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Abstract

Let R be a ring and M be an R-module. M is called ⊕ss-supplemented if

every submodule of M has a ss-supplement that is a direct summand of M .

In this paper, the basic properties and characterizations of ⊕ss-supplemented

modules are provided. In particular, it is shown that (1) if a module M is ⊕ss-

supplemented, then Rad(M) is semisimple and Soc(M)⊴M ; (2) every direct

sum of ss-lifting modules is ⊕ss-supplemented; (3) a commutative ring R is an

artinian serial ring with semisimple radical if and only if every left R-module is

⊕ss-supplemented.
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1 Introduction

In homological algebra, semisimple modules and the varieties of supplemented mod-
ules, which are generalizations of semisimple modules, have a very important place,
and some important characterizations of ring classes are given in terms of homological
algebra via these modules. For example, a ring R is semisimple if and only if every left
(right) R-module is semisimple if and only if every left (right) R-module is injective,
that is, every module is a direct summand of its extensions. R is left (semi) perfect
if and only if every (finitely generated) left R-module is supplemented if and only if
every left R-module is srs. R

P (R) is left perfect, where P (R) is the sum of all radical

left ideals of R if and only if every left R-module is Rad-supplemented. R is semilocal
if and only if every left R-module is weakly Rad-supplemented, that is, semilocal. R
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is a left and right artinian serial ring with Rad(R)2 = 0 if and only if every left R-
module is lifting if and only if every left R-module is extending. A commutative ring
R is artinian serial if and only if every left R-module is ⊕-supplemented if and only if
every left R-module is Rad-⊕-supplemented if and only if every left R-module is srs⊕.

The main purpose of this paper is to develop the concept of ⊕ss-supplemented
modules as a new type of the class of supplemented modules. We introduce ⊕ss-
supplemented modules and focus on basic properties of these modules. We show that
if a module M is ⊕ss-supplemented, then Rad(M) is semisimple and Soc(M) ⊴M .
We prove that every direct sum of ss-lifting modules is ⊕ss-supplemented. Over a left
WV -ring every ⊕-supplemented module is⊕ss-supplemented. We also show that a ring
R is semiperfect ring with semisimple radical, that is, Socs-semiperfect, if and only if
every left free R-module is ⊕ss-supplemented. In particular, we give a characterization
of artinian serial rings using ⊕ss-supplemented modules.

2 Preliminaries

In this section, we briefly recall the main concepts and results related to types of
supplements and variations of supplemented modules. For a better understanding of
the topic, we start with some fundamental definitions of module and ring theory
presented in books [1], [2], [3] and [4].

Throughout this paper, we consider the associative rings with identity, denoted
as R, and the modules unital left R-modules. Let M be an R-module. We use the
notation U ≤ M to mean U is a submodule of M . We write Rad(M) and Soc(M)
for the radical and the socle, respectively (see [4]). A submodule E of M is said to
be essential in M , denoted as E ⊴M , if E ∩N ̸= 0 for every nonzero submodule N
of M . Dually, a submodule U of M is small in M , denoted by the notation U ≪ M ,
if M ̸= U +K for every proper submodule K of M . A module M is called hollow if
every proper submodule of M is small in M , and it is called local if it is a finitely
generated nonzero hollow module.

As a generalization of direct summands, one defines supplement submodules as
follows. Let U and V be submodules of a module M . V is called supplement of U in
M if it is minimal with respect to the property U + V =M . In this case, U is said to
have a supplement V in M . Equivalently, V is a supplement of U in M if and only if
M = U + V and U ∩ V ≪ V . Following [4, 19.3. (4)], a submodule V is called weak
supplement of U in M if M = U +V and U ∩V ≪M . A module M is called (weakly)
supplemented if every submodule of M has a (weak) supplement in M . It is shown in
[4, 42.6 and 43.9] that a ring R is (semi) perfect if and only if every (finitely generated)
left R-module is supplemented. As a proper generalization of supplemented modules,
srs-modules are introduced in the paper [5]. In the same paper, the characterization
of left (semi) perfect rings is given in terms of srs-modules (see [5, Corollary 2.5 and
Corollary 2.6]).

Let M a module. M is called ⊕-supplemented if every submodule of M has a sup-
plement that is a direct summand ofM ([3]). Every hollow module is ⊕-supplemented
and ⊕-supplemented modules are supplemented. It is shown in [6, Corollary 3.13]
that a commutative ring R is artinian serial if and only if every left R-module is
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⊕-supplemented. Over a Dedekind domain, it is proven in [3, Proposition A.7 and
Proposition A.8] that every supplemented module is ⊕-supplemented. For the basic
properties, characterizations and some generalizations of ⊕-supplemented modules, we
recommend the book [3] and these papers [6–11].

Since Rad(M) is the sum of all small submodules of a moduleM , Rad-supplement
submodules are defined as a generalization of supplement submodules. Let U and V be
submodules of a moduleM withM = U+V . V is called Rad-supplement of U inM in
case U ∩V ⊆ Rad(V ) (see [1, 10.14]). M is called Rad-supplemented if its submodules
have a Rad-supplement inM . It follows from [12, Theorem 6.1] that, for a ring R, R

P (R)

is left perfect, where P (R) is the sum of all left ideals I of R such that I = Rad(I)
if and only if every left R-module is Rad-supplemented. In [13], a module M is called
Rad-⊕-supplemented if every submodule of M has a Rad-supplement that is a direct
summand ofM . It is clear that every ⊕-supplemented module is Rad-⊕-supplemented.
For the concept of Rad-⊕-supplemented, we refer to [14] and [13].

It is well known that a simple submodule of a moduleM is a direct summand ofM
or small in M . Following this fact, Zhou and Zhang defines the submodule Socs(M)
as the sum of all simple submodules that are small in M (see [15]).

The following lemma follows from [16, Lemma 2] and we will use it throughout the
paper.
Lemma 1. Let M be a module. Then Socs(M) = Soc(M) ∩Rad(M).

Let X be a module. Since Socs(X) ⊆ Rad(X), it is of interest to investigate
the analogue of this notion by replacing ”Rad(X)” with ”Socs(X)”. ss-supplement
submodules, which are between supplements and direct summands, are defined as a
special type of supplements as follows.
Lemma 2. (see [16, Lemma 3]) Let M be a module and U , V be submodules of M .
Then the following statements are equivalent:

(1) M = U + V and U ∩ V ⊆ Socs(V ),
(2) M = U + V , U ∩ V ⊆ Rad(V ) and U ∩ V is semisimple,
(3) M = U + V , U ∩ V ≪ V and U ∩ V is semisimple.

As in [16], we say that V an ss-supplement of U inM if the equal conditions in the
above lemma are satisfied. A module M is called ss-supplemented if every submodule
of M has an ss-supplement in M . Every semisimple module is ss-supplemented. The
authors give in the same paper the various properties and characterizations of these
modules. It follows from [16, Theorem 41] that a ring R is semiperfect with semisimple
radical if and only if every left R-module is ss-supplemented.

δ-supplement submodules, δss-supplement submodules, sa-supplement submod-
ules, extended S-supplement submodules and wsa-supplement submodules are exten-
sively studied by many authors as varieties of supplement submodules. In a series of
articles [17–21], the authors have obtained detailed information about variations of
supplement submodules and related rings.
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3 ⊕ss-supplemented modules

In this section, we define the concept of ⊕ss-supplemented modules. Our aim is intro-
duce ⊕ss-supplemented modules as a special case of ss-supplemented modules. We
provide the various properties of such modules. In particular, we prove that a commu-
tative ring R is an artinian serial ring with semisimple radical if and only if every left
R-module is ⊕ss-supplemented, and a ring R is Socs-semiperfect if and only if every
free R-module is ⊕ss-supplemented.
Definition 1. Let R be a ring and M be an R-module. M is called ⊕ss-supplemented
if every submodule of M has a ss-supplement that is a direct summand of M [22]

It is clear that every ⊕ss-supplemented module is ⊕-supplemented. However, usu-
ally a ⊕-supplemented module does not have to be ⊕ss-supplemented. We will now
give an example for this below. First we need the following fact. Recall from [16] that
a module M is strongly local if it is local and its radical is semisimple.
Proposition 3. Let M be a local module. Then the following statements are
equivalent:

(1) M is strongly local.
(2) M is ⊕ss-supplemented.

Proof. (1) ⇒ (2) Let U be any proper submodule of M . Since M is a strongly local
module, we can write U ⊆ Rad(M) ⊆ Soc(M). Therefore U is semisimple and thus
M is an ss-supplement of U in M . Hence M is ⊕ss-supplemented.

(2) ⇒ (1) Since ⊕ss-supplemented modules are ss-supplemented, the proof follows
from [16, Proposition 15].

Example 1. Let M be the local Z-module Zpk , for p is any prime integer and k ≥ 3.
Since local modules are ⊕-supplemented,M is ⊕-supplemented. Note that Socs(Zpk) =
Soc(Zpk) ∼= Zp and Rad(M) = pZpk . Hence M is not strongly local and so it is not
⊕ss-supplemented by Proposition 3.

In [23], a ringR is called a leftWV -ring if every simple leftR-module is R
I
-injective,

where R
I
≇ R and I is any ideal of R. Clearly left WV -rings are a generalization of

V -rings. It is shown in [23, Lemma 6.12] that if a ring R is a left WV -ring, then it is
a left V -ring or Rad(R) is a simple left R-module. We will use this fact freely in this
article without reference.
Proposition 4. Let R be a left WV -ring. Then every Rad-⊕-supplemented R-module
is ⊕ss-supplemented.

Proof. Let M be a Rad-⊕-supplemented R-module and U be any submodule of M .
By the assumption, there exists a direct summand V of M such that M = U +V and
U ∩V ⊆ Rad(V ). If R is a left V -ring, then U ∩V ⊆ Rad(V ) = 0 and so U is a direct
summand of M . Therefore M is semisimple and then it is trivially ⊕ss-supplemented.

Suppose that R is not a left V -ring. Consider the epimorphism ψ : F −→ V for
some a free R-module F . Since R is a left WV -ring, Rad(R) is semisimple and so, by
[4, 21.17. (2)], we obtain Rad(F ) = Rad(R)F ⊆ Soc(RR)F = Soc(F ). Thus Rad(F )
is trivially a semisimple module. It follows from [23, Corollary 6.8] that R

Rad(R) is a

V -ring. So, by [4, 23,7], we can write Rad(V ) = ψ(Rad(F )). It means that Rad(V ) is
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semisimple as a homomorphic image of the semisimple module Rad(F ). Hence V is
an ss-supplement of U in M .

Now, we have the following result:
Corollary 5. Let R be a left WV -ring. Then

(1) Every ⊕-supplemented R-module is ⊕ss-supplemented.
(2) Every local R-module is ⊕ss-supplemented.
(3) Every local R-module is strongly local.

Proof. (1) By Proposition 4.
(2) Let M be any local R-module. Since local modules are ⊕-supplemented, it

follows from (1) that M is ⊕ss-supplemented.
(3) It follows from (2) and Proposition 3.

The following theorem we will give shows the different between the class of ⊕-
supplemented modules and the class of ⊕ss-supplemented modules, and that a nonzero
radical module cannot be ⊕ss-supplemented.
Theorem 6. Let M be a ⊕ss-supplemented module. Then Rad(M) is semisimple. In
particular, Socs(M) = Rad(M).

Proof. Since M is a ⊕ss-supplemented module, there exists a decomposition M =
M1 ⊕M2 such that M = Rad(M) +M1, Rad(M) ∩M1 ≪ M1 and Rad(M) ∩M1 is
semisimple. According to [4, 41.1. (5)], we can write Rad(M1) = Rad(M)∩M1 and so
Rad(M1) is semisimple. Note that, by [4, 21.6. (5)], Rad(M) = Rad(M1)⊕Rad(M2).
Therefore

M = Rad(M) +M1

= Rad(M1)⊕Rad(M2) +M1

= M1 ⊕Rad(M2)

and thus M2 = M2 ∩M = M2 ∩ (M1 ⊕ Rad(M2)) = Rad(M2) by modularity law.
It follows from [16, Proposition 26] that M2 is a ss-supplemented as a factor module
of M . Since M2 = Rad(M2), by [16, Proposition 16], we obtain that M2 = 0. Hence
Rad(M) = Rad(M1) is semisimple.

A module M is called lifting if there is a decomposition M =M1 ⊕M2 such that
M1 ≤ U and U ∩ M2 ≪ M2 for every submodule U of M . The equivalence of M
being lifting is given by [4, 41.11 ana 41.15] in the form of M is amply supplemented
and every supplement submodule of M is a direct summand of M . Following [24], a
module M is called ss-lifting if for every submodule U of M . there is a decomposition
M =M1 ⊕M2 such that M1 ≤ U and U ∩M2 ⊆ Socs(M). Every ss-lifting module is
⊕ss-supplemented and lifting. It is shown in [24, Theorem 2] that every π-projective
and ss-supplemented module is ss-lifting .

As a result of Theorem 6 we obtain the following result.
Corollary 7. If a module M is ss-lifting, then Rad(M) is semisimple.

Proof. Since ss-lifting modules are ⊕ss-supplemented, the proof follows from Theorem
6.
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We remove the small radical condition in [24, theorem 4] by using Corollary 7 in
the following theorem.
Theorem 8. Let M be a module. Then M is ss-lifting if and only if it is a lifting
module with semisimple radical.

Proof. (⇒) By Corollary 7, Rad(M) is semisimple. This completes the proof of (⇒).
(⇐) Let U be any submodule of M . Since M is lifting, there is a decomposition

M = U
′

⊕ V such that U
′

≤ U and U ∩ V is a small submodule of V . It follows that
U ∩ V ⊆ Rad(V ) ⊆ Rad(M) ⊆ Soc(M). This implies U ∩ V ⊆ Socs(M). It means
that M is ss-lifting.

It is well known that Soc(M) is the intersection of all essential submodules of a
module M .
Theorem 9. Let M be a ⊕ss-supplemented module. Then Soc(M)⊴M .

Proof. Since M is a ⊕ss-supplemented module, by [1, 17.2], there is a decomposition
M =M1⊕M2 such thatM1 is semisimple andM2 is ss-supplemented with Rad(M2)⊴
M2. It follows that Soc(M) = Soc(M1) ⊕ Soc(M2) = M1 ⊕ Soc(M2) ⊴M1 ⊕M2 =
M .

In general, the socle of a ⊕-supplemented module need not be essential. We can
see this reality in the example below.
Example 2. Given the ring Z(2) containing all rational numbers of the form a

b
with

2 ∤ b. Therefore R = Z(2) is a local Dedekind domain and its fractions field K is hollow
as a left R-module. It follows that RK is ⊕-supplemented. On the other hand, the socle
Soc(RK) is zero since R is a commutative domain. Hence Soc(RK) is not essential
in RK.

Now we will give that the class of projective ⊕ss-supplemented modules are the
same as ss-lifting modules.
Theorem 10. Let M be a projective module. The following statement are equivalent.

(1) M is ss-supplemented.
(2) M is ⊕ss-supplemented.
(3) M is ss-lifting.

Proof. It follows from [25, Theorem 2.18].

We will give an analogue of the finite direct sum of the types of supplemented
modules in the following theorem for ⊕ss-supplemented modules.
Theorem 11. Let R be an arbitrary ring. Then every finite direct sum of ⊕ss-
supplemented R-modules is ⊕ss-supplemented.

Proof. The proof is straightforward.

The following result is crucial.
Theorem 12. For any ring R, every direct sum of strongly local R-modules is ⊕ss-
supplemented.

6



Proof. Let {Mi}i∈I be a collection of strongly local R-modules and M =
⊕

i∈I Mi.

Put M = M
Rad(M) . Note that, [4, 41.1. (5)], Rad(Mi) = Mi ∩ Rad(M) for each i ∈ I.

Defining Mi =
Mi+Rad(M)

Rad(M) , we obtain for each i ∈ I

Mi
∼= Mi

Mi∩Rad(M) =
Mi

Rad(Mi)
.

SinceMi is strongly local for every i ∈ I, it follows that Mi

Rad(Mi)
is simple. This implies

that

M = M
Rad(M) =

⊕
i∈I

Mi

Rad(Mi)
∼=

⊕
i∈I Mi

and thus M is semisimple since the class of semisimple modules is closed under direct
sums. Let U be any submodule of M . There exists a subset J ⊆ I such that M =
U ⊕ (

⊕
i∈J

Mi

Rad(Mi)
). Let V =

⊕
i∈J Mi. Clearly, V is a direct summand of M . Then

M = U + V and U ∩ V ⊆ Rad(M). By [4, 21.6. (5)], Rad(M) =
⊕

i∈I Rad(Mi) and
so Rad(M) is semisimple. Therefore V is an ss-supplement of U in M . Hence M is
⊕ss-supplemented.

Example 3. Given the left Z-module M = Z9. Then the only submodules of M are
{0}, {0, 3, 6} and M = Z9, and so Rad(M) = Soc(M) = {0, 3, 6} is semisimple.
Since M is local, it is a strongly local module. Now we consider the left Z-module
N =

⊕
i∈I Z9 for any index set I. By Theorem 12, N is ⊕ss-supplemented.

The following theorem shows that the direct sum of the lifting modules under one
condition is ⊕-supplemented.
Theorem 13. (see [6, Theorem 2.12]) Let R be any ring and let M be an R-module
such that M =

⊕
i∈I Mi, where Mi is a lifting module for each i ∈ I. Suppose further

that Rad(M) ≪M . Then M is ⊕-supplemented.
Now we give an analogous characterization of this fact for ⊕ss-supplemented

modules without condition.
Theorem 14. Let R be a ring. Then every direct sum of ss-lifting R-modules is
⊕ss-supplemented.

Proof. Let {Mi}i∈I be an family of ss-lifting R-modules and M =
⊕

i∈I Mi. Since
each Mi (i ∈ I) is ss-lifting, it follows from Corollary 7 that Rad(Mi) is semisimple
and so

Socs(Mi) = Rad(Mi) ∩ Soc(Mi) = Rad(Mi).

According to [4, 21.6. (5)], we have Rad(M) is semisimple. By [25, Theorem 3.1], we
obtain that

Mi

Rad(Mi)
= Mi+Rad(M)

Rad(M)

is semisimple for all i ∈ I. Therefore M
Rad(M) =

∑
i∈I

Mi+Rad(M)
Rad(M) is semisimple as a

sum of these semisimple modules Mi+Rad(M)
Rad(M) .

Let U be any submodule of M . Then there are an index set λ ⊆ I and a submodule
(i ∈ λ) Ni ⊆Mi such that
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M
Rad(M) = (U+Rad(M)

Rad(M) )
⊕

(⊕i∈I
Ni+Rad(M)

Rad(M) ).

By the hypothesis, there is a decomposition (i ∈ λ) Mi = Li ⊕ Vi such that Li ⊆
Ni ⊆ Li + Rad(Mi) and Ni ∩ Vi ⊆ Socs(Mi) = Rad(Mi). Put V =

⊕
i∈λ Vi and

therefore V is a direct summand of M . Since Rad(M) is semisimple, it is a small
submodule of M and so M = U + V + Rad(M) = U + V . On the other hand,
U∩V ⊆ (U+Rad(M))∩(

∑
i∈λNi+Rad(M)) ⊆ Rad(M) and that U∩V is semisimple

and a small submodule ofM . Following [4, 19.3. (5)], we obtain that U∩V ⊆ Socs(V ).
Hence M is ⊕ss-supplemented.

Theorem 15. Let M be a module. Then the following statements are equivalent:

(1) M is ⊕ss-supplemented.
(2) M is a Rad-⊕-supplemented module with semisimple radical.

Proof. (1) ⇒ (2) It is clear that M is Rad-⊕-supplemented. Then there exist a
decomposition M1 ⊕M2 = M such that M = Rad(M) +M1, Rad(M) ∩M1 ≪ M1

and Rad(M) ∩ M1 is semisimple. By the proof of Theorem 6, M2 = 0 and then
Rad(M1) = Rad(M) is semisimple.

(2) ⇒ (1) Since the class of semisimple modules is closed under submodules, it is
clear.

Corollary 16. For a module M , the following are equivalent:

(1) M is ⊕ss-supplemented.
(2) M is a Rad-⊕-supplemented module with semisimple radical.
(3) M is a ⊕-supplemented module with semisimple radical.

Proof. (1) ⇒ (3) and (3) ⇒ (2) are clear.
(2) ⇒ (1) By Theorem 15.

Let R be an arbitrary ring. A functor τ from the category of the left R-modules
to itself is called a preradical if it satisfies the following properties.

(1) τ(M) is a submodule of any R-module M .
(2) If f : M

′

→ M is an R-module homomorphism, then f(τ(M
′

)) ⊆ τ(M) and τ(f)
is the restriction of f to τ(M

′

).

Proposition 17. Let R be a ring and τ be a preradical of the category of the left
R-modules. If M is a ⊕ss-supplemented R-module, then

(1) M
τ(M) is ⊕ss-supplemented.

(2) If τ(M) is a direct summand of M , then τ(M) is also ⊕ss-supplemented.

Proof. (1) Let U
τ(M) be any submodule of M

τ(M) . By the hypothesis, there is a decom-

position M = V ⊕ V
′

such that V is an ss-supplement of U in M . It follows from the

proof of [16, Proposition 26] that V+τ(M)
τ(M) is an ss-supplement of U

τ(M) in M
τ(M) . Since

τ is a preradical in the category of the left R-modules, it follows from [8, Lemma 2.4]
that we can write the decomposition τ(M) = V ∩ τ(M) ⊕ V

′

∩ τ(M). Therefore, by
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the modularity law,

V+τ(M)
τ(M) ∩ V

′

+τ(M)
τ(M) = (V+τ(M))∩(V

′

+τ(M))
τ(M)

= (V+(V ∩τ(M)⊕V
′

∩τ(M)))∩(V
′

+(V ∩τ(M)⊕V
′

∩τ(M)))
τ(M)

= (V+V
′

∩τ(M))∩(V
′

+V ∩τ(M))
τ(M)

= 0.

It means that V+τ(M)
τ(M) is a direct summand of M

τ(M) . Hence M
τ(M) is ⊕ss-supplemented.

(2) Assume that there is a decomposition M = τ(M)⊕L for some submodule L of
M . Let T be any submodule of τ(M). Since M is a ⊕ss-supplemented module, there
exist submodules Y, Z ofM such thatM = Y⊕Z and Y is an ss-supplement of T inM .
Then, by the modularity law, we get that τ(M) = τ(M)∩M = τ(M)∩ (T +Y ) = T +
Y ∩τ(M). Again applying [8, Lemma 2.4], we obtain that τ(M) = Y ∩τ(M)⊕Z∩τ(M).
Let m ∈ T ∩ (Y ∩ τ(M)) = T ∩ Y . Since Y ∩ Z ⊆ Socs(Y ), Rm is semisimple and a
small submodule of Y . So, by [4, 19.3. (5)], m ∈ Rm ⊆ Socs(Y ∩ τ(M)). Therefore
T ∩ Y ⊆ Socs(Y ∩ τ(M)). It means that τ(M) is ⊕ss-supplemented.

Let R be a ring and τ be a preradical of the category of the left R-modules. In [26],
M is called τ -lifting if every submodule N ofM has a decomposition N = A⊕(B∩N)
such that M = A⊕B and B ∩N ⊆ τ(B) and also they called that M is τ -semiperfect
if every factor module of M has a projective τ -cover, that is, for any submodule N of
M , there exist a projective module P and the epimorphism ψ : P −→ M

N
such that

ker(ψ) ⊆ τ(P ).
In [25], a module M is called ss-semilocal if M

Socs(M) is semisimple. The rings with

the property that every left module is ss-semilocal are called ss-perfect. Note that
Socs(M) is the largest semisimple and small submodule of any moduleM and so Socs
is preradical in the category of R-modules. Using Theorem 10, we get the following
theorem.
Theorem 18. Let M a be projective module. The following statement are equivalent.

(1) M is ss-supplemented.
(2) M is ⊕ss-supplemented.
(3) M is Socs-lifting, that is, ss-lifting.
(4) M is Socs-semiperfect.

Proof. By Theorem 10.

For a ring R, we obtain the next result:
Corollary 19. Let R be a ring. The following statement are equivalent.

(1) R is Socs-semiperfect.
(2) RR is ⊕ss-supplemented.
(3) RR is Socs-lifting, that is, ss-lifting.
(4) R is left ss- perfect ring.

Let U be a submodule of an R-moduleM . Following [27], U is called strongly lifting
in M if whenever M

U
= A+U

U
⊕ B+U

U
, then M has a decomposition M . In [28], Alkan
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M. expanded this definition and presented a new definition as follows. The submodule
U is called quasi strongly lifting (QSL) in M . If whenever A+U

U
is a direct summand

of M
U
, M has a direct summand P such that P ⊆ A and P + U = A + U . Using [28,

Proposition 3.6.], we get the following fact.
Proposition 20. A module M is ss-lifting if and only if it is ⊕ss-supplemented and
Rad(M) is QSL.

Proof. It is obtained from [28, Proposition 3.6.] and Theorem 6.

We now characterize the rings over which all (projective) modules are ⊕ss-
supplemented. Let R be a ring and M be an R- module. Following [3], we consider
the following condition:

(D3) For any direct summands M1, M2 of M with M = M1 +M2, M1 ∩M2 is also a
direct summand of M .

Note that every (self) projective module satisfies the condition (D3).
Lemma 21. Let M be a ⊕ss-supplemented module with (D3). Then every direct
summand of M is ⊕ss-supplemented.

Proof. Let N be a direct summand of M and U be a submodule of N . Since M is
⊕ss-supplemented, there exists a direct summand V of M such that M = U + V

and U ∩ V ⊆ Socs(V ). It follows the modularity law that N = U + (N ∩ V ). Since
M = U + V has (D3), N ∩ V is also a direct summand of M and so we can write
M = (N ∩ V )⊕ L for some submodule L of M . Again using the modularity law,

N = N ∩M = N ∩ ((N ∩ V )⊕ L)
= (N ∩ V )⊕ (N ∩ L).

It means that N ∩V is also a direct summand of N . Note that U ∩ (N ∩V ) = U ∩V ⊆
Rad(V ). Let m ∈ U ∩ V . Therefore the cyclic submodule Rm is a small submodule
of M . By [4, 19.3-(5)], Rm is small in N ∩ V and so m ∈ Rad(N ∩ V ). Since U ∩ V
is semisimple, we obtain that m ∈ Socs(N ∩ V ). Therefore U ∩ (N ∩ V ) = U ∩ V ⊆
Soc(N ∩ V ). Hence N is ⊕ss-supplemented.

Corollary 22. The following statements are equivalent for a ring R.

(1) R is Socs-semiperfect.
(2) Every free R-module is ⊕ss-supplemented.
(3) Every projective R-module is ⊕ss-supplemented.

Proof. (1) ⇒ (2) Let F be any free R-module. It follows from Corollary 19 that RR is
ss-lifting. Therefore F is ⊕ss-supplemented as a direct sum of copies of the ss-lifting
module RR by Theorem 14.

(2) ⇒ (3) Let M be a projective R-module. Then M is isomorphic to a direct
summand of some free R-module F . Using Lemma 21, F is M is ⊕ss-supplemented.

(3) ⇒ (1) By Corollary 19.

It is shown in [6, Theorem 1.1] that a commutative ring R is an artinian serial
ring if and only if every left R-module is ⊕-supplemented. Now we generalize this
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fact in the next Corollary, characterizing the commutative rings in which modules are
⊕ss-supplemented.
Corollary 23. A commutative ring R is an artinian serial ring with semisimple
radical if and only if every left R-module is ⊕ss-supplemented.

Proof. (⇒) LetM be an R-module. It follows from [13, Corollary 2.15] thatM is Rad-
⊕-supplemented. Since Rad(R) is semisimple, we can write Rad(M) is a semisimple
R-module with a method similar to the proof of Proposition 4. Hence, by Theorem
15, M is ⊕ss-supplemented.

(⇐) By [6, Theorem 1.1], we get R is an artinian serial ring. Since RR is ⊕ss-
supplemented, Rad(R) is semisimple according to Theorem 6.

Remark 1. Let R be a Dedekind domain and M be an R-module. M is reduced if
M has no nonzero injective submodules. If M is ⊕ss-supplemented, it follows from
Theorem 6 that M is reduced.

(1) Let R be a local ring which is not field. Combining Theorem 15, [16, Proposition
11] and [13, Corollary 3.3], we have M is ⊕ss-supplemented if and only if M is
isomorphic to a bounded R-module with semisimple radical.

(2) Let R be a non-local ring. By Theorem 15, [13, Theorem 3.2], [12, Proposition 7.3]
and [11, Theorem 3.1], M is ⊕ss-supplemented if and only if M is a torsion module
with semisimple radical and every p-component of M is supplemented.
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