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Abstract
CMS-D2 is an economical and effective system for producing hybrid cotton seeds than arti�cial and
chemical emasculation methods. However, the unstable restoring ability of restorer lines is a main barrier
in the large-scale application of "three-line" hybrid cotton. Our phenotypic investigation determined that
the homozygous Rf1Rf1 allelic genotype had a stronger ability to generate fertile pollen than the
heterozygous Rf1rf1 allelic genotype. To decipher the genetic mechanisms that control the differential
levels of pollen fertility, an integrated metabolomic and transcriptomic analysis was performed on pollen
grains at two environments using four cotton genotypes differing in Rf1 alleles or cytoplasm. Totally
5,391 differential metabolite features were detected, and 369 speci�c differential metabolites (DMs) were
identi�ed between homozygous and heterozygous Rf1 allelic genotypes with CMS-D2 cytoplasm.
Additionally, transcriptome analysis identi�ed 2,490 differentially expressed genes (DEGs) and 96 unique
hub DEGs with dynamic regulation in this comparative combination. Further integrated analyses revealed
that several key DEGs and DMs involved in indole biosynthesis, �avonoid biosynthesis, and sugar
metabolism had strong network linkage with fertility restoration. In vitro application of auxin analogue
NAA and inhibitor Auxinole con�rmed that over-activated auxin signaling might inhibit pollen
development whereas suppressing auxin signaling partially promoted pollen development in CMS-D2
cotton. Our results provide new insight into how the dosage effects of the Rf1 gene regulate pollen fertility
of CMS-D2 cotton.

Key Message
Dose effects of Rf1 gene regulated retrieval mechanism of pollen fertility for CMS-D2 cotton.

Introduction
Cotton (Gossypium hirsutum L.) plays a key role to promote social and economic development worldwide
(Shahzad, et al. 2022). As an important cash crop in China, cotton productivity is frequently in�uenced by
several challenges, while utilization of hybrid vigor can increase cotton productivity and improve �ber
quality (Chen, et al. 2022; Shahzad, et al. 2019). As an economically ideal pollination control system,
cytoplasmic male sterility (CMS) can reduce seed production costs and improve seed purity and has been
applied to generate hybrid cotton seeds (Yu, et al. 2016). However, the abilities to restore pollen fertility of
CMS-D2 are generally in�uenced by the type of fertility restorer (Rf) genes, the nuclear background of
restorer lines, and the external environment (Wu, et al. 2017; Zhang, et al. 2020; Zuo, et al. 2022), which
seriously hinders the large-scale application of "three-line" hybrid cotton in production.

With the development of molecular biology and high-throughput sequencing technology, several major Rf
genes have been mapped and cloned for functional validation in rice (Hu, et al. 2012; Huang, et al. 2015;
Jiang, et al. 2022; Tang, et al. 2014), maize (Qin, et al. 2021), wheat (Melonek, et al. 2021) and rape (Liu,
et al. 2016). Moreover, some studies have con�rmed that Rf genes may exhibit dose effects on fertility
restoration ability (Cai, et al. 2013; Jiang, et al. 2022; Melonek, et al. 2021; Zhang, et al. 2021). In rice, Rf5



Page 4/28

and Rf6 genes can restore the fertility of HL-type indica CMS lines, and their dosage effects contribute to
the revival of pollen fertility (Zhang, et al. 2021). Another study revealed that multiple alleles of Rf3 and
Rf4 appeared to be responsible for variation in the pollen fertility of rice (Cai, et al. 2013). In cotton, Rf1

can restore pollen fertility of both CMS-D2 and CMS-D8 lines while Rf2 can only restore the CMS-D8 line
(Feng, et al. 2021; Wu, et al. 2011; Zhang and Stewart 2001). However, the cloning veri�cation and fertility
restoration mechanisms of these two restorer genes have not been reported so far. Our previous studies
have found that the CMS-D2 sterile cytoplasm had negative effects on pollen fertility as well as seed
cotton yield, and the homozygous Rf1Rf1 allelic genotype SR showed stronger fertility restoration ability
than the heterozygous Rf1rf1 allelic genotype SH under high-temperature (HT) stress (Zhang, et al. 2022;
Zuo, et al. 2022). Unfortunately, the molecular basis for how the different alleles of the Rf1 gene regulate
pollen fertility in CMS-D2 cotton remains largely unclear. Therefore, further research on the dosage effects
of the Rf1 gene will help strengthen the selection and breeding of stable restorer lines in the future.

Considering the complexity of the molecular mechanism underlying pollen fertility restoration for CMS in
�owering plants, many studies have already investigated the key metabolites and regulatory factors
related to the growth of pollen tubes, double fertilization, and seed development (Gomez, et al. 2015; Guo
and Liu 2012). Major endogenous phytohormones including auxin (Cecchetti, et al. 2008; Min, et al.
2014), gibberellin acid (GA) (Chhun, et al. 2007), and jasmonic acid (JA) (Fu, et al. 2015; Khan, et al.
2020) were reported to be involved in regulating pollen development and anther dehiscence. Starch
accumulation is crucial for pollen maturation and viability during the late stages of pollen development
(Wu, et al. 2016), and the differential levels of starch along with Cys proteases and AMS protein are often
associated with the reduction of pollen viability (Datta, et al. 2002; Li, et al. 2006; Sorensen, et al. 2003).
In addition, �avonoids are free radical scavengers and components of pollen coat and contribute to
anther fertility (Filkowski, et al. 2004; Hsieh and Huang 2007). Besides, an imbalance in lipid metabolism
may disrupt anther cuticle and pollen development in plants (Ariizumi and Toriyama 2011; Shi, et al.
2015; Zhang, et al. 2022). Research on the CMS and fertility restoration mechanism determined that
excess ROS accumulation most likely caused pollen sterility in plants (Wan, et al. 2007; Yang, et al. 2018;
Zhang, et al. 2019; Zhang, et al. 2022). Recently, metabolomic and transcriptome analyses have become
an important research strategy for developmental biology, and their integration data can provide useful
insights into the regulatory mechanism of pollen development in CMS crops (Zhang, et al. 2022).
However, the genetic determinants regulating pollen fertility restoration are not yet investigated more
thoroughly in CMS-D2 cotton.

In this study, the pollen fertility of SH with one dominant Rf allele (heterozygous Rf1rf1) was found to be
signi�cantly lower than SR with two dominant Rf alleles (homozygous Rf1Rf1) in CMS-D2 cotton. An
integrated metabolomic and transcriptome analysis was then performed at two environments using four
cotton genotypes differing in Rf1 alleles or cytoplasm. Our results identi�ed how Rf1 gene dosage
in�uences the pro�les of metabolites and transcripts in the pollen grains of various Rf1 genotypes in
cotton. Furthermore, the potential genetic determinants that revive pollen fertility in homozygous and
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heterozygous Rf1 allelic genotypes of CMS-D2 cotton were also proposed. This study provides a new
perspective for further elucidating the genetic mechanism of fertility restoration for CMS cotton.

Materials and methods
Plant materials and growth conditions

In this study, four cotton near-isogenic lines (NILs) with homozygous and heterozygous Rf1 alleles
carrying normal upland cotton (AD1) and CMS-D2 sterile cytoplasm (denoted N and S, respectively) were
used to investigate the dose effects of restorer gene on pollen fertility. Speci�cally, these four genotypes
were named NR [N(Rf1Rf1)], NH [N(Rf1rf1)], SR [S(Rf1Rf1)], and SH [S(Rf1rf1)], and the breeding details
were described in our previous studies (Wu, et al. 2014; Zhang, et al. 2020; Zhang, et al. 2022; Zuo, et al.
2022). All harvested seeds were conserved at the Cotton Heterosis Utilization Laboratory, the Institute of
Cotton Research of Chinese Academy of Agricultural Science (ICR-CAAS). During the last week of April
2020, the seeds of selected materials were planted at the Baibi East breeding base of ICR-CAAS located in
the Yellow River Basin cotton region (Anyang, Henan, China) as well as in the experimental �eld of the
Cotton Research Institute of Jiang Xi Province located in the Yangtze River Basin cotton region (Jiujiang,
Jiangxi, China), respectively. During the cotton full-bloom stage in summer, mature pollen samples were
collected from ten representative plants and combined for each biological replication from NR, NH, SR,
and SH both in Anyang and Jiujiang. All harvested samples were quickly frozen in liquid nitrogen and
then stored at -80℃ before further utilization.

Untargeted metabolomics data acquisition and mass spectrometry analysis

For metabolic pro�ling, frozen pollen for each sample with six biological replicates was �rst thawed on
ice. About one gram of mature pollen for each sample was used to make powder form and extracted with
120 µL of precooled 50% methanol, vortexed for 1 min, and then incubated at room temperature for 10
min. Later, the extraction mixture was stored overnight at − 20℃. After centrifugation at 4000 g for 20
min, the supernatants were transferred into new 96-well plates. Metabolite accumulation was measured
six times utilizing fully independent tissue samples. In addition, pooled QC samples were also prepared
by combining 10 µL of each extraction mixture. All samples' quantitative metabolic data were acquired by
the LC-MS system (www.lc-bio.com). The online Kyoto Encyclopedia of Genes and Genomes (KEGG) and
HMDB database were used to annotate the metabolites' physical and chemical properties and biological
functions. Meanwhile, an in-house fragment spectrum library of metabolites was further used to validate
the metabolite identi�cation. The signi�cant differential metabolite features (DMFs) or metabolites (DMs)
were screened with the fold change ≥ 2 or ≤ 0.5 between the target pollen samples, the importance in
projection (VIP) value ≥ 1 combined with q-value < = 0.05 based on the Benjamini-Hochberg test.

RNA extraction, library construction, and data analysis

Transcriptome sequencing was performed with three biological replicates on the same materials used for
metabolic pro�ling (LC-Bio, Hangzhou, China). Total RNA from pollens for each sample was extracted

http://www.lc-bio.com/
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using the TIANGEN RNAprep Pure Plant Plus Kit (Polysaccharides & Polyphenolics-rich; DP441)
according to the vendor’s protocol. After assessing the purity, quantity, and integrity of total RNA, the
cDNA was then synthesized by SuperScript™ II Reverse Transcriptase (Invitrogen, cat.1896649, USA). The
�nal cDNA libraries were constructed following the protocol for the mRNA-Seq sample preparation kit
(Illumina, San Diego, CA, USA). Finally, 2× 150 bp paired-end sequencing (PE150) was performed on an
Illumina NovaSeq™ 6000 platform (LC-Bio, Hangzhou, China) following the manufacturer’s recommended
protocol.

After removing the low-quality reads that contained adaptor contamination and undetermined bases, the
remaining clean reads were then mapped to the upland cotton TM-1 reference genome (Wang, et al.
2019) using HISAT2 (https://ccb.jhu.edu/software/hisat2). After the comprehensive transcriptome was
generated using gffcompare (https://github.com/gpertea/gffcompare/), and then StringTie was used to
assess the expression level for mRNAs via calculating FPKM. Further identi�cation of differentially
expressed genes (DEGs) between samples was performed using R package edge R
(https://bioconductor.org/packages/release/bioc/html/edgeR.html) with fold change ≥ 2 or ≤ 0.5 along
with an adjusted P-value < 0.05. The GOseq R package (Young, et al. 2010) and KOBAS software (Mao, et
al. 2005) were used for Gene Ontology (GO) functional categories analysis and to test the statistical
enrichment of the DEGs in the KEGG pathways, in which GO terms or KEGG pathways with an adjusted P-
value < 0.05 were considered to be signi�cantly enriched.

Quantitative real-time PCR analysis

Total RNA was isolated from pollen samples using the TIANGEN RNAprep Pure Plant Plus Kit
(Polysaccharides & Polyphenolics-rich; DP441), and one microgram (µg) of total RNA from individual
replications was used for cDNA synthesis using a PrimeSctipt™ RT reagent Kit with gDNA Eraser (TaKaRa,
Dalian, China). Then, qRT-PCR analysis was performed on a Mastercycler ep realplex instrument
(Eppendorf, Germany) using TransStart Top Green qPCR SuperMix (TransGen Biotech, Beijing, China).
The relative expression level of genes was calculated using the 2−ΔΔCt method as previously described
(Wu, et al. 2017; Zhang, et al. 2019). Expression levels were normalized by the G. hirsutum Histone3
(GhHis3) as an internal control to standardize RNA content, and each gene in each sample was analyzed
with three biological replicates. Gene-speci�c primers of qRT-PCR are listed in supplementary Table S1.

Exogenous application of the IAA inhibitor and promoter

To explore the potential role of IAA in regulating cotton anther development, the �ower buds of all four
cotton NILs were sprayed with 10 and 100 µM NAA, and deionized water was sprayed as a negative
control (Mock). Besides, SR and SH were also pretreated with 20 µM IAA inhibitor Auxinole. The above
different concentrations of IAA inhibitor and promoter solutions were sprayed onto all buds of four cotton
lines in the afternoon once every two days, with at least ten plants per treatment. During spraying, the
anther morphology of each material for each treatment was observed and recorded simultaneously after
the �rst treatment; that is, the number of �owers with fewer pollen grains or dehiscence anther, and the
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total �owers were counted, and thus �nally the percentage of �owers with fewer pollen grains was
calculated.

Phenotypic analysis and determination of pollen viability

Pollen grains from representative �owers were stained with 0.5% 2,3,5-triphenyltetrazolium chloride (TTC)
(Solarbio, Beijing, China) solution to observe pollen viability, as described in detail in our previous study
(Zhang, et al. 2020). Speci�city, TTC reacts with dehydrogenase in normal anther tissue and turns red.
Thus, viable pollen appeared red, and partially viable pollen appeared reddish, whereas dead as well as
sterile pollen appeared colorless. Images of TTC staining pollen grains were captured under a bright �eld
using an Olympus SZX16 research stereo microscope system
(https://lifescience.evidentscienti�c.com.cn/en/microscopes/stereo/szx16/).

Statistical analysis
Results in this study were presented as the means of three biological replicates ± the standard deviation
(SD) and bar graphs were displayed with the GraphPad Prism 8 software. Statically signi�cance was
calculated among the different treatments and Mock using the two-way ANOVA followed by the least
signi�cant difference (LSD) test, and values shown with different superscript letters were considered
signi�cantly different (P-value < 0.05). The statistical signi�cance analysis of gene expression levels was
conducted using a two-tailed unpaired Student’s t-test, and a P-value < 0.05 was considered a statistically
signi�cant difference.

Results
Phenotypic comparison of male fertility in four cotton near-isogenic lines (NILs) at two environments

Our previous study has found that the anther fertility of the sterile cytoplasmic restorer lines SH and SR
was signi�cantly lower than that of the normal upland cotton cytoplasmic restorer lines NH and NR under
HT stress (Zuo, et al. 2022). Here, the representative anther morphology and pollen viability among four
cotton NILs were compared at both Anyang (AP) and Jiujiang (JP) environments. Obviously, SH and SR
showed a decreased �lament length and pollen viability, and an increase in the exposed length of stigma
in both environments, especially in the Yangtze River Basin cotton region where the summer temperature
is higher (Fig. 1). However, there was no obvious difference in the external morphology and size of the
intact �ower among these four cotton NILs (Fig. 1A, B). Considering that in the CMS-D2 sterile cytoplasm,
SH with heterozygous Rf1 allele showed an obvious reduction in pollen amount and pollen viability than
SR with homozygous Rf1 allele, whereas there was no obvious difference in pollen fertility between NH
and NR with the same normal upland cotton (AD1) cytoplasm but different Rf1 alleles (Fig. 1C-J). These
�ndings suggest that the dose of the restorer gene may be involved in differences in pollen fertility
restoration. Thus, a comprehensive comparative analysis of metabolomic and transcriptome sequencing
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data was conducted to further explore the molecular basis of how the Rf1 dosages affect pollen
development in cotton CMS-D2 restorer lines.

Overview of metabolite abundance in various Rf1 genotypes of CMS-D2 cotton

The quantitative and qualitative metabolic data among four cotton NILs were �rst comparatively
analyzed in both environments to identify key metabolic substances. Principal component analysis (PCA)
and correlation analysis based on metabolites revealed obvious differences among studied samples (Fig.
S1). In PCA, both PCA1 and PCA2 accounted for 27.27% and 16.35% of sample variation, respectively.
PCA with all metabolite features showed SH had a distinct cluster from other genotypes. In addition,
metabolomic pro�les of different samples showed signi�cant differences under both environments (Fig.
S1A). The correlation analysis further indicated that metabolomic pro�les displayed good repeatability
and reliability (Fig. S1B).

A total of 5,391 differential metabolite features (DMFs) were detected in both environments. Of which,
530, 579, 195, and 1,678 metabolite features had signi�cantly higher abundance in AP_NH vs AP_NR,
AP_SH vs AP_SR, JP_NH vs JP_NR, and JP_SH vs JP_SR, respectively. Similarly, totally 664, 864, 152, and
1,449 metabolite features showed lower abundance among the above four various comparisons,
respectively (Fig. 2A, Table S2). The distribution of overlapped or speci�cally accumulated metabolite
features indicated dynamic changes in each Rf1 genotype. A total of 369 metabolites overlapped in SH vs
SR under both environments were identi�ed, of which 147 DMFs had higher abundance while 222
presented lower abundance in SH compared with SR (Fig. 2B, C). Additionally, heat map analysis also
showed the quantitative abundance of these metabolic substances was signi�cantly different in SH in
each environment (Fig. 2D). The majority of differential metabolites (DMs) speci�c in SH vs SR belonged
to fatty acyls, carboxylic acid and derivatives, indoles and derivatives, and �avonoids (Fig. 2E). It is
noteworthy that speci�c DMs in SH vs SR were signi�cantly enriched to ‘Glycerolipid metabolism',
'Linoleic acid metabolism' and 'Plant hormone signal transduction' (Fig. 2F), indicating the restorer gene
Rf1 dosages may affect pollen development through interaction with the sterile cytoplasm caused large
differences in the composition and concentration of metabolic substances involved in lipid metabolism,
�avonoid metabolism, and auxin signaling pathways.

Overview of transcripts pro�ling in various Rf1 genotypes of CMS-D2 cotton

RNA sequencing was also performed with three biological replicates on the same pollen samples of four
cotton NILs used for metabolic pro�ling to analyze the pro�les of transcripts in different environments. A
total of 1.038 billion raw reads were generated from 24 samples with an average read length of 150 bp.
After stringent quality checks followed by data �ltering, an average of 6.41 Gb valid data were obtained
for each sample, and the ratio of valid data and sequencing Q30 values of all samples were greater than
98%, indicating the accuracy of the data obtained in this study (Table S4). PCA and correlation analysis
based on all the identi�ed genes revealed obvious differences among studied samples (Fig. S2). In PCA,
SH clustered separately from other Rf1 genotypes that stated an obvious difference in gene expression,
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especially in the JP environment of the Yangtze River Basin cotton region (Fig. S2A). Additionally, the
correlation analysis among different samples further indicated the reliability and good repeatability of
sampling (Fig. S2B).

RNA-seq analyses showed that a large transcriptome reprogramming occurred in all Rf1 genotypes of
CMS-D2 cotton (Table S5). A total of 2,490 differentially expressed genes (DEGs) were identi�ed in the
four pairwise comparisons. Speci�cally, 100 and 235 DEGs were up- and down-regulated in AP_NH vs
AP_NR, whereas 243 up- and 100 down-regulated DEGs were identi�ed in JP_NH vs JP_NR. Likewise,
AP_SH vs AP_SR and JP_SH vs JP_SR comparative combinations showed more DEGs, that is, 561 and
1,484 total DEGs, respectively, of which 473 up- and 88 down-regulated DEGs were identi�ed in the AP
environment, while 1,305 and 179 DEGs were up- and down-regulated in JP environment (Fig. 3A, Table
S5). Furthermore, a total of 96 DEGs unique to SH vs SR comparative combination under both
environments were also identi�ed, which may be involved in Rf1 dosage to regulate pollen fertility of
CMS-D2 restorer lines (Fig. 3B, C). Hierarchical cluster analysis showed the expression pro�les of several
speci�c DEGs were signi�cantly higher or lower in SH than in other Rf1 genotypes. The majority of genes
annotated with LHY, PME, At3g48460, PCMP-E32, SS2, and AGPS1 had shown higher regulation
expression in SH. Whereas the HSP genes that regulate stress response exhibited signi�cant down-
regulation in SH compared with other Rf1 genotypes in both environments (Fig. 3D). Subsequently, we
further conducted GO functional classi�cation and KEGG pathway enrichment analysis on these 96
speci�c DEGs (Fig. S3, Tables S6 and S7). Many speci�c DEGs showed functional annotation to the
regulation of transcription, response to abscisic acid, nucleus, cytoplasm, and binding to ATP (Fig. S3A,
Table S6), while had pathways enrichment in 'Flavonoid biosynthesis', 'Circadian rhythm – plant', and
'Indole alkaloid biosynthesis' (Fig. S3B, Table S7).

Regulatory network associated with pollen fertility in various Rf1 genotypes of CMS-D2 cotton

The association between transcripts and metabolites permits to identify of biological networks of target
traits and the �nal part of the co-expression network is shown in Fig. 4A. Here, several differential genes
and metabolites involved in indole biosynthesis, sugar metabolism, and �avonoid biosynthesis had
shown strong network linkage with pollen fertility. These can be therefore considered as hub genes and
metabolites that in�uenced the mechanism of pollen devolvement from pollen germination to maturity.
Most of the hub metabolites were higher accumulated in SH than in SR while their abundance in NH was
similar to that of NR, especially in the JP environment of the Yangtze River Basin cotton region (Fig. 4B).
In particular, auxin pathway compounds such as 1H-Indole-1-carboxamide, 6-chloro-2,3-dihydro-5-methyl-
N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl] showed signi�cantly higher abundance in SH. Among
�avonoid compounds, isorhamnetin, patuletin, and quercetin 3-(6'-malonyl-glucoside) had higher
accumulation in SH than that in SR. Also, erlose and palmitoyl ethanolamide involved in the sugar
metabolism pathway presented higher abundance in SH (Fig. 4B, Tables S2 and S3). Further qRT-PCR
analysis con�rmed that the expression levels of hub genes such as SARF4, G9 and AACT, PME28 and
PME58 involved above three key pathways were signi�cantly higher in SH than other genotypes (Fig. 4C-
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G). In brief, the disruption of metabolites and their regulatory genes most likely produced discrepancies in
biochemical and molecular processes linked with anther development. Furthermore, these changes might
cause dysfunction in the interactions among the nucleus Rf1 gene and sterile cytoplasmic genome. This
�nally led to the difference in pollen fertility and viability in SH as compared to SR. Further in-depth
research on hub genes and metabolites can be helpful to understand the genetic control of pollen fertility
in CMS-D2 cotton.

Exogenous auxin treatment inhibits pollen development while inhibitor partially promote pollen
development in CMS-D2 cotton

Molecular evidence has shown that auxin regulates pollen germination and pollen tube growth in plants
(Zhang, et al. 2018). To further explore the potential role of auxin in regulating pollen fertility of CMS-D2
cotton, exogenous 10 and 100 µM auxin analogue NAA were applied to the �ower buds of four cotton
NILs, and 20µM auxin inhibitor Auxinole were also simultaneously applied to SH and SR in vitro. As
expected, the percentage of �owers with fewer pollen grains in four cotton NILs showed a statistically
signi�cant increase after treatment with different concentrations of NAA, especially in 100 µM NAA
treatment, compared with the corresponding Mock (Fig. 5). Conversely, compared with the Mock, the
percentage of �owers with fewer pollen grains presented a statistically signi�cant decrease only in SH
after the 20µM Auxinole treatment (Fig. 5B). Moreover, there were signi�cant differences in percentage of
�owers with fewer pollen grains between different Rf1 genotypes, namely between NR and NH, as well as
between SR and SH, under low concentration of 10 µM NAA treatment, but no signi�cant differences were
found between them under high concentration of 100 µM NAA treatment (Fig. 5). These demonstrated
that exogenous auxin treatment inhibited pollen development, whereas the application of auxin inhibitor
Auxinole signi�cantly improved the pollen fertility in SH, indicating the balance of auxin may be
necessary to decipher pollen sterility in CMS-D2 cotton.

To further reveal the role of auxin signaling on pollen fertility, expression pro�les of ten key genes were
further con�rmed in the pollen grains of treated plants through qRT-PCR analysis. Most of the selected
genes were annotated to auxin-responsive genes and encoded as GH3, AUX|IAA, and SAUR family genes
(Fig. S4). The analysis showed that most GH3 and AUX|IAA-related genes had signi�cant differential
expression in NAA-treated pollen grains compared to the Mock (Fig. 6). In pollens of NR and NH, GH3,
AUX|IAA, and TIR1 family genes showed different degrees of higher expression, while SAUR genes
presented a signi�cant downward expression (Figs. 6A-E, S4). For SR and SH, the expression of GH3.17
and AUX22D displayed a gradual increase trend, but SAUR32 and IAA14-2 showed a downward trend
after different concentrations of NAA treatments. Conversely, the expression of GH3.17 and IAA14-2
decreased after auxin inhibitor treatment (Fig. 6F-J). These results suggest that homozygous and
heterozygous Rf1 gene materials possibly mediated pollen fertility through activating auxin signaling.
Additionally, we further determined a signi�cant difference in expression pro�les of �avonoid-related
genes AACT and G9 and sugar metabolism-related genes PME58 and PME28 described above in
response to auxin or inhibitor treatments (Figs. 4, S5). However, further research would be necessary to
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dissect how the interaction among various metabolic pathways involved has synergistic or antagonistic
effects on modulating the mechanism of fertility restoration in CMS-D2 cotton.

Discussion
The Rf1 gene does have dosage effects on pollen fertility restoration for CMS-D2 cotton

The combination of CMS and restorer lines is indispensable for the development of elite "three-line"
hybrid varieties (Kim and Zhang 2018), but the restoring abilities of restorer lines largely depend on
genetic background and diversity of fertility restorer alleles (Cai, et al. 2013; Jiang, et al. 2022; Melonek, et
al. 2021; Zhang, et al. 2021). For example, the Rf3 and Rf4 can restore the fertility of the wild-abortive type
CMS (CMS-WA) in rice, and the genotype with Rf3 − 4Rf3 − 4/Rf4 − 4Rf4 − 4 possessed the strongest restoring
ability, and genetic effects of Rf4 alleles appeared to be strong than that of Rf3 (Cai, et al. 2013). Similarly,
the Rf5 and Rf6 contribute to the fertility restoration process in Honglian (HL)-type japonica CMS lines.
The lowest fertility was observed in lines with the Rf5rf5rf6rf6 genotype whereas the Rf5Rf5Rf6Rf6

genotype showed the highest ability to produce fertile pollen. Therefore, the additive and dosage effects
of Rf5 and Rf6 controlled the percentage of fertile pollen in CMS rice (Zhang, et al. 2021). Another
research determined that rice hybrids harboring two restorer genes have a more stable seed-setting rate
than plants containing only one Rf gene (Zhang, et al. 2017). Recent research has identi�ed multiple Rf
genes in the genome of chili pepper. However, plants homozygous for the recessive Rf1 (rf1rf1Rf2Rf2)
produced lower pollen grains compared to Rf2 (Rf1Rf1rf2rf2). This may be due to that Rf1 is the main
restorer gene while Rf2 is the minor restorer gene in chili pepper (Zhang, et al. 2022). In cotton, Rf1 and
Rf2 are identi�ed as the main fertility restorer genes. The dominant Rf1 can restore pollen fertility in both
CMS-D2 and CMS-D8 systems, whereas the dominant Rf2 can only restore the fertility of CMS-D8 (Kohel,
et al. 1984; Meyer 1975; Weaver and Weaver 1977; Zhang and Stewart 2001). Our previous �eld
evaluation observed allelic differentiation in the Rf1 gene caused variation in pollen fertility and pollen
germination rate in CMS-D2 cotton (Zuo, et al. 2022). Consistently, our investigation further con�rmed a
homozygous Rf1Rf1 (SR) genotype showed higher pollen fertility than heterozygous Rf1rf1 (SH)
genotypes in CMS-D2 cotton at both environments (Fig. 1A, B). These various Rf1 allelic genotypes can
be the ideal material to study the interaction between the nucleus and the cytoplasmic genome. In
addition, these restorer lines will be useful to improve the e�ciency of "three-line" hybrid breeding in
cotton.

The dose effects of Rf1 altered the dynamics of metabolites and transcripts in pollen of CMS-D2 cotton

The restorer lines differing in Rf1 alleles with CMS-D2 or upland cotton cytoplasm can offer a better
platform to understand the functional mechanism of fertility restoration in CMS-D2 cotton. This study
compared the metabolites and transcripts pro�les in pollen grains of four cotton genotypes containing
homozygous and heterozygous Rf1 alleles. Speci�cally, our results revealed a signi�cant difference in
metabolite substances along with gene regulation between the heterozygous and homozygous Rf1 allele
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genotypes of CMS-D2 (Fig. 2, 3). Importantly, the integrated metabolomic and transcriptomic analysis
further uncovered key DEGs and DMs involved in indole alkaloid and �avonoid biosynthesis pathways
between homozygous and heterozygous Rf1 allele combinations (Fig. 4). Since Rf genes opted for
diverse ways to restore fertility in plants, the key roles of auxin and �avonoids are comprehensively
discussed in the pollen fertility of CMS-D2 cotton. Auxin, as an important hormone, is an important
regulator of growth and development in plants and can in�uence sexual reproduction including the
development of stamens, gynoecia, and ovary. It further promotes the maturation of egg cells along with
the polar development of the embryo (Aloni, et al. 2006; Mol, et al. 2004; Nemhauser, et al. 2000). IAA
functional activities were also found to in�uence pollen tube growth in Torenia fournieri (Wu, et al. 2008).
Also, it can initiate anther dehiscence (Cecchetti, et al. 2008), affect stamen development, and its �ow can
improve the elongation of stamen �lament (Hirano, et al. 2008). In this study, IAA-related compounds had
a higher abundance in the heterozygous Rf1 allele genotype than homozygous Rf1 allele genotype of
CMS-D2, but there was no signi�cant change in two cotton lines with the normal upland cotton
cytoplasm (Fig. 4B). This means allelic differentiation in the Rf1 gene might generate various species of
auxin compounds in sterile cytoplasm. These qualitative and quantitative metabolic changes ultimately
lead to shorter �laments and lower fertility in Rf1rf1 genotypes of CMS-D2 compared to the other
genotypes (Fig. 1).

Auxin signaling modulates the retrieval of pollen fertility for CMS-D2 cotton

Auxin-responsive genes were broadly grouped into three major classes including AUX|IAA, SAUR, and GH3
(Guilfoyle 1999), and have been shown to participate in the regulation of anther dehiscence and pollen
development (Min, et al. 2014; Zhou, et al. 2015). Previous studies revealed ARF17 regulated the
expression of CalS5 and this gene was found to be essential for pollen wall formation (Yang, et al. 2013).
The overexpression of GH3.9 appeared to reduce plant height, silique size, and stamen length in
Arabidopsis (Zhou, et al. 2015). Importantly, SAUR39 acts as a negative regulator for auxin synthesis and
transportation, and overexpression of SAUR39 promotes the senescence of leaves and inhibits growth
and yield in rice (Kant, et al. 2009). Overexpression studies on AtIAA31 reported that it may cause early
development arrest of the shoot apical meristem and ApAux/IAA3 plants exhibited similar auxin-related
aberrant phenotype and delay growth (Sato and Yamamoto 2008; Yang, et al. 2019). Besides, the genes
such as GH3, SAUR, and AUX|IAA have been reported to induce negative effects on pollen development
(Bemer, et al. 2017; Kant, et al. 2009; Sato and Yamamoto 2008; Zhou, et al. 2015). In this study, many
auxin-responsive genes such as GH3, SAUR, and AUX|IAA were up-regulated in the heterozygous Rf1 allele
genotype (Fig. S4). These results suggest that the allelic differentiation in the Rf1 gene may contribute to
pollen fertility by modulating the appropriate auxin level. In brief, the allelic differentiation in Rf1 most
probably mediated dynamic changes of GH3, SAUR, and AUX|IAA encoding genes in CMS-D2 cotton. On
the other way, excessive accumulation of auxin caused the up-regulation of auxin-responsive genes in the
heterozygous Rf1 allele genotype, which ultimately resulted in reduced pollen viability. This �nding was
consistent with the previous study in cotton (Min, et al. 2014). Our results further con�rmed that
exogenous auxin treatment not only produced a higher number of �owers with fewer pollen grains in the
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heterozygous Rf1 allele genotype but also an imbalance of the expression of auxin-responsive genes. In
contrast, the application of Auxinole reduced the percentage of �owers with fewer pollen grains in the
heterozygous Rf1 allele genotype as well as altered the expression of auxin target genes (Fig. 5, 6). In
addition, it has been stated that circadian rhythms control auxin response genes in the plant (Covington
and Harmer 2007). Wu, et al. determined that the circadian rhythm pathway differs between CMS-D2 and
its fertile lines (Wu, et al. 2017). Both auxin and the circadian clock annotated genes play pervasive roles
to mediate various metabolic functions linked with the mechanism of �owering and pollen fertility in
CMS cotton (Hocq, et al. 2017; Kim, et al. 2017; Sanchez, et al. 2011). In the Rf1rf1 genotype of CMS-D2,
the higher expression of circadian clock LHY genes might cause �owering growth dysfunction and �nally
result in a higher percentage of sterile pollen phenotype (Fig. 3D). Taken together, we therefore infer that
the Rf1 allelic effects may regulate pollen fertility of CMS-D2 cotton via auxin signaling.

Flavonoids along with sugars facilitate the revival of pollen fertility for CMS-D2 cotton

Flavonoids are a larger group of secondary metabolites, abundant in mature pollen, and it has been
hypothesized that �avonoids protect nucleic acids in pollen (Pacini and Hesse 2005; Schijlen, et al. 2004;
Winkel-Shirley 2001). Moreover, �avonoids are important signaling molecules, fertility regulators, and
auxin transporters in plants. Previous studies have shown the roles of �avonoids in male fertility and
sexual reproduction in many plant species (Kong, et al. 2020; Mo, et al. 1992; Wang, et al. 2020). MYB
transcription factors play important roles in the regulation of gene expression during plant growth and
mainly participate in primary and secondary metabolism, including anthocyanin and �avanols
biosynthesis (Gonzalez, et al. 2008; Stracke, et al. 2007). Overexpression of cotton GhMYB24 in
Arabidopsis caused �ower malformation, shorter �laments, non-dehiscent anthers, and fewer viable
pollen grains (Li, et al. 2013). Consistent with previous research, our results detected that several
metabolites as well as genes linked with �avonoids components had signi�cant differential regulation
between homozygous and heterozygous Rf1 allelic genotypes of CMS-D2 (Fig. 4B). In particular, the
dosage effects of Rf1 alleles may cause changes in the regulation of �avonoids related genes as well as
the composition of �avonoids substances (Fig. 4B, D, E). This most likely breaks the ROS balance that
results in complex biological disorders during anther development and produces lower fertile pollen in
heterozygous Rf1 allelic genotypes of CMS-D2 (Fig. 1). As high oxidative stress is prevailing in response
to disruption in �avonoids, therefore comprehensive research on �avonoid compounds could be crucial to
explore the genetic architecture of fertility restoration in CMS-D2 cotton. In plants, sugar derivatives such
as pectin, starch, and cellulose are the basic source of energy and structural constituents for plant cells
(Shi, et al. 2015; Yu, et al. 2015). The pectic polymers, cellulose, and hemicellulose are considered the
main component of pollen walls (Hasegawa, et al. 2000). The inhibition of pectin formation and
degradation leads to a delay in pollen development, partial male infertility, and reduced fruiting rates (Wei,
et al. 2019; Zhang, et al. 2010). In the heterozygous Rf1 allele genotype, the higher regulation of pectin-
encoding genes including PME21, PME28, PME41, and PME58 maybe weaken the impact of Rf1rf1 to
restore complete pollen fertility via disruption in the level of pectin during pollen wall formation (Fig. 4A, F,
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G). Collectively, we deduce that the Rf1 dosage may regulate pollen fertility restoration for CMS-D2 cotton
through �avonoid biosynthesis along with sugar metabolism.

Potential mechanism of Rf1 dose effects on pollen fertility restoration for CMS-D2 cotton

Based on our �ndings of this research along with those of previous studies, we proposed a potential
regulatory model showing how allelic differentiation of Rf affects the pollen fertility in CMS-D2 cotton
(Fig. 7). In the CMS-D2 cotton system, nucleo-cytoplasmic interaction between Rf1 and orf610a mediate
the balance of ROS production and energy homeostasis to restore normal pollen development (Zhang, et
al. 2020; Zhang, et al. 2022). Additionally, the Rf1 gene may signi�cantly alter the pro�les of key genes
and metabolites, such as auxin, �avonoids, and sugars that may be tightly interlinked with pollen fertility
restoration for CMS-D2 cotton. In the heterozygous Rf1rf1 genotype SH with CMS-D2 cytoplasm,
excessive accumulation of auxin caused over-activated auxin signals, which may ultimately lead to lower
pollen fertility by promoting �avonoid synthesis and inhibiting sugar metabolism. Comparatively, the
homozygous Rf1Rf1 allelic genotype SR probably has a strong ability to maintain stable nucleo-
cytoplasmic interaction with orf610a via modulating appropriate auxin signaling, and the various
compounds related to auxin, �avonoids, and sugars possibly maintain energy homeostasis to generate
normal fertile pollen. However, some hypothetical interactions in the regulatory network of how Rf1

dosage regulates pollen fertility remain largely indistinct, and further in-depth experiments are still needed
to explore.

Conclusions
In summary, the present study performed an integrated metabolome and transcriptome analysis in
diverse Rf1 genotypes and uncovered that Rf1 allelic differentiation affected pollen fertility by altering the
landscape of transcripts and metabolite substances. In CMS-D2 sterile cytoplasm, the predominant
changes between homozygous Rf1Rf1 and heterozygous Rf1rf1 genotypes were found in pathways
including auxin biosynthesis, �avonoid biosynthesis, and sugar metabolism. Further in vitro application
of auxin promoter and inhibitor validated that over-activated auxin signaling could inhibit pollen
development while reducing auxin signaling partially promoted pollen development in CMS-D2 cotton.
Our results revealed how the dosage effects of the Rf1 gene regulate pollen fertility of CMS-D2 cotton,
and it will help strengthen the selection and breeding of restorer lines with stable fertility in production.
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Figures

Figure 1

Comparison of anther phenotype and pollen activity of different Rf1 genotypes at two environments. (A-
B) Representative phenotype of anthers for NR, NH, SR, and SH in Anyang (AP) and Jiujiang (JP),
respectively. (C-F) The 0.5% 2,3,5-triphenyltetrazolium chloride (TTC) stained pollen grains of NR, NH, SR,
and SH in AP. (G-J) The 0.5% TTC stained pollens of NR, NH, SR, and SH in JP. Scale bars: 1 cm (red) in A
and B; 250 μm (white) in C-J.
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Figure 2

Characterization of differential metabolites (DMs) in pollen of different Rf1 genotypes.

(A) Statistics of differential metabolite features (DMFs) among different Rf1 genotypes. (B) Distribution
of up-regulated DMFs among various comparisons. (C) Distribution of down-regulated DMFs among
various comparisons. (D) Heat map analysis showing the quantitative abundance of key DMFs in six
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biological repeats of different Rf1 genotypes. (E) Classi�cation of speci�c differential metabolites (DMs)
identi�ed in SH vs SR. (F) KEGG pathway enrichment analysis of the speci�c DMs identi�ed in SH vs SR.

Figure 3

Comparative transcriptome analysis for different Rf1 genotypes in two environments.
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(A) Number of DEGs in different comparison groups. (B-C) Venn diagram showing up-regulated and
down-regulated DEGs among various comparisons. (D) Heat map analysis showing the expression
pro�les of 96 key DEGs unique to SH vs SR in three biological repeats of each Rf1 genotype.

 

Figure 4
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Identi�cation of key genes and metabolites involved in Rf1 dosage to in�uence pollen fertility of CMS-D2
cotton. (A) Overview of network linkage among the key DEGs and DMs, and their involved pathways. The
circle represents the DMFs; the rectangle represents the pathway; the triangle represents DEGs. The red,
green, orange, and blue colors are involved in IAA biosynthesis, �avone biosynthesis, sugar metabolism,
and other pathways, respectively. (B) Heat map showing abundance levels of key metabolic compounds
related to IAA biosynthesis, �avonoid biosynthesis, and sugar metabolism. (C-G) qRT-PCR analysis
validating the expression levels of key genes involved in IAA biosynthesis (C), �avonoid biosynthesis (D,
E), and sugar metabolism (F, G).

Figure 5

Effects of auxin analogue NAA and inhibitor Auxinole on pollen fertility of different Rf1 genotypes. (A)
Statistical analysis of the percentage of �owers with fewer pollen grains in NR and NH treated with 10
and 100 μM NAA. (B) Statistical analysis of the percentage of �owers with fewer pollen grains in SR and
SH treated with 10, 100 μM NAA, and 20 μM Auxinole.
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Figure 6

qRT-PCR analysis validating the transcript levels of auxin-responsive genes in pollen grains of different
Rf1 genotypes after auxin and inhibitor treatments. Here NR and NH were treated with 10 and 100 μM
NAA, while SR and SH were treated with 10 and 100 μM NAA, and 20 μM Auxinole.
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Figure 7

A potential model explaining how allelic differences in the Rf1 gene in�uence pollen fertility restoration
for CMS-D2 cotton. The instability in nucleo-cytoplasmic interaction between orf610a and Rf1 alleles may
happen in response to an imbalance of auxin, �avonoid, and sugar substances. However, some
interactions in this network remain still unclear. The lines with arrows and blunt ends in the �gure indicate
the promotion and inhibition modes, respectively, and the accompanying question marks represent
unknown action modes or connections.
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