Abouheif A (1999) A method for testing the assumption of phylogenetic independance in comparative data. Evol Ecol Res 1:895–909.
Angert AL, Crozier LG, Rissler LJ et al (2011) Do species’ traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689. doi: 10.1111/j.1461-0248.2011.01620.x
Arbetman MP, Gleiser G, Morales CL et al (2017) Global decline of bumblebees is phylogenetically structured and inversely related to species range size and pathogen incidence. Proceeding R Soc B Biol Sci 284:20170204. https://doi.org/10.1098/rspb.2017.0204
Aronson MFJ, La Sorte FA, Nilon CH et al (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc B Biol Sci 281:20133330. https://doi.org/10.1098/rspb.2013.3330
Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6:506–519. https://doi.org/10.2307/2269387
Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57:717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Boubou A, Migeon A, Roderick GK, Navajas M (2010) Recent emergence and worldwide spread of the red tomato spider mite, Tetranychus evansi: Genetic variation and multiple cryptic invasions. Biol Invasions 13:81–92. https://doi.org/10.1007/s10530-010-9791-y
Boulangeat I, Lavergne S, Van Es J et al (2012) Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients. J Biogeogr 39:204–214. https://doi.org/10.1111/j.1365-2699.2011.02581.x
Broennimann O, Thuiller W, Hughes G et al (2006) Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Glob Chang Biol 12:1079–1093. https://doi.org/10.1111/j.1365-2486.2006.01157.x
Ceballos G, Ehrlich PR, Barnosky AD et al (2015) Accelerated modern human – induced species losses: entering the sixth mass extinction. Sci Adv 1:1–5. https://doi.org/10.1126/sciadv.1400253
Cho S, Mitchell A, Mitter C et al (2008) Molecular phylogenetics of heliothine moths (Lepidoptera: Noctuidae: Heliothinae), with comments on the evolution of host range and pest status. Syst Entomol 33:581–594. https://doi.org/10.1111/j.1365-3113.2008.00427.x
Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: More models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109
Davis EB (2005) Comparison of climate space and phylogeny of Marmota (Mammalia: Rodentia) indicates a connection between evolutionary history and climate preference. Proc R Soc B Biol Sci 272:519–526. https://doi.org/10.1098/rspb.2004.2979
De Vienne DM, Hood ME, Giraud T (2009) Phylogenetic determinants of potential host shifts in fungal pathogens. J Evol Biol 22:2532–2541. doi: 10.1111/j.1420-9101.2009.01878.x
Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15. https://doi.org/10.1086/284325
Forister ML, Novotny V, Panorska AK et al (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci 112:442–447. https://doi.org/10.1073/pnas.1423042112
Franklin J (2013) Species distribution models in conservation biogeography: Developments and challenges. Divers Distrib 19:1217–1223. doi: 10.1111/ddi.12125
Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative Data: A Test and review of evidence. Am Nat 160:712–726. https://doi.org/10.1086/343873
Fritz SA, Purvis A (2010) Selectivity in mammalian extinction risk and threat types: A new measure of phylogenetic signal strength in binary traits. Conserv Biol 24:1042–1051. https://doi.org/10.1111/j.1523-1739.2010.01455.x
Gallagher AJ, Hammerschlag N, Cooke SJ et al (2015) Evolutionary theory as a tool for predicting extinction risk. Trends Ecol Evol 30:61–65. https://doi.org/10.1016/j.tree.2014.12.001
Ganaha-kikumura T, Ohno S, Kijima K et al (2012) Species composition of thrips (Thysanoptera: Thripidae) and spider mites (Acari: Tetranychidae) on cultivated chrysanthemum (Asteraceae) in Okinawa, southwestern Japan. Entomol Sci 15:232–237. https://doi.org/10.1111/j.1479-8298.2011.00501.x
Gaston KJ, Blackburn TM, Lawton JH (1997) Interspecific abundance-range size relationships: An appraisal of mechanisms. J Anim Ecol 66:579–601. doi: 10.2307/5951
Gilbert GS, Briggs HM, Magarey R (2015) The impact of plant enemies shows a phylogenetic signal. PLoS One 10:1–11. doi: 10.1371/journal.pone.0123758
Gilbert GS, Magarey R, Suiter K, Webb CO (2012) Evolutionary tools for phytosanitary risk analysis: Phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol Appl 5:869–878. doi: 10.1111/j.1752-4571.2012.00265.x
Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci 104:4979–4983. doi: 10.1073/pnas.0607968104
Godefroid M, Rasplus J-Y, Rossi J-P (2016) Is phylogeography helpful for invasive species risk assessment? The case study of the bark beetle genus Dendroctonus. Ecography 39:1197–1209. https://doi.org/10.1111/ecog.01474
Grbić M, Van Leeuwen T, Clark RM et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492. https://doi.org/10.1038/nature10640
Gregory RD, van Strien A, Vorisek P et al (2005) Developing indicators for European birds. Philos Trans R Soc B Biol Sci 360:269–288. https://doi.org/10.1098/rstb.2004.1602
Halstead NT, Hoover CM, Arakala A et al (2018) Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nat Commun 9:837. https://doi.org/10.1038/s41467-018-03189-w
Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: The rear edge matters. Ecol Lett 8:461–467. doi: 10.1111/j.1461-0248.2005.00739.x
Harmon LJ, Weir JT, Brock CD et al (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131. https://doi.org/10.1093/bioinformatics/btm538
Hawkins BA, Devries PJ (2009) Tropical niche conservatism and the species richness gradient of North American butterflies. J Biogeogr 36:1698–1711. https://doi.org/10.1111/j.1365-2699.2009.02119.x
Hong X-Y (2012) Agricultural acarology. China Agriculture Press, Beijing
Jarzyna MA, Jetz W (2016) Detecting the multiple facets of biodiversity. Trends Ecol Evol 31:527–538. doi: 10.1016/j.tree.2016.04.002
Jin P-Y, Tian L, Chen L, Hong X-Y (2018) Spider mites of agricultural importance in China, with focus on species composition during the last decade (2008–2017). Syst Appl Acarol 23:2087–2098. https://doi.org/10.11158/saa.23.11.1
Jombart T, Dray S (2010) Adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics 26:1–21. https://doi.org/10.1093/bioinformatics/btq292
Kellermann V, Loeschcke V, Hoffmann AA et al (2012) Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66:3377–3389. https://doi.org/10.1111/j.1558-5646.2012.01685.x
Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. https://doi.org/10.1093/bioinformatics/btq166
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581
Kishimoto H (2002) Species composition and seasonal occurrence of spider mites (Acari: Tetranychidae) and their predators in Japanese pear orchards with different agrochemical spraying programs. Appl Entomol Zool 37:603–615. https://doi.org/10.1303/aez.2002.603
Kolb A, Barsch F, Diekmann M (2006) Determinants of local abundance and range size in forest vascular plants. Glob Ecol Biogeogr 15:237–247. https://doi.org/10.1111/j.1466-822X.2005.00210.x
Krasnov BR, Poulin R, Mouillot D (2011) Scale-dependence of phylogenetic signal in ecological traits of ectoparasites. Ecography 34:114–122. https://doi.org/10.1111/j.1600-0587.2010.06502.x
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
Le Viol I, Jiguet F, Brotons L et al (2012) More and more generalists: two decades of changes in the European avifauna. Biol Lett 8:780–782. https://doi.org/10.1098/rsbl.2012.0496
Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220. https://doi.org/10.1088/1751-8113/44/8/085201
Matsuda T, Morishita M, Hinomoto N, Gotoh T (2014) Phylogenetic analysis of the spider mite sub-family tetranychinae (Acari: Tetranychidae) based on the mitochondrial COI gene and the 18S and the 5’ end of the 28S rRNA genes indicates that several genera are polyphyletic. PLoS One 9:e108672. https://doi.org/10.1371/journal.pone.0108672
McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. https://doi.org/10.1016/S0169-5347(99)01679-1
Migeon A, Nouguier E, Dorkeld F (2011) Spider Mites Web: A comprehensive database for the Tetranychidae. In: Trends in Acarology. pp 557–560
Miller JR (2005) Biodiversity conservation and the extinction of experience. Trends Ecol Evol 20:430–434. https://doi.org/10.1016/j.tree.2005.05.013
Navajas M, de Moraes GJ, Auger P, Migeon A (2013) Review of the invasion of Tetranychus evansi: Biology, colonization pathways, potential expansion and prospects for biological control. Exp Appl Acarol 59:43–65. https://doi.org/10.1007/s10493-012-9590-5
Orme D, Freckleton R, Thomas G et al (2013) caper: Comparative Analyses of Phylogenetics and Evolution in R. R package (version 0.5.2).
Passy SI (2012) A hierarchical theory of macroecology. Ecol Lett 15:923–934. https://doi.org/10.1111/j.1461-0248.2012.01809.x
Petit C, Dupas S, Thiéry D et al (2017) Do the mechanisms modulating host preference in holometabolous phytophagous insects depend on their host plant specialization? A quantitative literature analysis. J Pest Sci 90:797–805. https://doi.org/10.1007/s10340-017-0833-4
Popescu AA, Huber KT, Paradis E (2012) Ape 3.0: New tools for distance-based phylogenetics and evolutionary analysis in R. Bioinformatics 28:1536–1537. https://doi.org/10.1093/bioinformatics/bts184
Purvis A (2008) Phylogenetic approaches to the study of extinction. Annu Rev Ecol Evol Syst 39:301–319. https://doi.org/10.1146/annurev-ecolsys-063008-1
R Development Core Team (2018) A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Raje KR, Ferris VR, Holland JD (2016) Phylogenetic signal and potential for invasiveness. Agric For Entomol 18:260–269. https://doi.org/10.1111/afe.12158
Robles-Fernández ÁL, Lira-Noriega A (2017) Combining phylogenetic and occurrence information for risk assessment of pest and pathogen interactions with host plants. Front Appl Math Stat 3:1–9. doi: 10.3389/fams.2017.00017
Ronquist F, Teslenko M, Van Der Mark P et al (2012) Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029
Sekar S (2012) A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J Anim Ecol 81:174–184. https://doi.org/10.1111/j.1365-2656.2011.01909.x
Sih A, Ferrari MCO, Harris DJ (2011) Evolution and behavioural responses to human-induced rapid environmental change. Evol Appl 4:367–387. https://doi.org/10.1111/j.1752-4571.2010.00166.x
Silvestro D, Michalak I (2011) raxmlGUI : a graphical front-end for RaxML. Org Divers Evol 12:335–337. https://doi.org/10.1007/s13127-011-0056-0
Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. https://doi.org/10.1093/bioinformatics/btl446
Stukenbrock EH, McDonald BA (2008) The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol 46:75–100. https://doi.org/10.1146/annurev.phyto.010708.154114
Sullivan AP, Bird DW, Perry GH (2017) Human behaviour as a long-term ecological driver of non-human evolution. Nat Ecol Evol 1:0065. https://doi.org/10.1038/s41559-016-0065
Sun J-T, Lian C, Navajas M, Hong X-Y (2012) Microsatellites reveal a strong subdivision of genetic structure in Chinese populations of the mite Tetranychus urticae Koch (Acari: Tetranychidae). BMC Genet. 13:8. https://doi.org/10.1186/1471-2156-13-8
Van Petegem K, Boeye J, Stoks R, Bonte D (2016) Spatial selection and local adaptation jointly shape life-history evolution during range expansion. Am Nat 188:485–498. https://doi.org/10.1086/688666
Van Petegem K, Moerman F, Dahirel M et al (2018) Kin competition accelerates experimental range expansion in an arthropod herbivore. Ecol Lett 21:225–234. https://doi.org/10.1111/ele.12887
Verberk WCEP, van der Velde G, Esselink H (2010) Explaining abundance-occupancy relationships in specialists and generalists: a case study on aquatic macroinvertebrates in standing waters. J Anim Ecol 79:589–601. https://doi.org/10.1111/j.1365-2656.2010.01660.x
Williams SE, Shoo LP, Isaac JL et al (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6:e325. doi: 10.1371/journal.pbio.0060325
Willis CG, Ruhfel B, Primack RB et al (2008) Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proc Natl Acad Sci U S A 105:17029–17033. https://doi.org/10.1073/pnas.0806446105
Wilson PD (2008) The pervasive influence of sampling and methodological artefacts on a macroecological pattern: The abundance-occupancy relationship. Glob Ecol Biogeogr 17:457–464. https://doi.org/10.1111/j.1466-8238.2008.00385.x
Wright DH (1991) Correlations between incidence and abundance are expected by chance. J Biogeogr 18:463–466. https://doi.org/10.2307/2845487
Xue XF, Dong Y, Deng W et al (2017) The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene. Mol Phylogenet Evol 109:271–282. https://doi.org/10.1016/j.ympev.2017.01.009
Yanar D, Ecevit O (2008) Species composition and seasonal-occurrence of spider mites and their predators in sprayed and unsprayed apple orchards in Tokat, Turkey. Phytoparasitica 36:491–501. https://doi.org/10.1007/BF03020296