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Abstract
Healthy longevity is a complicated process, however, the underlying mechanisms between longevity and
microbiota warrant investigation. To address this, we characterized a longevity trajectory of
environmental microbiota in a longevity township. We used high-throughput sequencing of the 16S rRNA
gene to analyse the composition and function of soil microbiota. The composition and diversity of soil
microbiota significantly differed between towns. The dominant bacteria at the phylum level included
Proteobacteria, Firmicutes, and Acidobacteria. At the genus level, Chujaibacter, Acidipila, and
Lactobacillus were dominant. However, Steroidobacter, Comamonas, and Pseudoxanthomonas were only
dominant in Xinpu with high centenarian population. Twelve biomarkers were responsible for significant
differences between towns, including Lactobacillus, Muribaculaceae, Ruminococcaceae,
Lachnospiraceae, and Chitinophagales, etc. The main species contributing to the differences of towns
were Chujaibacter, Acidipila, Lactobacillus, Rhodanobacter, Lysobacter, Bryobacter, Granulicella,
Flavobacterium, and Mizugakiibacter. The function of exosome, cysteine and methionine metabolism,
amino acid-related enzymes, peptidases, starch and sucrose metabolism, etc., were predicted. Thus, we
have revealed significant differences in the composition and diversity of soil microbiota in the world’s
longevity township, the relationship between soil microbiota and long-lived people. These findings
provide a research foundation for the role of soil microbiota in healthy longevity.

Introduction
Throughout the ages, humans have explored the mystery of health and longevity. Longevity is a complex
feature. It is related to many factors, such as geography and meteorological, economic, medical, and
health conditions. It is also affected by genetic, environmental, and other factors, and ideally would
mainly depend on the rate of ageing.

In the biomedical field, the research has focused on searching for molecular and biological factors that
promote healthy ageing and longevity. Considerable attention has been paid to analyzing the role of
genetic factors in determining healthy ageing and longevity. The main factors that affect longevity and
ageing are growth hormone (GH) and insulin/insulin-like growth factor (insulin/IGF-1) pathways1 in
various organisms2,3. Further, overexpression of the Forkhead box O3 gene (FOXO3) in model organisms
is related to prolonged lifespan4–6. Another protein beneficial for longevity and metabolic regulation is
AMP-activated protein kinase (AMPK)7. Besides, deacetylase family genes (Sirtuins)8,9, the apolipoprotein
E gene (APOE)10, Telomerase11, the mammalian target of rapamycin (mTOR) signalling pathway12,13, the
tumour suppressor gene P5314, the transcription factor NF-κB15,16, the autophagy-lysosomal signalling
pathway17–19, long-chain non-coding RNAs20,21 play important roles between health and longevity.
Finally, methionine sulfoxide is considered to be a marker of biological ageing22. Methionine sulfoxide
reductase is a specific antioxidant enzyme that removes this modification of proteins, and at the same
time, acts as a general cellular antioxidant to scavenge free radicals and protect the cell from biological
oxidative stress23.



Page 3/22

The environment also plays a very important role in determining longevity, as people are sensitive to the
environment24,25. For example, dietary restriction, i.e., food intake control to achieve balanced nutrition26,
can delay the rate of ageing. Further, appropriate exercise strengthens the body, enhances immunity
resistance, and delays ageing. Age positively correlates with free radical levels in humans. Moderate
exercise increases the levels of free radical-scavenging enzymes and their activity to delay ageing27.
Among the above factors, the natural environment is key to longevity. For human beings to live a long
and healthy life, they must establish and maintain a harmonious relationship with the natural
environment and living environment. Topography and landforms, climate, soil, water, and other natural
geographical environmental factors are the main determinants of longevity28. Soil is the material basis
on which organisms rely for survival. The most essential trace elements from the soil affect water quality,
plant, and human health through the food chain29,30.

The rapid development of science and technology in the 21st century has enabled researchers to explore
the relationship between health and longevity, and the environment. Metagenomics with high-throughput
sequencing, combined with multi-omics technologies, is used to analyse the gut microbiota of the elderly,
and the correlation and contribution of microorganisms to health and longevity from the perspective of
the microbiota. The microbiota co-evolve with human and are vital to human health. However, changes in
environmental microbiota composition and function in longevity areas have not been fully studied. To
address this question and improve the understanding of whether and how the environment support
health and longevity, it is necessary to analyse the environmental microbiota in such areas. To investigate
the association between the soil microbiota and longevity in counties of China, we studied Jiaoling, one
of the world’s longevity townships. The obtained data will help identify commonalities and differences
between regional longevity factors; enable correlation analyses between the soil microbiota, health and
longevity; and provide a theoretical basis for guiding future research on health and longevity.

Results
Characteristics of the long-lived population and sample sequencing

Jiaoling County is affiliated to Meizhou City, Guangdong Province. It is located in the northeast of
Guangdong Province In eight towns in the Jiaoling County (T1, Guangfu; T2, Nanzhai; T3, Wenfu; T4,
Changtan; T5, Jiaocheng; T6, Lanfang; T7, Sanzhen; and T8, Xinpu), the proportion of the population over
the age of 80 in the total population over the age of 80 (approximately 8365 people) is 6.91%, 10.57%,
9.07%, 9.12%, 22.30%, 11.73%, 8.67%, and 21.64%, respectively. The elderly population is the largest in
Jiaocheng, and the smallest in Guangfu (Fig. 1). According to the proportion of the population aged 80–
89 years old, 90–99 years old, and over 100 years old to the total population over-80, Xinpu with the
highest proportion of centenarians, followed by Changtan, and the lowest in Nanzhai (Fig. 1). The
proportion of centenarians shows a decreasing distribution trend along the Shiku River, from south to
north.
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Soil samples were collected in the eight towns, bacterial genomic DNA isolated, and the 16S rRNA gene
sequenced using the Ion S5TMXL sequencing platform (by single-end sequencing), generating small-
fragment libraries. By shearing and filtering the reads, an average of 83,564 reads per sample was
obtained, with an average of 78,271 valid reads after quality control. The efficiency of quality control was
93.74%. The sequences were then clustered into OTUs, at 97% identity, yielding 10,528 OTUs, which were
finally annotated using the Silva132 database.
Composition and structure of the soil microbiota

Based on the OTU analysis and clustering, shared and unique OTUs were identified in different groups.
Overall, 1827 OTUs were shared in the T1–T8 samples, and the number of unique OTUs in each group is
58, 96, 422, 351, 129, 401, 51, 153, respectively (Supplementary Figure S1A). Based on species
annotation, the top 10 most abundant bacteria at each classification level (phylum, class, order, family,
and genus) were identified in each group, and a cumulative bar map of species relative abundance was
generated to allow visual assessment of the relative bacterial abundance and their proportions at the
different classification levels in each sample. The relative abundance at phylum levels is presented in a
histogram (Fig. 2A). The major abundant phyla were Proteobacteria, Firmicutes, Acidobacteria,
Bacteroidetes, Actinobacteria, Chloroflexi, Rokubacteria, Planctomycetes, and Gemmatimonadetes.
Among these, bacteria from Proteobacteria, Acidobacteria, and Bacteroidetes were dominant at all
taxonomic levels.

Based on species annotation and abundance at the family level, 35 most abundant families were
identified and clustered at species and sample level, to generate a heat map (Supplementary Figure S1B).
The top 10 families in the samples were Rhodanobacteraceae, unidentified Acidobacteriales,
Lachnospiraceae, Burkholderiaceae, Lactobacillaceae, Pyrinomonadaceae, Prevotellaceae,
Xanthomonadaceae, Ruminococcaceae, and Muribaculaceae, with different families being dominant in
each group. Rikenellaceae, Ruminococcaceae, Bacteroidaceae, Muribaculaceae, Lactobacillaceae,
Lachnospiraceae, Erysipelotrichaceae, and Streptococcaceae were dominant in the T2 Nanzhai with the
lowest proportion of centenarians. Burkholderiaceae and Streptococcaceae were dominant in the T8
Xinpu with the highest proportion of centenarians.

Based on species annotation and abundance at the genus level, 35 most abundant genera were
identified, clustered at the species and sample levels, and a heat map was generated (Fig. 2B). The top 10
genera in the samples were Chujaibacter, Acidipila, Lactobacillus, Rhodanobacter, unidentified
Prevotellaceae, Lysobacter, Bryobacter, Granulicella, Flavobacterium, and Mizugakiibacter. The dominant
genera in the T2 Nanzhai with the lowest proportion of centenarians were unidentified Prevotellaceae,
Streptococcus, Bacteroides, unidentified Ruminococcaceae, Lactobacillus, unidentified Lachnospiraceae,
unidentified Burkholderiaceae, Ralstonia, Collimonas, Candidatus Solibacter, and Candidatus Koribacter.
The dominant genera in the T8 Xinpu with the highest proportion of centenarians were Steroidobacter,
Comamonas, and Pseudoxanthomonas.
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To further analyse the phylogenetic relationship of species at the genus level, representative sequences of
the top 100 genera were obtained using multiple sequence alignment. A phylogenetic tree constructed
using representative sequences of species at the genus level is shown in Fig. 2C. The analysis revealed
that Lactobacillus, unidentified Acidobacteria, Flavobacterium, Lysobacter, Chujaibacter, Acidibacter,
unidentified Gammaproteobacteria, and Bryobacter were distributed in the eight groups. For each
classification result, species representing the top 10 genera with the highest relative abundance were
selected for specific species classification tree analysis (Fig. 2D). The analysis revealed that
Lactobacillus, a species of special interest, accounted for 1.332% of all species and 15.38% of the
selected species. The percentages of Lactobacillus animalis, Lactobacillus delbrueckii, Lactobacillus
gasseri, Lactobacillus mucosae, and Lactobacillus reuteri among the selected species were 7.44%, 0.01%,
4.27%, 0.03%, and 2.76%, respectively.
Alpha diversity and beta diversity analyses

Species diversity curves (dilution curves and hierarchical clustering curves) and species accumulation
box plots were used to evaluate the differences in species richness and diversity of microbial
communities in each sample. The rarefaction curve (Fig. 3A) tended to be flat, indicating that the
sequencing data was sufficient for the analysis. Additional data would generate only a small number of
new species (OTUs), and indirectly reflect the abundance of species in the sample. For the rank
abundance curve (Fig. 3B) in the horizontal dimension, the span of the curve gradually increased,
indicating a higher richness of species; in the vertical dimension, the curve gradually flattened, indicating
a more uniform species distribution. The box plot of species accumulation (Fig. 3C), the sample size
increased, and the box plot position tended to be flat. This meant that the species richness in the
environment would not significantly increase with increasing sample size, indicating that the sample size
was sufficient for data analysis. The alpha diversity, assessed by the Chao1 index, was significantly
different between the T2 group and the T1, T3, T4, and T5 groups (p < 0.05) (Fig. 3D). Wilcoxon rank-sum
analysis to test the alpha diversity between any two groups revealed that the alpha diversity in the T2
group was significantly lower than that in the other groups.

Beta diversity is a comparative analysis of microbial community composition in different samples. Beta
diversity analysis based on the weighted Unifrac beta-Wilcox rank-sum test index (Fig. 3E) revealed
statistically significant differences between the T2 group and the T3, T4, T5, and T6 groups (p < 0.05).
Significant differences between the T5 group and the T7 and T8 groups were also apparent (p < 0.05). To
analyse the similarity between samples, the weighted Unifrac distance matrix was used for UPGMA
cluster analysis, and the clustering results were integrated and displayed with the relative abundance of
each sample at the phylum level (Fig. 3F). The relatively small distance between the T6 and T8 groups,
and the T3 and T4 groups, indicated a similar species composition structure. Therefore, samples with
similar community structures tended to cluster together, while samples with very different communities
were further apart. The T2 and T8 groups had the farthest distance and the largest community difference.
The communities in each group exhibit certain inter-group differences, indicating the accuracy of
grouping. In the beta diversity analysis, the weighted Unifrac distance index was used to measure the
coefficient of difference between the two samples. The smaller the coefficient value, the smaller the
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difference in species diversity between the two samples. The distance matrix heat map constructed
based on the weighted Unifrac distance (Fig. 3G) revealed a big difference between the T2 group and
other groups.
Significance analysis of species differences between groups

Alpha diversity index analysis of differences between groups is used to determine whether the overall
community structure in different groups is significantly different. The species responsible for this
difference are then identified using LEfSe and ternary plot analysis. The identified species are a group
biomarker. Accordingly, we used LEfSe analysis to detect the species differentiating different groups by
the rank-sum test of species abundance. A histogram of the different species LDA value distribution is
shown in Fig. 4A, and an evolutionary branch diagram of the different species is shown in Fig. 4B. The
former revealed biomarker species with LDA score greater than 4. The LEfSe analysis revealed 12
biomarkers, namely, Lactobacillus, Muribaculaceae, Ruminococcaceae, Lachnospiraceae,
Chitinophagales, and others (Fig. 4C–G).

Next, to identify the differences in the dominant species in three groups of samples at each classification
level (phylum, class, order, family, genus, and species), the top 10 species with the average abundance in
the three groups of samples at the genus level were used to generate a ternary plot (ternary phase
diagram) (Supplementary Figure S2). Difference analysis of the dominant species in the T1–T3 samples
revealed that Lactobacillus was dominant in the T2 group, and Chujaibacter and Granulicella were
dominant in the T1 group (Supplementary Figure S2A). Further, for the T2–T4 samples, Lactobacillus
was dominant in the T2 group; and Chujaibacter, Acidipila, Mizugakiibacter, and Rhodanobacter were
dominant in the T4 group (Supplementary Figure S2B). For the T3–T5 samples, unidentified
Prevotellaceae was dominant in the T3 group, and Chujaibacter and Acidipila were dominant in the T4
group (Supplementary Figure S2C). For the T4–T6 samples, Chujaibacter and Acidipila were dominant in
the T4 group, and Lactobacillus and unidentified Prevotellaceae were dominant in the T6 group
(Supplementary Figure S2D). For the T5–T7 samples, Chujaibacter was dominant in the T7 group, and
Lactobacillus and unidentified Prevotellaceae were dominant in the T6 group (Supplementary Figure
S2E). Finally, for the T6–T8 samples, Flavobacterium was dominant in the T8 group, and Chujaibacter
was dominant in the T7 group (Supplementary Figure S2F). Overall, each group had a different dominant
species. This species may constitute the characteristic of each group and should be analysed further.

Next, to determine individual species contribution to the above differences, Similarity percentage (Simper)
analysis was performed. Simper is a decomposition of the Bray–Curtis difference index, used to quantify
each species contribution to the difference between two groups. The analysis revealed the top 10 species
and their abundances, contributing to the difference between the two groups (Supplementary Figure S3).
The top 10 species contributing to the difference between two groups and their abundance rankings, from
high to low, were: Chujaibacter, Acidipila, Lactobacillus, Rhodanobacter, unidentified Prevotellaceae,
Lysobacter, Bryobacter, Granulicella, Flavobacterium, and Mizugakiibacter. The contribution of the
species to different groups differed, with the highest contribution from Chujaibacter, followed by Acidipila
and Lactobacillus.
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Co-occurrence network of the soil microbiota

The species co-occurrence network diagram enables intuitive visualisation of the impact of different
environmental factors on microbial adaptability and the dominant species and closely interacting
populations of species that occupy a dominant position in a specific environment. These dominant
species and populations often play a unique and important role in maintaining a stable structure and
function of the environmental microbial community. The analysis of the significance of the differences
between groups and their contribution revealed that Lactobacillus was important for differentiating the
groups. Therefore, the co-occurrence network of Lactobacillus was next analysed. In the soil microbiota
co-occurrence network (Fig. 5), the following were positively correlated with Lactobacillus: Anaerostipes,
Blautia, Dialister, Rhodanobacter, Pajaroellobacter, Sporichthya, Edaphobacter, Holdemanella,
Alkanibacter, unidentified Acidobacteriales, Dorea, unidentified Ruminococcaceae, Holophaga, Roseburia,
unidentified Cyanobacteria, Acidothermus, Nocardia, Streptococcus, Oribacterium, and Jatrophihabitans.
The following were negatively correlated with Lactobacillus: Minicystis, Rhizorhapis, Phycicoccus,
Oligoflexus, Gaiella, Myxococcus, Ensifer, Ilumatobacter, Rhodopirellula, Altererythrobacter, unidentified
Deltaproteobacteria, Stenotrophobacter, Chiayiivirga, candidatus Alysiosphaera, Arenimonas,
Sphingobium, Pseudomonas, unidentified Dehalococcoidia, Fimbriiglobus, Amaricoccus, Nakamurella,
Methylobacillus, Parafrigoribacterium, Solitalea, Adhaeribacter, Methyloceanibacter, unidentified
Planctomycetales, Azovibrio, Gemmata, unidentified candidatus Woesebacteria, unidentified
Gammaproteobacteria, Lysobacter, Defluviicoccus, Nannocystis, and Chryseolinea. Hence, in addition to
exerting a probiotic effect, Lactobacillus could also exert a synergistic effect via positive and negative
regulation of the strains mentioned above.

Predicted functions of the soil microbiota
Using the annotation data (Supplementary Figure S4B), the top 10 functional annotations were retrieved
for the most abundant bacteria at each annotation level, and a histogram of relative functional
abundance was generated to visualise the relatively most abundant features at different annotation
levels (Supplementary Figure S4A). The identified KEGG pathway annotations mainly focused on cellular
processes, environmental information processing, genetic information processing, human diseases,
metabolism, organic systems. Among them, metabolism had the highest proportion, and organic systems
had the lowest proportion. Based on the functional annotation and sample abundance information, the
top 35 abundance features and their abundances in each sample were used to generate a heat map, and
clustered functional differences. On the horizontal level 1 of the clustering heat map (Fig. 6A), the T2
group had the highest proportion of genetic information processing. On the horizontal level 2 of the
clustering heat map (Fig. 6B), immune system, glycan biosynthesis and metabolism, and carbohydrate
metabolism had a higher level of function in the T2 group than in others. On the horizontal level 3 of the
clustering heat map (Fig. 6C), the abundances of exosome, cysteine and methionine Metabolism,
glycolysis/gluconeogenesis, alanine, aspartate and glutamate metabolism, amino acid-related enzymes,
peptidases, starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, etc. were
only relatively high in the T2 group. The T2 group had unique features also in the horizontal level k of
clustering heat map (Fig. 6D). The abundances of K03406 (methyl-accepting chemotaxis protein),



Page 8/22

K01153 (type I restriction enzyme, R subunit [EC:3.1.21.3]), K03043 (DNA-directed RNA polymerase
subunit beta [EC:2.7.7.6]), K02337 (DNA polymerase III subunit alpha [EC:2.7.7.7]), K01955, K03046,
K06147, K03657, K09687, K02355, K03701, K02003, K01338, K02004, and K02529 were higher in the T2
group than in the other groups. Overall, the T2 group showed unique functional characteristics at levels 1,
2, 3, and k.

Discussion
In this study, we aimed to reveal the composition, diversity, and function of soil microbial community in
the world’s longevity township, Jiaoling (China), to compare microbiota composition differences between
different towns. Prediction of local community compositions and functions31 improved the
understanding of soil microbial community under current and future changing climate conditions32,
which promote research on soil microbiota.

Based on the species annotation analysis, the dominant phyla in the samples were Proteobacteria,
Firmicutes, Acidobacteria, and Actinobacteria33,34. The dominant genera were Chujaibacter, Acidipila, and
Lactobacillus. Interestingly, specific species were only dominant species in specific areas, which may be
closely related to the geographical environment35. For example, at the family level, Rikenellaceae,
Ruminococcaceae, Bacteroidaceae, Muribaculaceae, Lactobacillaceae, and Lachnospiraceae were only
dominant in the T2 group. At the genus level, Bacteroides, unidentified Ruminococcaceae, Lactobacillus,
unidentified Lachnospiraceae, unidentified Burkholderiaceae, Ralstonia, Collimonas, candidatus
Solibacter, candidatus Koribacte were only dominant in the T2 group. However, the dominant species in
the other groups were not dominant in the T2 group. This finding might emphasise the influence of
geographical changes on the composition of the local microbial community. Based on the Chao1 index
and Wilcoxon rank-sum analysis of the alpha diversity of samples, the alpha diversity of the T2 group
was significantly lower than that of the other groups. The beta diversity analysis based on the weighted
Unifrac beta-Wilcox rank-sum test index revealed statistically significant differences between the T2 and
other groups (p < 0.05). Perhaps the diversity of the T2 group was significantly different from other
groups was precisely linked to the different geographical localisation of the above species.

The analysis of the differences between the alpha and beta diversity indices revealed that different
groups’ overall community structures were significantly different. The LEfSe analysis of T1–T8 samples
revealed biomarkers, including Lactobacillus, Muribaculaceae, Ruminococcaceae, Lachnospiraceae, and
Chitinophagales. Different species have different contributions to different groups; the highest
contribution was that of Chujaibacter, followed by Acidipila and Lactobacillus. The environmental
microbiota is complex and diverse. We observed that the dominant strain in the T2 group was
Lactobacillus. This prompts the urgent questions of how its survival among thousands of
microorganisms and in the colony affects the local microbiota and is affected by local microbiota. Using
the species co-occurrence network diagram, we intuitively visualise the dominant species and closely
interacting populations that are dominant in specific environments. These dominant species and
populations often play a unique and important role in maintaining the stable structure and function of the
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microbial community in the environment36. In the soil microbial co-occurrence network, approximately 20
strains were positively correlated with Lactobacillus, including Anaerostipes, Blautia, Dialister, and
Streptococcus; and approximately 35 strains negatively correlated with Lactobacillus, including
Minicystis, Rhizorhapis, Phycicoccus, and Oligoflexus. In addition to its good viability under various
conditions, Lactobacillus can also exert a synergistic effect on other microbes by regulating the growth of
the above-mentioned impacted strains. Lactobacillus, as a general probiotic, is widely distributed, e.g.,
large numbers of Lactobacillus have been isolated from the environment (soil and water), food
(fermented dairy products, fermented soy products, etc.)37, and various organisms (human, animals,
etc.)38. Their presence greatly affects human life and health. Probiotics are currently used to solve
problems in various fields, including agriculture, aquaculture, food processing industry, medical treatment,
etc., especially in the food and medicine, and, recently, cosmetics industries.

Molecular methods, such as metagenomics (estimating microbial composition and genome capacity),
metatranscriptomics (estimating gene expression), and metaproteomics (estimating protein synthesis),
provide insights into the functional profile of the entire soil communities. The expression of most
functional genes in the soil is different in different communities, and is driven by climate and soil
conditions39. Clustering based on the functional annotation and published abundance information can
determine the functional difference levels. On the horizontal level 2 of the clustering heat map, immune
system, glycan biosynthesis and metabolism, and carbohydrate metabolism had a higher level of
function in the T2 group than in others. The abundances of exosome, cysteine and methionine
metabolism, glycolysis/gluconeogenesis, alanine, aspartate and glutamate metabolism, amino acid-
related enzymes, peptidases, starch and sucrose metabolism, amino sugar and nucleotide sugar
metabolism, etc. were only relatively high in the T2 group on the horizontal level 3 of the clustering heat
map. Collectively, T2 group samples have unique functional characteristics at different levels. This may
be related to its unique geographical environment, and the underpinning factors require further research.
Longevity is comprehensively influenced by environment (soil, water, air, diet, lifestyle, exposome,
medication, development, economy), host (genetics, gender, age, stress, psychological factors),
microbiome (homeostasis, composition, diversity, function), among other factors. (Fig. 7). The
microbiome may play a key role in the connection between the environment and the host. Thus, we may
need to ensure a healthy gut microbiota in order to be longevous. The specific bacterial groups found in
this study may be related to host ageing and used to promote a healthy microbiota and longevity.

There are some limitations to this study. First, the functions of the soil microbiota were only predicted
using high-throughput sequencing. It is difficult to isolate as many types of microorganisms as those
analyzed using high-throughput sequencing data. In the future, in vivo and in vitro functional verification
tests on isolated strains will need to be conducted to ensure the accuracy of the high-throughput
sequencing analysis results. Second, seasonal changes in the environmental microbiota were not
considered, and must be taken into account in future studies. Third, we did not carry out a in-depth
longitudinal study of the host microbiota, which should be considered in future studies.
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Conclusion
In the current study, 64 bacterial phyla, 74 classes, 148 orders, 276 families, 664 genera, and 513 species
were identified in all soil samples. We found that considering the composition and diversity of the soil
microbial community in Jiaoling, China, the world’s longevity township, at the phylum level, the dominant
bacteria were Proteobacteria, Firmicutes, and Acidobacteria. The dominant bacteria at the genus level
were Chujaibacter, Acidipila, and Lactobacillus. However, Bacteroides, Lactobacillus, Ralstonia,
Collimonas, Candidatus Solibacter, Candidatus Koribacter were only dominant in the T2 group. The alpha
diversity and beta diversity of the T2 group were significantly different from those of other groups. That
was because of the different geographic locations of these species. LEfSe and ternary plot analysis
revealed 12 biomarker microbes that were responsible for significant differences between the groups,
mainly including Lactobacillus, Muribaculaceae, Ruminococcaceae, Lachnospiraceae, Chitinophagales,
etc. Simper analysis indicated the species that contributed to the above differences between the groups
and their contribution size. The contribution from high to low was Chujaibacter, Acidipila, Lactobacillus,
Rhodanobacter, unidentified Prevotellaceae, Lysobacter, Bryobacter, Granulicella, Flavobacterium, and
Mizugakiibacter. The contributions of different species were different in different groups, with the highest
contribution of Chujaibacter, followed by Acidipila and Lactobacillus.The microbiome may play a key role
in the connection between the environment and the host. Regional environmental factor soil microbiota
as a potential bridge between environment and long-lived People. These data provide a basis for
understanding the significant differences in the composition and diversity of soil microbial communities
in the long-lived people in longevity township Jiaoling, China.

Methods
Sample collection

August 2018, 52 soil samples were collected from eight towns (T1, Guangfu, 3 samples; T2, Nanzai, 3
samples; T3, Wenfu, 8 samples; T4, Changtan, 11 samples; T5, Jiaocheng, 4 samples; T6, Lanfang, 14
samples; T7, Sanzhen, 3 samples; and T8, Xinpu, 6 samples) belonging to the “world’s longevity
township” of Jiaoling County (Meizhou City, Guangdong Province, China). Soil samples were collected
from the front and back of a long-lived family’s house or vegetable garden under ground 10-15cm. After
collection, the samples were placed at 4 °C during transportation to the laboratory and then at -80 °C until
DNA extraction was performed. The distribution of population over 80 years old is provided by the local
Jiaoling County government.
DNA extraction and polymerase chain reaction (PCR) amplification

The genomic DNA was extracted and its purity and concentration were evaluated using agarose gel
electrophoresis. Sample DNA was diluted to 1 ng/L in sterile water. PCR primers were designed to target
the V4 and V5 hypervariable regions of the bacterial 16S rRNA gene. Phusion high-fidelity PCR Master
Mix with GC Buffer (New England Biolabs) were used to ensure the amplification efficiency and accuracy,
with the diluted genomic DNA as the template.
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16S rRNA gene sequencing

The amplicon library was built using the Ion Plus Fragment Library Kit 48 RXNS (Thermofisher, Shanghai,
China). The library was sequenced using Ion S5TMXL (Thermofisher, Shanghai, China) at Novogene
Bioinformatics Technology Co., Ltd. A single-end sequencing method was used to construct a small-
fragment library.
Processing of sequencing data

Cutadapt (v1.9.1, http://cutadapt.readthedocs.io/en/stable/)40 was first used to remove low-quality
fragments of reads. Next, the data were filtered for preliminary quality control of the raw reads. Then, to
remove the chimera sequences and obtain clean reads, they were processed by comparing with an
annotation database as described elsewhere41 using GitHub (https://github.com/torognes/vsearch/)42.
Statistical analysis

Uparse software (Uparse v7.0.1001, http://www.drive5.com/uparse/)43 was used to cluster all clean
reads from the samples. Mothur and the SSUrRNA database44 from SILVA132 (http://www.arb-
silva.de/)45 were used for species annotation. MUSCLE46 (v3.8.31, http://www.drive5.com/muscle/) was
used for rapid multiple sequence alignment to determine the phylogenetic relationship of all operational
taxonomic units (OTUs). QIIme (v1.9.1) was used to calculate the Shannon index and the Unifrac
distance, and to construct the sample-clustering tree using the unweighted pair group method with
arithmetic mean (UPGMA). R (v2.15.3) was used for dilution curve, rank abundance curve, and species
accumulation curve calculations, and to analyze the differences in alpha and beta diversity indeces
between the groups using the Wilcoxon test in the agricolae package for parametric test. Linear
discriminant analysis effect size (LEfSe) software was used to find biomarkers using a default score
setting of linear discriminant analysis (LDA) of 4. Based on species abundance, the correlation coefficient
(Spearman correlation coefficient or Pearson correlation coefficient) was calculated between the genera,
to obtain a correlation coefficient matrix. For edges, graphviz (v2.38.0) was used to draw the network
graph. The Tax4Fun function prediction was executed using the nearest-neighbor method based on the
minimum 16S rRNA sequence similarity. The specific method involved extracting the 16S rRNA gene
sequences from the whole prokaryotic genome of the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database and comparing them to those available in the SILVA SSU Ref NR database (BLAST bitscore > 
1,500) using the BLASTN algorithm to establish a correlation matrix.
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Figure 1

Distribution map of the population over 80 years old in world longevity township-Jiaoling, China. Note:
The designations employed and the presentation of the material on this map do not imply the expression
of any opinion whatsoever on the part of Research Square concerning the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This
map has been provided by the authors.
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Figure 2

Composition and structure of soil microflora. (A) Columnar cumulative graph of the relative abundance of
the top 10 species of microbiota among the different groups at the phylum level; (B) Cluster heat map of
the composition abundance of the top 35 species of microbiota among different groups at the genus
level; (C) The phylogenetic relationship of species at the genus level; (D) Species classification tree
analysis (selected top 10 genera with the largest relative abundance).
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Figure 3

Alpha diversity and beta diversity. (A) The rarefaction curve; (B) Rank abundance curve; (C) Box plot of
species accumulation; (D) Analysis of alpha diversity based on the Wilcoxon rank sum test of Chao1
index; (E) Box plot of differences between beta diversity groups based on unweighted unifrac beta-Wilcox
index; (F) Beta diversity analysis of UPGMA cluster tree based on unweighted unifrac distance; (G) Heat
map of distance matrix drawn with weighted unifrac distance. * (p < 0.05), ** (p < 0.01), and *** (p <
0.001).
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Figure 4

Significance analysis of species differences between groups. (A) Histogram of LDA value distribution of
species with significant differences in abundance between groups; (B) Evolutionary clade of species with
significant differences in abundance between groups; (C) Species with significant differences in
abundance between groups-Lactobacillus; (D-G) Species with significant differences in abundance
between groups-Muribaculaceae, Ruminococcaceae, Lachnospiraceae, Chitinophagales.
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Figure 5

Co-occurrence network of soil microbiota.
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Figure 6

Predicted functions. (A-D) Clustering heat map of functional differences at level 1, level 2, level 3, and
level k.
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Figure 7

The relationship between environment, host, and microbiota.
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