/10.1021/acssuschemeng.7b00841
[20] J. Zhu, V. Cozzolino, M. Pigna, Q. Huang, A.G. Caporale, A. Violante, Sorption of Cu, Pb and Cr on Na-montmorillonite: competition and effect of major elements, Chemosphere 84 (2011) 484-489. https://doi.org/10.1016/j.chemosphere.2011.03.020
[21] J. Jin, T. Xiao, Y. Tan, J. Zheng, R. Liu, G. Qian, H. Wei, J. Zhang, Effects of TiO2 pillared montmorillonite nanocomposites on the properties of asphalt with exhaust catalytic capacity, J. Clean Prod. 205 (2018) 339-349. https://doi.org/10.1016/j.jclepro.2018.08.251
[22] X. Dou, D. Mohan, C.U. Pittman, S. Yang, Remediating fluoride from water using hydrous zirconium oxide, Chem. Eng. J. 198-199 (2012) 236-245. https://doi.org/10.1016/j.cej.2012.05.084
[23] C.V. Reddy, B. Babu, I.N. Reddy, J. Shim, Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity, Ceram. Int. 44 (2018) 6940-6948. https://doi.org/10.1016/j.ceramint.2018.01.123
[24] T. E, D. Ma, S. Yang, Y. Sun, J. Xu, E.J. Kim, Zirconium dioxide loaded montmorillonite composites as high-efficient adsorbents for the removal of Cr3+ ions from tanning wastewater, J. Solid State Chem. 277 (2019) 502-509. https://doi.org/10.1016/j.jssc.2019.07.002
[25] F.Z. Zhang, T. Kato, M. Fuji, M. Takahashi, Gelcasting fabrication of porous ceramics using a continuous process, J. Eur. Ceram. Soc. 26 (2006) 667-671. https://doi.org/10.1016/j.jeurceramsoc.2005.07.021
[26] T. E, Y. Li, S. Yang, J. Qian, L. Liu, J. Xing, Nano-montmorillonite-based porous material prepared by gel casting: structure and adsorption properties, Micro & Nano Lett. 13 (2018) 332-334. https://doi.org/10.1049/mnl.2017.0531
[27] A. Alsbaiee, B.J. Smith, L. Xiao, Y. Ling, D.E. Helbling, W.R. Dichtel, Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer, Nature 529 (2016) 190-194. https://www.nature.com/articles/nature16185
[28] L. Zhu, L. Wang, Y. Xu, Chitosan and surfactant co-modified montmorillonite: A multifunctional adsorbent for contaminant removal, Appl. Clay Sci. 146 (2017) 35-42. https://doi.org/10.1016/j.clay.2017.05.027
[29] G. Zhang, Z. He, W. Xu, A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions, Chemical Engineering Journal 183 (2012) 315-324. https://doi.org/10.1016/j.cej.2011.12.085
[30] I. Saha, A. Ghosh, D. Nandi, K. Gupta, D. Chatterjee, U.C. Ghosh, β-Cyclodextrin modified hydrous zirconium oxide: Synthesis, characterization and defluoridation performance from aqueous solution, Chem. Eng. J. 263 (2015) 220-230. https://doi.org/10.1016/j.cej.2014.11.039
[31] K. Parashar, N. Ballav, S. Debnath, K. Pillay, A. Maity, Hydrous ZrO2 decorated polyaniline nanofibres: Synthesis, characterization and application as an efficient adsorbent for water defluoridation, J. Colloid Interface Sci. 508 (2017) 342-358. https://doi.org/10.1016/j.jcis.2017.08.044
[32] Lutfullah, Rashid, U. Haseen, N. Rahman, An advanced Cr(III) selective nano-composite cation exchanger: Synthesis, characterization and sorption characteristics, J. Ind. Eng. Chem. 20 (2014) 809-817. https://doi.org/10.1016/j.jiec.2013.06.010
[33] R. Dhanpat, M.S. Bruce, D.A. Moore, Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide, Inorg. Chem. 26 (1987) 345-349. https://doi.org/10.1021/ic00250a002
[34] P. Wu, Q. Zhang, Y. Dai, N. Zhu, Z. Dang, P. Li, J. Wu, X. Wang, Adsorption of Cu(II), Cd(II) and Cr(III) ions from aqueous solutions on humic acid modified Ca-montmorillonite, Geoderma 164 (2011) 215-219. https://doi.org/10.1016/j.geoderma.2011.06.012
[35] S.E. Gomez-Gonzalez, G.G. Carbajal-Arizaga, R. Manriquez-Gonzalez, W. De La Cruz-Hernandez, S. Gomez-Salazar, Trivalent chromium removal from aqueous solutions by a sol-gel synthesized silica adsorbent functionalized with sulphonic acid groups, Mater. Res. Bull. 59 (2014) 394-404. https://doi.org/10.1016/j.materresbull.2014.07.035
[36] M. Lesaoana, V.E. Pakade, L. Chimuka, Crosslinker-less surface-imprinted macadamia derived activated carbons for trace Cr(III) removal from aqueous solution, Environ. Inno. 14 (2019) 100336. https://doi.org/10.1016/j.eti.2019.100336
[37] R. Fonseca-Correa, L. Giraldo, J.C. Moreno-Piraján, Trivalent chromium removal from aqueous solution with physically and chemically modified corncob waste, J. Anal. Appl. Pyrolysis 101 (2013) 132-141. https://doi.org/10.1016/j.jaap.2013.01.019
[38] J. Qiu, , S. Dong, H. Wang, X. Cheng, Z. Du, 2015. Adsorption Performance of low-cost gelatin-montmorillonite nanocomposite for Cr(III) ions, RSC Adv. 5, 58284-58291. http://dx.doi.org/10.1039/C5RA08781C
[39] F. Zhang, J. Lan, Z. Zhao, Y. Yang, R. Tan, W. Song, Removal of heavy metal ions from aqueous solution using Fe3O4-SiO2-poly(1,2-diaminobenzene) core–shell sub-micron particles, J. Colloid Interface Sci. 387 (2012) 205-212. https://doi.org/10.1016/j.jcis.2012.07.066