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Abstract
Shark populations globally are facing catastrophic declines. Ecotourism has been posited as a potential solution to many of the issues
facing shark conservation, yet increasingly studies suggest that such activity may negatively influence aspects of shark ecology and
so further pressure declining populations. Here we combine UAV videography with deep learning algorithms, multivariate statistics and
hidden Markov models (HMM) to quantitatively investigate the behavioural consequences of ecotourism in the whale shark
(Rhincodon typus). We find that ecotourism increases the probability of sharks being in a disturbed behavioural state, likely increasing
energetic expenditure and potentially leading to downstream ecological effects. These results are only recovered when fitting models
that account for individual variation in behavioural responses and past behavioural history. Our results demonstrate that behavioural
responses to ecotourism are context dependent, as the initial behavioural state is important in determining responses to human
activity. We also suggest that the responsiveness of R. typus to human activity hints at a previously neglected resilience to
environmental change. Finally, we argue that complex models incorporating individuality and context-dependence should, wherever
possible, be incorporated into future studies investigating the ecological impacts of shark ecotourism, which are only likely to increase
in importance given the expansion of the industry and the dire conservation status of many shark species.

Introduction
Sharks belong to the clade Chondrichthyes, the earliest diverging (~ 450Ma) radiation of crown group gnathostomes to persist in
modern ecosystems[1]. Whilst sharks are of intrinsic interest due to their persistence through evolutionary time, they are also critically
important components of marine ecosystems and are thought to be among the most functionally diverse vertebrate clades[2].
Amongst the ecological functions performed by sharks is the distribution of predation pressure through space and time[3] and (in the
case of migratory species) facilitation of energy transfer between ecosystems[2, 4]. There is mounting evidence that declines in shark
populations can result in phenomena such as mesopredator release and trophic cascades[5]. Despite their ecological importance,
sharks are amongst the most threatened of all vertebrates, with recent IUCN (International Union for the Conservation of Nature)
estimates suggesting that more than one third of all shark and ray taxa are facing extinction[6]. Overfishing is undoubtedly the major
driver of this crisis, to which sharks are particularly vulnerable due to life history traits including relatively slow maturation and low
fecundity[7]. This is not the only driver of decline, with anthropogenic climate change and habitat destruction also thought to be
relevant in some populations[8, 9]. Uncertainty regarding the ecological importance of sharks, the scale of the threats posed by
overfishing and a general lack of public awareness have, until recently, provided major barriers to the implementation of conservation
action[6, 10, 11]. Gradually these barriers are being lifted, with public perception increasingly favouring the protection of sharks[11].

Shark ecotourism, in which members of the public pay to experience interactions with wild sharks, is credited with portraying sharks in
a more positive light amongst members of the public [12, 13]. Shark ecotourism is also of ever-increasing economic importance in a
number of countries, thought to be valued at over 300,000,000 USD annually and responsible for the creation of thousands of jobs[14,
15]. These socioeconomic factors undoubtedly increase potential for the protection and recovery of declining shark populations;
however, ecotourism also has potential ecological impacts[16], the true nature of which remain poorly understood. There is some
evidence that ecotourism activities involving provisioning can influence both relative abundance and species composition[17], and
even directly trigger mesopredator release – increasing the abundance of other species at lower trophic levels[18]. Whilst trophic
cascades are typically considered from the perspective of depredation, this is not strictly a requirement[19], and thus it is possible that
the feeding of sharks at ecotourism sites could result in functionally similar shifts in community ecology. Not all studies have
recovered evidence for ecological impacts of ecotourism[20, 21], and potential effects are likely to be highly context dependent[16].
Even where provisioning is absent, disturbance and boat-related injuries remain substantial threats[16, 22]. For these reasons, further
studies are urgently warranted to establish the extent to which this expanding industry may have unforeseen ecological consequences
on the populations it is aiming to conserve.

Whilst there are multiple potential routes by which shark ecotourism could influence their ecology, potentially the most important is
through behavioural responses. Behaviour is the suite of traits by which inter-specific interactions are directly mediated[23] and is thus
a highly significant factor influencing downstream ecological consequences of anthropogenic interference. Even if such effects were
limited to the focal taxon of ecotourism activities alone, disturbance and alterations to the landscape of fear have many potential
consequences for bioenergetics, which in turn can have disastrous consequences for migration, reproduction, and other life-history
traits[24, 25]. Emerging studies are increasingly suggesting that behavioural plasticity may play a key role in dictating population-level
resilience in the face of environmental change[26, 27]. Several studies have attempted to address the effects of ecotourism on shark
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behaviour, reporting evidence of ecotourism influencing foraging activity, long-distance migratory behaviour and
avoidance/disturbance responses[16–31]. Despite this, different studies present conflicting results, the interpretation of which is
complicated by a lack of standardisation in the behavioural assays considered between studies. The temporal resolution of such
studies also provides several limitations: some studies rely on telemetry data which, whilst informative regarding some aspects of the
ecology[32], do not consider effects of ecotourism at fine temporal resolutions. Those that do typically consider behaviour to fall into
one of a small number of qualitatively defined categories[31], the biological significance of which are debatable. As such categories do
not have rigorous quantitative definitions, they are unlikely to be an accurate representation of the full repertoire of behavioural
observed in most taxa. For these reasons, studies utilising a more biologically reasoned and quantitative approach, and considering
behaviour at finer temporal resolutions are essential if we are to fully understand how ecotourism activities may influence the
behaviour (and subsequently the ecology and evolution) of sharks.

In this study we combine Unoccupied Aerial Vehicle (UAV) videography with deep learning algorithms, multivariate statistics and
Hidden Markov Models (HMM) to investigate the ecological consequences of interactions between sharks and humans for shark
behaviour, using whale sharks (Rhincodon typus) as a case study. This approach considers behavioural consequences of ecotourism
for sharks at a finer temporal resolution than any previous study and uses explicit and rigorous quantitative definitions of behaviour.
This increases potential for direct comparison between studies, aiding in ease of interpretation and considering the full range of
movements observed during individual behavioural sequences. We comment on the implications of these results for ecotourism
practices, for the ecology of the R. typus and the wider community.

Methodology
The goal of this study was to amass aerial footage of R. typus both in isolation and in the presence of humans, quantify shark
movement within the footage using neural networks, and establish the extent to which human activity influences the behaviour of R.
typus.

Ethics statement
Data collection and analysis procedures in this study complied with national animal welfare laws and ARRIVE guidelines and
regulations; all data collection procedures were authorized by Mexican wildlife authorities under the permit SPARN/DGVS/04909/22
provided by the Comisión Nacional de Acuacultura y Pesca (CONAPESCA). This permit, issued by CONAPESCA is necessary and
sufficient for all procedures conducted during this study (including the involvement of human and animal participants), and negates
the requirement for IRB ethics approval, which is not required by Mexican law for such studies in Mexican territory.

Data collection
Aerial videos of whale sharks and their interactions with ecotourism activities were obtained using a DJI Phantom 3SE UAV (flown at a
constant altitude of 15m), between the 30th of November 2022 and 6th of February 2023 in the whale shark refuge area in the Bay of
La Paz, Mexico (Fig. 1a). This large, shallow bay hosts seasonal aggregations for juvenile whale sharks, which have become the focus
of local ecotourism activities[33]. After filming sharks in isolation, a swimmer entered the water and mimicked typical ecotourist
behaviour, swimming parallel to the shark with a minimum distance of two metres between them and the shark at all times. Aerial
videos were gathered both of sharks in isolation and interacting with swimmers. In total, 39 videos were obtained, with video clips
(following trimming) ranging from 167 to 1121 frames (5.6 to 37.4 seconds) in duration.

Video analyses
Aerial footage was analysed using the Python-based[35] deep learning system SLEAP[36], outputting coordinate data indicating the
position of sharks and humans within the field of view of the drone. Sharks were modelled as a single point, corresponding to the
anterior-most point on the midline of the dorsal body surface (Fig. 1b). Humans, where present, were labelled as a single point
corresponding to the head (Fig. 1b). The use of a single point to model organisms minimised the potential impact of image distortion,
which was deemed negligible following preliminary tests and extensive footage visualisation. Initially, 20 frames were labelled at
random intervals within each video. SLEAP offers two neural network training modes: top-down training first identifies animals and
then separately estimates the pose of each, whereas bottom-up training first identifies all of the body parts in a frame and separately
assigns parts to each animal[36]. We chose a top-down mode following preliminary tests for training efficacy. The neural network was
trained to predict the position of humans and/or sharks in 20 additional frames and ceased after five rounds of training, after which a
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manual review of the predicted frames was conducted. Following any necessary corrections, the trained neural network was used to
generate track data for all individuals across the entire video. To distinguish between humans and sharks, a centroid cost function was
used, assigning identity on the basis of the distance travelled between frames. A Hungarian matching algorithm, which matches
individual identity between frames by maximising total similarity[36], was utilised to compile the final track data for each individual in
each video.

Parameter estimation:
To obtain behavioural parameters for statistical analysis, SLEAP output was converted into trajectory data. Each frame transition in
each video is modelled by a step length (indicating the distance between an individual’s location in two consecutive frames) and a
turning angle (indicating change in directionality between two consecutive frames) using the trajr package in the R statistical
environment[37, 38]. As larger sharks are likely to swim faster than smaller sharks, a body size correction was applied to each trajectory
in accordance with the literature[39, 40]. Trajectories were visualised and smoothed accordingly (using a Savitzky-Golay filter of length
21 and polynomial order 3) in trajr prior to parameter estimation to remove noise associated with head yaw (lateral movements of the
head), which could influence the distribution of parameters related to directionality. Smoothing parameters were chosen in line with
previous studies and following visualisation of the data[38]. The following parameters were calculated for each video: minimum,
maximum, mean and standard deviation values for speed, acceleration and turning angle; mean directional autocorrelation[41],
‘eMaxA’[42], ‘eMaxB’[42] and ‘Sinuosity2’[43].Where humans were present, the distance between shark and human – referred to
hereafter as inter-organismal distance (IOD) was also calculated for each frame of every video. For the calculation of all trajectory-
based parameters, a correlated random walk model of animal movement was applied under the assumptions of Brownian motion and
that direction of movement in consecutive frames is correlated[44].

Statistical analyses:
To test for statistical differences in the overall behavioural repertoire of individuals in the presence and absence of humans, an
‘ethospace’ visualisation was generated through Principal Component Analysis (PCA). This approach is typically used to visualise
ecological and morphological disparity[45], but also provides a valuable tool by which multiple components of ‘behaviour’ can be
compressed into a single ordination[46]. PCA analysis incorporating all parameters (z-transformed to account for scale differences
between parameters) was performed using the packages factoextra[47, 48] and ggplot2[48] in the R statistical environment[37]. Linear
models were fitted for each of the parameters incorporated in the PCA in the R statistical environment[37] and visualised using the
package ggplot2[48], first using the presence or absence of humans as a binary predictor variable, and subsequently using IOD as a
continuous predictor variable.

Hidden Markov models
Whilst parameters such as mean speed, turning angle and acceleration are potentially biologically informative, they do not take into
account the full range of behavioural plasticity exhibited by individuals. To increase the proportion of behavioural plasticity captured
by the analyses whilst maintaining a biologically-reasoned approach that takes into account the ecology of the species in question, we
applied discrete-time Hidden Markov models (HMM) to the non-smoothed trajectory data using the package moveHMM[37, 49] in the R
statistical environment[37]. HMMs consist of a set of observations (in this case a series of step lengths and turning angles for each
frame interval of each video), the distribution of which depends on the distribution of the hidden state (a proxy for individual behaviour,
which takes one of a predefined set of discrete values at any given frame interval) which ‘evolves’ over time as a Markov process,
described by a matrix of transition probabilities between each of the possible state values[50]. We applied two sets of separate HMMs
to the data –first incorporating the presence/absence of humans as a binary covariate, and subsequently incorporating IOD as a
continuous covariate. Each of these models was tested against a null model without covariates. Step length and turning angle were
modelled by Gamma and Von Mises distributions respectively[49], defined by the parameters mean step length ( ), step length
standard deviation ( ), mean turning angle ( ) and angle concentration factor ( ). Plausible parameter ranges were identified by
visualising the actual step length and turning angle distributions, with these ranges being incorporated into a numerical likelihood
optimization routine[51] to identify parameter values corresponding to the AIC (Akaike Information Criterion) global optimum. AIC
balances model fit with model complexity[52] and thus this global optimum should represent the model that explains the greatest
proportion of variance in the data whilst maximising the simplicity and interpretability of the model. As some behavioural sequences
featured frames in which no movement occurred, zero mass parameters (  were incorporated into each model, the value of which
corresponded to the proportion of steps of length zero in the dataset. 75 sets of parameter values were considered for each HMM
(including one-state, two-state and three-state models), with final models selected on the basis of AIC and log likelihood scores[52].

μ

σ θ κ
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Multinomial logistic regression was then performed on both HMMs to quantify the effects of shark-human interactions on behavioural
transition probabilities. All HMM analyses assumed a correlated random walk model of animal movement in accordance with the
literature[44, 49].

Results
Ethospace occupation of R. typus

PCA incorporating 16 behavioural variables did not recover any evidence of significant behavioural differences in the presence or
absence of humans (Fig. 2). Whilst individuals in the presence of humans qualitatively appear to occupy a greater ethospace range,
there is no statistically significant difference (as evidenced by overlapping confidence ellipses, p 0.05) between the mean behaviour
of the groups (Fig. 2). The first three principal components cumulatively explained 83.7% of observed behavioural variance (46.6%,
30.0% and 7.1% respectively), with the parameters standard deviation of speed (Dim 1, 9.9%), mean speed (Dim 2, 16.9%) and
minimum angle (Dim 3, 74.9%) explaining the greatest proportion of variance in each principal component respectively.

Linear models of behavioural variables
Linear regression of 16 behavioural variables against a binary variable representing the presence or absence of humans failed to
recover evidence of statistically significant relationships between the presence of humans and the behaviour of R. typus individuals
(Table 1). When regressing behavioural variables against IOD, the variables mean speed, minimum speed and eMaxB display a
significant positive relationship with IOD (Table 2; Fig. 3a-c) whereas no significant relationship was found for remaining variables
(Table 2).

≥
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Table 1
Regression output for each parameter against a binary variable representing human presence/absence, where a value of 0 represents

human absence and a value of 1 represents human presence
Parameter Coefficient Intercept T

value
p
value

standard
error

residual
error

(%)
Adjusted

df F
value

Mean Speed 8.29E-03 1.04E-
01

4.66E-
01

6.44E-
01

1.7799E-
02

5.5560E-
02

0.58 -2.1 1,37 2.17E-
01

Min Speed 2.45E-03 1.99E-
02

2.60E-
01

7.96E-
01

9.4160E-
03

2.9390E-
02

0.18 -2.52 1,37 6.76E-
02

Max Speed 5.11E-02 2.23E-
01

1.06E 
+ 00

2.95E-
01

4.8150E-
02

1.5030E-
01

2.96 0.33 1,37 1.13E 
+ 00

Speed SD 7.51E-03 3.16E-
02

9.34E-
01

3.56E-
01

8.0380E-
03

2.5090E-
02

2.3 -0.34 1,37 8.73E-
01

Mean
Acceleration

2.00E-03 1.30E-
02

6.94E-
01

4.92E-
01

2.8890E-
03

9.0170E-
03

1.28 -1.39 1,37 4.81E-
01

Min
Acceleration

-2.00E-06 8.10E-
05

-4.30E-
02

9.66E-
01

4.5000E-
05

1.3900E-
04

0.01 -2.7 1,37 1.88E-
03

Max
Acceleration

2.09E-02 7.29E-
02

8.23E-
01

4.16E-
01

2.5330E-
02

7.9080E-
02

1.8 -0.86 1,37 6.78E-
01

Acceleration
SD

2.28E-03 1.10E-
02

8.16E-
01

4.20E-
01

2.7910E-
03

8.7110E-
03

1.77 -0.89 1,37 6.65E-
01

Mean Angle 5.24E-03 1.64E-
01

3.01E-
01

7.65E-
01

1.7416E-
02

5.4360E-
02

0.24 -2.45 1,37 9.04E-
02

Min Angle -5.70E-05 3.84E-
04

-4.11E-
01

6.83E-
01

1.3800E-
04

4.3100E-
04

0.46 -2.24 1,37 1.69E-
01

Max Angle -1.49E-01 1.86E + 
00

-4.64E-
01

6.45E-
01

3.2090E-
01

1.0020E 
+ 00

0.58 -2.11 1,37 2.16E-
01

Angle SD -1.73E-02 2.16E-
01

-5.00E-
01

6.20E-
01

3.4490E-
02

1.0770E-
01

0.67 -2.01 1,37 2.50E-
01

Directional
Autocorrelation

-1.51E-02 8.21E-
01

-3.48E-
01

7.30E-
01

4.3210E-
02

1.3490E-
01

0.33 2.37 1,37 1.21E-
01

eMaxA -4.22E + 
00

4.90E + 
01

-3.68E-
01

7.15E-
01

1.1478E 
+ 01

3.5830E 
+ 01

0.37 -2.33 1,37 1.35E-
01

eMaxB -1.86E-01 5.61E + 
00

-8.60E-
02

9.32E-
01

2.1535E 
+ 00

6.7220E 
+ 00

0.02 -2.68 1,37 7.45E-
03

Sinuosity2 -3.15E-02 8.37E-
01

-2.90E-
01

7.73E-
01

1.0853E-
01

3.3880E-
01

0.23 -2.47 1,37 8.42E-
02

R2
R2 (%)
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Table 2
Regression output for each parameter against IOD. P values lower than 0.05 are represented in bold.

Parameter Coefficient Intercept T
value

p
value

standard
error

residual
error

(%)
Adjusted

df F
value

Mean Speed 5.19E-03 -9.90E-
03

2.94E 
+ 00

< 
0.001

1.7640E-
03

5.5870E-
02

32.4 28.7 1,18 8.64E 
+ 00

Min Speed 2.94E-03 -4.78E-
02

3.40E 
+ 00

< 
0.001

8.6420E-
04

2.7370E-
02

39.1 35.7 1,18 1.15E 
+ 01

Max Speed 3.79E-03 2.52E-
01

3.75E-
01

7.12E-
01

1.0104E-
02

3.2000E-
01

0.78 -4.74 1,18 1.41E-
01

Speed SD 9.17E-04 2.38E-
02

7.41E-
01

4.68E-
01

1.2370E-
03

3.9180E-
02

2.96 -2.43 1,18 5.50E-
01

Mean
Acceleration

4.63E-04 4.24E-
03

1.32E 
+ 00

2.02E-
01

3.4960E-
04

1.1070E-
02

8.87 3.8 1,18 1.75E 
+ 00

Min
Acceleration

5.22E-06 -4.57E-
05

1.40E 
+ 00

1.80E-
01

3.7400E-
06

1.1850E-
04

9.77 4.75 1,18 1.95E 
+ 00

Max
Acceleration

2.32E-03 5.28E-
02

6.46E-
01

5.27E-
01

3.5990E-
03

1.1400E-
01

2.26 -3.17 1,18 4.17E-
01

Acceleration
SD

3.81E-04 5.27E-
03

1.07E 
+ 00

2.98E-
01

3.5540E-
04

1.1250E-
02

5.99 0.77 1,18 1.15E 
+ 00

Mean Angle -1.23E-03 2.01E-
01

-7.31E-
01

4.74E-
01

1.6760E-
03

5.3090E-
02

2.88 -2.51 1,18 5.35E-
01

Min Angle 6.99E-06 9.93E-
05

7.04E-
01

4.91E-
01

9.9400E-
06

3.1480E-
04

2.68 -2.73 1,18 4.95E-
01

Max Angle -4.63E-02 2.89E + 
00

-1.51E 
+ 00

1.48E-
01

3.0590E-
02

9.6880E-
01

11.3 6.35 1,18 2.29E 
+ 00

Angle SD -2.58E-03 2.68E-
01

-8.01E-
01

4.34E-
01

3.2240E-
03

1.0210E-
01

3.44 -1.92 1,18 6.42E-
01

Directional
Autocorrelation

3.99E-03 7.08E-
01

8.09E-
01

4.29E-
01

4.9260E-
03

1.5600E-
01

3.51 -1.85 1,18 6.65E-
01

eMaxA 1.77E + 00 1.87E + 
00

1.86E 
+ 00

7.90E-
02

9.4780E-
01

3.0020E 
+ 01

16.2 11.5 1,18 3.47E 
+ 00

eMaxB 6.34E-01 -9.71E + 
00

3.33E 
+ 00

4.00E-
03

1.9070E-
01

6.0410E 
+ 00

38.1 34.6 1,18 1.11E 
+ 01

Sinuosity2 -1.87E-02 1.26E + 
00

-2.10E 
+ 00

5.00E-
02

8.9180E-
03

2.8250E-
01

19.7 15.2 1,18 4.40E 
+ 00

HMM state allocation and model fit
In the case of models incorporating human presence/absence ( AIC  14202

, LL (maximum log-likelihood) 7115) and inter-organismal distance (IOD) ( AIC  7835, LL 3932) as covariates, models
including three discrete behavioural states received more support than models including either one or two behavioural states. In both
cases, the model of best fit incorporating covariates received significantly more support than null models not accounting for human
activity (Table 3). Whilst the precise model parameter values differ between models incorporating human presence/absence and IOD,
the three states allocated to each model functionally represent the same classes of behaviour and cover similar ranges of their
respective step length and turning angle distributions (Table 3). State 1 covers relatively low step lengths and a high angle
concentration factor (Table 3), reflecting highly directed movement at relatively low velocity[51], such as may be observed when
transiting between areas of high prey density. State 2 covers relatively large step lengths and a relatively low angle concentration factor
(Table 3), reflecting high velocity and highly angular movement, such as might be expected in predator escape responses and
avoidance/disturbance behaviour. State 3 covers intermediate step lengths and an intermediate angle concentration factor (Table 3),

R2
R2 (%)

Δ ≥

Δ ≥ Δ ≥ Δ ≥
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encompassing the ranges of velocity and angularity observed during both resting and surface feeding behaviours. Henceforth these
states will simply be referred to as State 1, 2 and 3 to avoid controversy regarding the use of subjective terminology to describe
behaviour. The biological interpretations of these states must be treated as hypotheses based on the quantitative definitions of each
state, which are framed with respect to the velocity and angularity of trajectories. Transitions between states will be referred to as State

, where  is the initial state and  is the final state.

Table 3
HMM models of best fit including presence/absence and IOD as covariates respectively. Model fit

determined on the basis of the difference between the Akaike Information Criterion (AIC) and log-likelihood

(LL) values of covariate models and null models ( AIC and LL). State parameters refer to mean step
length, step length standard deviation, mean turning angle, angle concentration factor and zero mass

parameter as defined in the methodology.
Model Covariate AIC

AIC
LL

LL
State 1 State 2 State 3

Presence/Absence 19539 140 -9741 76.2 : 2.21E-02

: 1.37E-02

: 1.53E-02

: 1.10E + 00

: 9.73E-04

: 3.76E-01

: 3.64E-01

: -1.15E + 00

: 4.22E-02

: 7.26E-03

: 2.74E-01

: 6.93E-02

: -2.15E-02

: 6.09E-01

: 4.11E-11

IOD 9206 103 -4574 57.8 : 2.10E-02

: 1.18E-02

: 5.22E-03

: 1.16E + 00

: 9.31E-04

: 3.79E-01

: 3.74E-01

: -1.44E-01

: 1.82E-01

: 7.43E-03

: 2.52E-01

: 5.38E-02

: -4.16E-02

: 5.66E-01

: 1.82E-08

HMM state occupancy and multinomial logistic regression
The human presence/absence model suggests that regardless of whether humans are present, the long-term probability of an
individual being in State 1 (typified by highly directional movement) is greater than that of an individual being in State 3 (typified by
intermediate speed and directionality), which is in turn greater than the probability of an individual being in State 2 (typified by rapid,
erratic movement consistent with escape behaviour) (Fig. 4a). However, the presence of humans results in an increase in the long-term
probability of an individual being in State 2 (Fig. 4a). Whilst human presence appears to result in a decrease in the long-term
probability of an individual being in either State 1 or State 3, these relationships were not found to be significant. Multinomial logistic
regression applied to this model suggests that human presence has a significant influence on all transition probabilities except State 

 and State  (Fig. 5a).

The IOD model suggests that where IOD is low (humans and sharks are close), the long-term probability of an individual being in State
1 (typified by highly directional movement) and State 3 (typified by intermediate speed and directionality) are greater than that
probability of an individual being in State 2 (typified by rapid, erratic movement consistent with escape behaviour), however when IOD
is high, the long-term probability of an individual being in State 2 is greater than that of an individual being in State 1 or State 3
(Fig. 4b). The long-term probability of an individual being in State 1 is consistently lower than that of an individual being in State 3,
however for higher IOD values this difference is not significant (Fig. 4b). Multinomial logistic regression applied to this model suggests
that human presence has a significant influence on all State transition probabilities except State  and State .
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Discussion
Our results demonstrate that the presence of humans and their proximity to R. typus individuals has important behavioural
consequences for these sharks, and that these consequences are only detected by models that account for hidden behavioural states
and individual variation in behaviour (Fig. 4; Fig. 5). Of particular significance with regards to ecology and conservation, ecotourism
activity increases the probability of individuals being in a disturbed behavioural state typified by relatively angular and rapid movement
(Fig. 4a). Moreover, ecotourism activity significantly influences the probability of transitioning between states (Fig. 5), specifically
reducing the probability of transitioning from a disturbed to an undisturbed state (Fig. 5a: State , State ). Whilst several
of the IOD-based results may appear to reject this suggestion by suggesting that behaviours associated with disturbance are more
prevalent where humans and sharks are far apart (Fig. 3a; Fig. 3b; Fig. 4b; Fig. 5b), we suggest that this is simply because a disturbed
individual will typically swim at a faster speed than a human can maintain, thus resulting in high IOD (distance between human and
shark). This is supported both by the presence/absence-based model (Fig. 4a; Fig. 5a), and qualitative observation of video footage.
The primary behavioural consequence of shark ecotourism for R. typus individuals appears to be an increase in the proportion of time
spent in a disturbed state typified by increased energetic expenditure[53], relative to states encompassing less rapid and angular
movements (Fig. 3c; Fig. 4; Fig. 5).

Avoidance behaviours increase energetic expenditure as a result of the energy required to generate such behaviours[53], however
expenditure also increases indirectly as a result of displacement of individuals from areas of high foraging success[54, 55]. We
recovered evidence of increases in energetic expenditure as human presence significantly increased the long-term probability of
individuals engaging in behaviours typically associated with avoidance/disturbance (Fig. 4a). Whilst such displacement would incur
fitness costs in any species R. typus individuals aggregate in the Bay of La Paz specifically to forage[33, 56] and subsequently engage
in vast oceanic migrations[57, 58]. For these reasons reduced foraging success in the Bay of La Paz could influence the ability of
individuals to complete migrations and maintain body condition whilst doing so. In addition to the physiological consequences of
reduced foraging success[59–61], these behavioural changes could reduce reproductive success through modification of reproductive
phenology[54] and increase the risk of injuries associated with boat strikes[22, 62] given that even minor displacement would see
individuals exit the protected area[34]. Inferring population-level consequences of these individual behavioural responses is not
trivial[63], however temporally persistent avoidance behaviours at the population level can result in area abandonment[64], in turn
triggering cascading ecological effects that influence entire communities[54]. Migratory sharks such as R. typus are known to act as a
major biological nutrient flux between isolated ecosystems[2, 4, 65], and thus area abandonment could have profound long-term
consequences for nutrient cycling[65]. Agent-based models have been developed to predict population-level consequences of
disturbance responses similar to those reported in this study[59, 63], however most of these studies consider marine mammals, and as
of yet none have been applied to elasmobranchs. For this reason, the details of such consequences in R. typus and other
elasmobranch populations remain poorly constrained and should be a focus of future work.

Whilst the relationship between bioenergetics and disturbance responses may appear straightforward, behavioural responses to
disturbance (and their ecological consequences) are often highly nuanced and context-dependent[66, 67]. An individual displaying an
‘undisturbed’ behavioural state does not necessarily imply that the stimulus in question is not adversely affecting this individual.
Various physiological stress responses are known in a range of taxa[68–70], many of which are thought to incur fitness costs even in
the absence of obvious behavioural effects (Hing et al., 2016). Stress physiology has been studied in elasmobranchs[71], but not in the
context of ecotourism. Many studies have reported evidence of a relationship between individual behaviour (typically in the context of
foraging behaviours or predator avoidance) and past history of energetic states and ecological interactions – often termed
‘experience’[64, 72–75]. The utility of terms such as ‘personality’ and ‘experience’ to behavioural ecology is debatable[76, 77], however
the initial behavioural state of individuals can often be of great importance in determining their response to a given stimulus. Our
results support this concept as behavioural responses differed between R. typus individuals (Fig. 2) and the initial behavioural state of
individuals was found to be important in determining the way in which they respond to human presence (Fig. 5). Behavioural
differences in the presence and absence of humans was only detected when fitting models that account for individual variation in
behaviour, and these models are supported despite their increased complexity (Table 3). Consequently, the behavioural, physiological
and ecological consequences of a single disturbance event are not limited to the immediate time interval in which disturbance occurs
but may persist for some as of yet undefined duration. This also raises the question of state-behaviour feedback, which has been
reported in other taxa[78–80]. R. typus individuals aggregating at common ecotourism sites are likely to experience a number of
interactions with humans in any given day, and if disturbance responses demonstrate synergism then the true ecological
consequences of ecotourism in this taxon may be far greater than previously considered. Further studies will be required to elucidate

2 → 1 2 → 3
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the extent of the relationship between past behavioural/energetic context and contemporary R. typus behaviour, however we suggest
that shark behaviour should always be assessed prior to ecotourism activity to minimise potential disturbance. Even if this advice is
heeded, these results suggest that some negative ramifications of ecotourism may be unavoidable unless such activity ceases entirely.

Behavioural modifications resulting from ecotourism activity may negatively influence some aspects R. typus ecology[31], however
viewed through the lens of behavioural plasticity, our results provide cause for cautious optimism with regards to the long-term
conservation goals of the species. R. typus can respond plastically to novel environmental stimuli (Fig. 3; Fig. 4; Fig. 5), which may well
be symptomatic of broader behavioural plasticity. This plasticity consequently implies population-level resilience in the face of
environmental change (as per the Baldwin effect), as it facilitates phenotypic changes on a temporal scale at which genetically
entrained adaptation cannot occur[81, 82]. In the context of R. typus and ecotourism this is particularly relevant with regards to boat
strike injuries, where a high degree of behavioural plasticity may enable individuals to persist in modern ecosystems by avoiding the
majority of potentially fatal interactions with motorboats. Over greater timescales the evolutionary and ecological significance of
behavioural plasticity is not limited to persistence and resilience[83]. The plasticity first hypothesis argues that plasticity facilitates
adaptive evolution in the face of environmental change by providing ‘pre-tested’ phenotypic variation that can be genetically entrained
through genetic assimilation, promoting the evolution of complex adaptive traits over relatively short timescales[26, 84]. There is
debate regarding the validity of this hypothesis[84], however if such a mechanism occurs it would be particularly important for taxa
such as elasmobranchs, with long generation times[7], low effective population sizes[85] and mutation rates[86] that may retard the
pace at which genetic adaptations evolve[87, 88]. The relationship between behavioural plasticity, selection and persistence is nuanced
and context dependent[83, 89], however we suggest that the ability of R. typus to respond to environmental stimuli such as ecotourism
activity may hint at a previously underestimated resilience of elasmobranch taxa to contemporary environmental change.

Our results demonstrate the importance of utilising multiple statistical approaches in the analysis of behavioural data. On the basis of
individual parameters such as mean acceleration or standard deviation of turning angle and representing ecotourism as a binary
presence/absence variable, one might suggest that ecotourism has a negligible impact on the fine-scale behaviour of R. typus
(Table 1). This lack of responsiveness is not recovered when instead considering the distance between humans and sharks (IOD)
instead of presence/absence alone (Table 2). Whilst the sensory perception of R. typus, and indeed the majority of elasmobranchs is
poorly understood[90, 91], the field of view of the UAV utilised in this study would allow for IOD of over 20m, a distance at which sharks
may either not detect humans or not deem them to be of sufficient threat to warrant avoidance behaviours. When considering ‘overall’
behaviour instead of single behavioural parameters the significance of human activity for R. typus behaviour becomes clearer (Fig. 4a;
Fig. 5a; Table 3). Previous studies have produced superficially similar results[31] but do not provide comparable temporal resolution,
and do not utilise a fully quantitative approach. Moreover, both multinomial logistic regression and ethospace reconstruction reveal
individuality and context dependence to R. typus behavioural responses (Fig. 2; Fig. 5) which has not previously been reported. Whilst
an HMM approach has been applied previously to shark spatial ecology[92–95], this study is (to our knowledge) the first to use such a
method in the context of high-resolution shark movement data. We suggest that this approach should form an important component of
future studies, without which the nuanced and context dependent nature of behavioural responses to human activity may be neglected
entirely.

The importance of behavioural studies to ecology and conservation has long been understood[96]. By quantifying behaviour and
applying multiple statistical approaches to these data, we have demonstrated that the influence of human activity on R. typus
behaviour is significant, profound and context dependent. These behavioural consequences of ecotourism have concerning
implications for R. typus ecology, however also highlight the potential resilience of this species to environmental change. In light of
these results, we suggest that the initial behavioural state of individuals must be assessed prior to in-water ecotourism activities, and
that regulations regarding the minimum distance between human and shark should be revisited and reviewed in detail. In particular, we
suggest that sharks engaging in rapid, angular movements should be avoided. Future studies investigating the relationship between
ecotourism and elasmobranch behaviour should strive to use a biologically reasoned and rigorously quantitative approach wherever
possible. Such studies will form an integral component of global efforts to conserve and protect declining elasmobranch populations,
and as such ensuring reproducibility and ease of interpretation between studies should be of utmost importance.
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Figures

Figure 1

Images showing (a) the Bay of La Paz in Baja California Sur, Mexico where data collection took place; Polygons A1,A2 and A3
represent the whale shark refuge area in which certain restrictions regarding boat traffic apply. (b) the labelling of humans and sharks
for SLEAP analyses, with human swimmer mimicking ecotourist behaviour, swimming parallel to the shark maintaining a distance of
at least two metres.[34].
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Figure 2

There is no difference in mean behaviour between individuals interacting with humans and those not interacting with humans. The
total plot space represents the range of possible behaviours an individual could exhibit, with each data point representing a separate
individual. Enlarged points represent mean position in ethospace of each group (blue points indicate the absence of humans whereas
orange points indicate the presence of humans). As the mean value for each group overlaps with the 95% confidence ellipse of the
other group, there is not statistically significant difference between the mean values.

Figure 3

Linear regression plots displaying significant positive relationships between IOD and (a) mean speed, (b) minimum speed and (c)
eMaxB. The grey shaded area represents the 95% confidence interval at any given IOD value, and full regression output can be found in
Table 2.

Figure 4

Human presence (a) and IOD (b) both significantly influence the long-term probability (stationary state probability) of individuals
occupying a behavioural state characterised by high speed and high angularity. Red represents state 1, blue represents state 2 and
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green represents state 3. Error bars represent 95% confidence intervals for the respective datapoints.

Figure 5

Multinomial logistic regression coefficients demonstrate that both (a) human presence/absence (regression treats this as a binary
variable with human absence holding a value of zero and human presence a value of one) and (b) IOD significantly alter the probability
of transitioning between some (but not all) behavioural states. A and S refer to the relative angularity and speed of each state, where
↑,↓ and
→ represent relatively high, low and intermediate values. Red stars denote relationships found to be significant (p ≤ 0.05).


