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Abstract
Microstate sequences summarize the changing voltage patterns measured by electroencephalography
(EEG), using a clustering approach to reduce the high dimensionality of the underlying data. A common
approach is to restrict the pattern matching step to local maxima of the global �eld power (GFP) and to
interpolate the microstate �t in between. In this study, we investigate how the anesthetic propofol affects
microstate sequence periodicity and predictability, and how these metrics are changed by interpolation.

We performed two frequency analyses on microstate sequences, one based on time-lagged mutual
information, the other based on Fourier transform methodology, and quanti�ed the effects of
interpolation. Resting-state microstate sequences had a 20 Hz frequency peak related to dominant 10 Hz
(alpha) rhythms, and the Fourier approach demonstrated that all �ve microstate classes followed this
frequency. The 20 Hz periodicity was reversibly attenuated under moderate propofol sedation, as shown
by mutual information and Fourier analysis. Characteristic microstate frequencies could only be observed
in non-interpolated microstate sequences and were masked by smoothing effects of interpolation.
Information-theoretic analysis revealed faster microstate dynamics and larger entropy rates under
propofol, whereas Shannon entropy did not change signi�cantly. In moderate sedation, active information
storage decreased for non-interpolated sequences. Signatures of non-equilibrium dynamics were
observed in non-interpolated sequences only and decreased in moderate sedation. All changes occurred
while subjects were able to perform an auditory perception task.

In summary, we show that low-dose propofol reversibly increases the randomness of microstate
sequences and attenuates microstate oscillations without correlation to cognitive task performance.
Microstate dynamics between GFP peaks re�ect physiological processes that are not accessible in
interpolated sequences.

Introduction
EEG microstate analysis has become a common method to characterize EEG sequences, both in the
resting state and in behavioral paradigms (Koenig et al. 2002; Khanna et al. 2015). The method generates
chains of representative topographies enabling the reduction of the EEG signal to a one-dimensional
string of categorical variables (microstate classes) whose content can provide insight into underlying
brain processes. The ability to investigate microstate sequences with techniques from information theory
and time series analysis (Lizier et al. 2012; von Wegner & Laufs 2018) has led to explorations of the
temporal structure of sequences (von Wegner 2018; Tait et al. 2020; Zanesco et al. 2020; Artoni et al.
2022), as opposed to studies of individual states, their duration and precise topography. This focus is of
particular interest for the study of resting state EEG due to the analogy between the sequence of
microstates and sequences of brain states interpreted as the stream of consciousness (Deco et al. 2011;
Michel & Koenig 2018; Artoni et al. 2022).
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Conceivable ways of applying the method include many clinical questions. The initial development and
use of the method were driven by research on neuropsychiatric conditions like schizophrenia, dementia,
and depression, among others (Strik et al. 1995, 1997; Koenig et al. 1999; Lehmann et al. 2005; Kikuchi et
al. 2007). Examining not only the duration and topographic properties of individual microstates, but also
their temporal complexity enabled Tait et al. (2020) to differentiate between healthy controls and mild
cognitive impairment. Members of our research group reported differences in the structure of sequences
between physiological and pathological sleep patterns (Brodbeck et al. 2012, Kuhn et al. 2015). These
were not only evident "macroscopically" during visual inspection of the EEG as traditionally used for sleep
scoring (Kales & Rechtschaffen 1968; Iber et al. 2007), but also at the microstate level where microstate
sequences in narcolepsy were fragmented compared to healthy controls (Kuhn et al. 2015). The
diagnostic capabilities of microstate analysis in the �eld of neuropsychiatric diseases, especially those
with reduced conscious alertness, are promising and offer opportunities for further methodological
development and standardization (Bréchet & Michel 2022; Toplutaş et al. 2023).

De�ning homogenous groups of subjects with disorders of consciousness can be di�cult in clinical
practice due to different aetiologies, comorbidities, age differences between groups, or diverse drug
combinations. An alternative is to compare healthy subjects in wakefulness and under anesthesia. EEG
microstate analysis during propofol sedation favors �ve microstate maps, compared to the commonly
used four canonical resting state maps (Michel & Koenig 2018). Previous studies have reported changes
in microstate duration in deep perioperative (Lapointe et al. 2023) and in light sedation stages (Shi et al.
2020; Artoni et al. 2022). Artoni et al. applied Lempel-Ziv compression to microstate sequences under
propofol anesthesia and described sequence complexity as a function of depth of anesthesia (Artoni et
al. 2022). Under mild to moderate propofol anesthesia, spatiotemporal EEG patterns were more diverse,
as measured by an increased sequence complexity. Complexity decreased with deepening anesthesia,
resulting in an inverse U-shaped dependence of complexity on anesthetic depth (Artoni et al. 2022). EEG
and behavioral data from a study of mild to moderate sedation without loss of consciousness have been
made publicly available and provide the basis of this report (Chennu et al. 2016). In that study, only 7/20
subjects presented impaired responsiveness to an auditory stimulus under moderate propofol sedation
(target plasma concentration 1.2 µg/ml), and alpha frequency band phase connectivity before propofol
injection predicted the behavioral effects (Chennu et al. 2016).

To date, only a small number of studies have investigated the characteristics of microstate sequences
between different propofol sedation levels that would be clinically described as wakefulness. Shi et al.
(2020) studied spectral EEG properties during the lifetime of individual microstates, and Artoni et al.
(2022) investigated microstate sequence complexity, the latter study including light and deep sedation
depths. The mapping of discrete pharmacologically induced changes and their quantitative description is
of particular interest as they might have discriminatory power in detecting early stages of disorders
associated with reduced conscious alertness. In this study, we test whether low propofol concentrations
affect the frequency composition and information-theoretic predictability of EEG microstate sequences.
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Once microstate sequences have been calculated by back�tting the microstate maps into the EEG time
series, one can either work with the unaltered non-interpolated sequence (von Wegner et al. 2017, 2021),
or a smoothing operation can be applied. A strong form of smoothing occurs when microstates are only
�tted to GFP peak locations and all time points in between are assigned to the state at the closest GFP
peak, a discrete version of interpolation (Michel & Koenig 2018; Schiller et al. 2019; Schumacher et al.
2019; Krylova et al. 2021). Intermediate smoothing intensities can be obtained by regularized �ltering
(Pascual-Marqui et al. 1995; Tomescu et al. 2014). In previous studies, we have found distinct time-
periodic signatures in sequences that optimally represent the concurrent EEG topography at each time
stamp, that is non-interpolated microstate sequences (von Wegner et al. 2021). Each interpolation choice
brings certain advantages and disadvantages, and the methods are rarely compared directly. We will
therefore compare non-interpolated and GFP peak-interpolated sequences obtained from the propofol
dataset (Chennu et al. 2016).

Our �rst aim is to investigate putative changes in microstate periodicity under propofol in both, non-
interpolated and GFP peak-interpolated sequences. We hypothesize that temporal smoothing will
attenuate the periodicity observed in non-interpolated sequences. Based on the �ndings of Chennu et al.
(2016), who reported reduced phase-coupling in the alpha frequency band under propofol, we
hypothesize that microstate sequences will decorrelate faster, corresponding to a higher entropy rate, and
that this might also affect their periodic ordering. This hypothesis is based on the �ndings that the alpha
frequency band contributes most to resting-state microstates (Milz et al. 2017), and that �xed phase
relationships between electrodes are necessary to generate stable topographic maps, i.e. microstates
(Koenig & Valdés-Sosa 2018). To quantify the temporal order of microstates, we apply information-
theoretic measures on non-interpolated and interpolated sequences. Additionally, we test effects of
propofol on the asymmetry of microstate transition matrices (von Wegner et al. 2017). Asymmetry
indicates time-irreversibility of microstate sequences and departure from equilibrium dynamics. A loss of
time-irreversibility has recently been discussed as a marker of transitions to unconsciousness, based on
studies in non-human primates (de la Fuente et al. 2023).

Methods
Experimental data

The dataset published by Chennu et al. (2016) contains EEG recordings from n = 20 healthy subjects (9
male) with a mean age of 30.85 years (SD = 10.98 years). All recordings were acquired in an eyes-closed
condition. Each participant underwent four EEG recordings - one at baseline, during mild sedation (target
propofol plasma concentration (PPC) 0.6 µg/ml), moderate sedation (target PPC 1.2 µg/ml) and at
recovery, each lasting 7 minutes. The published datasets are partitioned into 10 second artifact-free
segments. We removed those subjects from the dataset that were classi�ed as ‘drowsy’ in (Chennu et al.
2016) as we found signatures of N1 and N2 sleep stages in some of their baseline condition recordings.
This resulted in a subset of 13 subjects for further analysis.
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The dataset also contains results from a behavioral task performed during each of the four sedation
levels. Subjects were asked to distinguish two auditory stimuli (n = 40, 2 blocks, mean inter-stimulus
interval 3 sec) with a key press. Hit rates and reaction times were recorded. See (Chennu et al. 2016) for
further details.

EEG signal processing

All data sets were recorded with a 128 channel EEG setup, sampled at 250 Hz, using the Net Amps 300
ampli�er (Electrical Geodesics Inc., Eugene, Oregon, USA). Data were re-referenced to an average
reference as recommended for microstate analysis (Murray et al. 2008). A total of 91 EEG channels were
retained after artifact rejection.

Band-pass �ltering used zero-phase, 6-th order Butterworth coe�cients with a transfer function slope of
24 dB/octave and 1–30 Hz passband for microstate analysis. EEG topographies were interpolated and
projected on a 128 × 128 grid using cubic Clough-Tocher interpolation for visual display (von Wegner &
Laufs 2018). The EEG spectral density was computed on the time-course of the �rst principal component
(PC-1) of each EEG dataset using Welch’s algorithm with a Hann window (256 samples wide, 50%
overlap) implemented in the SciPy library (Virtanen et al. 2020), as previously reported (von Wegner et al.
2017, 2021).

Microstate algorithm

Subject-wise microstates were computed with the modi�ed K-means algorithm (Pascual-Marqui et al.
1995; Murray et al. 2008), using EEG voltage vectors at GFP peaks as input. We used K = 5 clusters
following Shi et al. (2020) who analyzed the same dataset and used the Krzanowski-Lai criterion. Group-
wise microstates were computed by a full permutation procedure (Koenig et al. 2002) with 20 random
initializations. Grand mean microstate maps were obtained from clustering across the four conditions
(sedation levels). Microstate sequences were obtained by either (i) competitive back-�tting of the �ve
grand mean maps to each time step and no further processing (non-interpolated sequences), or, (ii) back-
�tting to GFP peak locations and assignment of all other time steps to the map at the closest GFP peak
(interpolated sequences).

Microstate sequence analysis

Frequency Analysis

We applied two methods to identify the spectral properties of microstate sequences. The �rst method
used time-lagged mutual information (autoinformation function, AIF), introduced in (von Wegner et al.
2017) and the code published in (von Wegner & Laufs 2018).

The second method is based on classical Fourier transform spectral analysis and yields one frequency
spectrum per microstate class. To apply a discrete Fourier transform to the categorical microstate
variables (A, B, C, …), we transformed each microstate sequence into �ve different numerical sequences
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as follows. For a sequence of microstate labels  (discrete time ) and microstate label 
, we computed a transform that we call the characteristic microstate sequence 

 as  if  and  else. For instance, the label sequence 
 yields the characteristic sequences , 

, and so on. For each characteristic sequence we computed the power
spectral density with Welch’s algorithm and Hann window (256 samples, 50% overlap).

Information-theoretic Analysis

Microstate sequences were further characterized by their Shannon entropy ( ), entropy rate ( ), and
active information storage (AIS). Entropy calculations were carried out as detailed in (von Wegner et al.
2017; von Wegner & Laufs 2018). AIS has been applied to discrete dynamical systems before (Lizier et al.
2012; Wibral et al. 2014) but not to EEG microstate sequences. In terms of probabilities, the entropy rate
is derived from the conditional distribution  of the next microstate label 

, given knowledge about the past k microstate labels , whereas AIS refers to the
shared information  between the next state and the k past states. Since the
total entropy of microstate sequences can change between conditions, entropy rate and AIS are not
necessarily anti-correlated across conditions. Eq. (1) illustrates the mathematical relationship between
the three measures (Lizier et al. 2012). The left-hand side is the Shannon entropy ( ) of the next
microstate (time point ) which can be expressed as the sum of the entropy rate ( , �rst right-hand
side term) and active information storage (AIS, second right-hand side term). Entropy rate and AIS are
written in the form of their �nite history length (k) estimates which were used in computations.

 +  (1)

All calculations were implemented as detailed in (von Wegner 2018; von Wegner et al. 2018) with a
history length of k = 5 samples.

The microstate transition probability matrix  for the microstate classes
 was quanti�ed by its relaxation time (von Wegner et al. 2017) to obtain a

measure of the overall rate of change of microstate dynamics. A shorter relaxation time indicates faster
decorrelation of the sequence.

Temporal irreversibility

Temporal irreversibility was assessed by testing the symmetry of the microstate transition probability
matrix (von Wegner et al. 2017). Rejection of the null hypothesis (symmetry) at α = 0.01 was taken as
evidence that the microstate sequence had an ‘arrow of time’ (Kim et al. 2018; de la Fuente et al. 2023).
For each subject we determined the fraction of time-irreversible microstate segments and averaged this
fraction across subjects in each condition.

L (n) n = 0,1, . . .

l ∈ {A, B, C, D, F}

xl (n) xl (n) = 1 L (n) = l xl (n) = 0

L (n) = (A, A, B, A, C, B, D) xA (n) = (1,1, 0,1, 0,0, 0)

xB (n) = (0,0, 1,0, 0,1, 0)

h0 h1

P (Xn+1|Xn, . . . , Xn−k+1)

Xn+1 Xn, . . . , Xn−k+1

I (Xn+1; Xn, . . . , Xn−k+1)

h0

n + 1 h1

H (Xn+1) = H (Xn+1|Xn, . . . , Xn−k+1) I (Xn+1; Xn, . . . , Xn−k+1)

Tij = P (Xn+1 = Sj|Xn = Si)
S = {A, B, C, D, F}
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Statistical Analysis
All analyses were implemented in the Python 3 programming language (Van Rossum & Drake 2009).
Statistical analyses were computed with the statsmodels toolbox (Seabold & Perktold 2010).

Results
Microstate maps

Figure 1 shows the microstate maps obtained for each sedation stage and the resulting grand mean
maps (last row) that were used for further analysis. The microstate maps A - F in Fig. 1 show good
agreement with recent studies of propofol sedation but also with maps reported in other experimental
conditions (Custo et al. 2017; Shi et al. 2020; Zanesco et al. 2020; Artoni et al. 2022; Hao et al. 2022).
Map similarity measured by the absolute value of the spatial cross-correlation coe�cient revealed minor
differences between the sedation levels. The largest difference from baseline was observed for map F
under moderate sedation (Table 1). Our map F under moderate sedation was similar to map D in Shi et al.
(2020) and Zhang et al. (2021). This difference did not affect further analyses which were based on the
grand mean maps (GM in Fig. 1). The global explained variance for the grand mean maps (GEV = 68.7%)
was in the range reported for resting-state conditions.

Table 1
Spatial correlation between maps displays the largest difference between baseline and moderate

sedation. Maps A, B, C, D and F at baseline were compared to mild sedation, moderate sedation and the
recovery stage.

  map
A

map B map C map D map F average per stage

baseline vs. mild sedation 0.994 0.986 0.998 0.994 0.994 0.993

baseline vs. moderate
sedation

0.988 0.979 0.957 0.940 0.657 0.904

baseline vs. recovery 0.901 0.926 0.966 0.988 0.989 0.954

Microstate frequency analysis

Spectral properties of microstate sequences were measured in the time and frequency domain. In the
time domain, we applied time-lagged mutual information (autoinformation function, AIF) to measure two-
point autocorrelations for discrete time lags (0-400 ms).

Figure 2 shows the AIF (mean and 95% con�dence intervals) for non-interpolated microstate sequences
on the left and for GFP-peak interpolated microstate sequences on the right. Sedation levels are listed
from top to bottom (a - d) as indicated by the annotations. These were the main observations:
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i) Microstate sequences occurred periodically with a minimum time lag of 50 ms at a) baseline, b) mild
sedation and during d) recovery. This periodicity was attenuated during c) moderate sedation.

ii) The effects described in i) were not observed for interpolated sequences (right column). Interpolated
microstate sequences did not show periodic microstate sequence features in any sedation level.

Results from the methodologically independent Fourier transform-based method are illustrated in Fig. 3.
This method allowed frequency domain analysis of individual microstate classes. The power spectral
densities (PSD) of characteristic microstate sequences for microstate classes A to F (different line styles)
showed no qualitative differences between the microstate classes. The spectral properties of the
underlying EEG at the sensor level were summarized by the PSD of the �rst principal component of the
EEG data set (blue, mean PSD and 95% con�dence interval). EEG spectra are identical for non-
interpolated (left) and interpolated (right) microstate sequences and demonstrate dominant alpha
frequencies around 10 Hz in a) baseline, b) mild sedation, and d) recovery. For c) moderate propofol
sedation, alpha frequency band power was clearly reduced. Non-interpolated microstate spectra (left
column) displayed dominant frequencies at twice the alpha frequency (20 Hz) whenever the EEG alpha
peak was observable (a-d), and was strongly attenuated for all microstate classes under c) moderate
propofol sedation. The PSDs of interpolated microstate sequences decayed monotonously (right
column), and did not display characteristic spectral peaks across the four sedation levels (a-d).

Microstate sequence parameters

The statistics of the microstate sequence parameters relaxation time (τ), Shannon entropy (h0), entropy
rate (h1), and active information storage (AIS) are illustrated in Fig. 4 for non-interpolated sequences (a,
b) and GFP peak-interpolated sequences (c, d). Row a) and c) show their statistics (mean, standard
deviation, n = 13) for each sedation level and row b) and d) show their dependence on the propofol
plasma concentration (PPC).

Relaxation time and entropy rate analysis of a) non-interpolated and c) interpolated sequences
demonstrated a shorter relaxation time and a larger entropy rate in moderate sedation, compared to
baseline and recovery. Active information storage was reduced in moderate sedation for non-interpolated
sequences and correlated negatively with PPC. Correlation analysis with PPC con�rmed these
relationships for b) non-interpolated sequences. In c) interpolated sequences, signi�cant correlations
were observed for τ, h0 and h1. Where signi�cant, the correlation coe�cients for non-interpolated and
interpolated sequences had the same sign. It should be noted that the absolute values of microstate
sequence parameters depend on the pre-processing strategy (non-interpolated vs. interpolated).

Temporal Irreversibility

Temporal irreversibility of microstate sequences is analyzed in Fig. 5. For each subject and each EEG
segment (10 sec), symmetry of the transition probability matrix was tested statistically and the fraction
of rejected null hypotheses was recorded for each subject. In Fig. 5, statistics (mean, standard deviation)



Page 9/24

across subjects (n = 13) are shown for a) non-interpolated and b) interpolated microstate sequences.
Statistical analysis revealed a reduced fraction of asymmetric (time-irreversible) transition matrices in
moderate sedation, compared to baseline and recovery. Note the different y-axis scaling in b) as we found
almost no evidence for asymmetric transition matrices in interpolated sequences. There were no
signi�cant differences between sedation levels in b).

Correlation between microstate parameters and behavior

Figure 6 summarizes the results for the behavioral markers reaction time (a, c) and percentage of correct
answers (b, d) for non-interpolated (a, b) and interpolated (c, d) sequences. Spearman correlation
coe�cients were computed between the microstate sequence parameters (relaxation time, Shannon
entropy, entropy rate, AIS) and the behavioral markers pooled across sedation levels. Sedation levels are
indicated by different markers (legend in the upper right corner). This resulted in 16 correlation analyses
which were Bonferroni corrected. No signi�cant correlations were found.

Discussion
To investigate whether and how propofol sedation alters EEG microstate sequences, we analyzed
sequence properties in both non-interpolated and GFP-peak interpolated data from a publicly available
dataset. The main results of our study were:

Propofol had marked effects on microstate dynamical properties at moderate sedation levels
(propofol plasma concentration 1.2 µg/ml).

Propofol sedation reversibly attenuated 20 Hz oscillatory patterns that were present in microstate
sequences at baseline. This affected all microstate classes and was related to a decrease in 10 Hz
EEG power at the sensor level.

Propofol led to faster microstate dynamics (shorter relaxation time), reduced sequence predictability
(higher entropy rate, lower active information storage), and dynamics indicative of a brain state
closer to equilibrium dynamics.

The aforementioned changes were mostly observed in non-interpolated microstate sequences.
Sequence interpolation between GFP peaks obscured spectral changes and features indicative of
non-equilibrium dynamics.

All propofol-induced changes represented low sedation levels without loss of consciousness and at
least partially preserved task performance.

Propofol-induced changes in microstate periodicity

Microstate sequence periodicity is one of several quantitative features that demonstrate temporal
ordering principles of spontaneous brain state dynamics and is observable in healthy subjects at rest
(von Wegner et al. 2017) and during cognitive processing (Jia et al. 2021). While the baseline is
characterized by 20 Hz microstate oscillations (twice the alpha frequency, von Wegner et al. 2021),
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cognitive task execution leads to a shift towards higher frequencies as beta frequencies become more
prominent (Jia et al. 2021). We investigated sequence periodicity with two independent methods in the
time and frequency domain, respectively, and related microstate frequency spectra to those of the
underlying EEG at the sensor level. The main effect of propofol at moderate plasma concentrations
(target 1.2 µg/ml) was an attenuation of periodic features at 20 Hz, or at time lags of 50 ms and
multiples thereof (Fig. 2, Fig. 3) in non-interpolated microstate sequences. The newly introduced Fourier
transform-based method proved that this effect occurred for all �ve microstate classes. Both methods
complement each other in that AIF includes all microstate classes, whereas the Fourier transform-based
method yields one spectrum per class. AIF has the advantage of being robust against variations in the
chosen number of microstates (supplementary material in (von Wegner et al. 2017)). We con�rmed the
robustness of AIF and PSD analyses on the propofol dataset when using K = 4 microstates (data not
shown).

In Fig. 4, residual alpha power at the EEG sensor level was observed in the frequency spectrum of the
EEG’s �rst principal component in agreement with Chennu et al. (2016) and Shi et al. (2020). An even
stronger reduction of occipital alpha power is expected during deeper propofol sedation with concomitant
loss of consciousness, where delta and beta activity are known to dominate the EEG (Purdon et al. 2013).
Several groups have demonstrated increased frontocentral alpha amplitudes under deeper propofol
sedation rather than a pure decrease in occipital alpha activity (Akeju et al. 2014; Kallionpää et al. 2020).
For the data used in this study, Chennu et al. (2016) showed a preserved posterior dominant alpha power
topography even under moderate sedation.

Our results show that microstate periodicities could not be mapped in GFP peak-interpolated data. This
supported our initial hypothesis that the inevitable smoothing effects of interpolation would affect
temporal sequence features observable at higher temporal resolution. The reversible modulation of
periodicities by propofol suggests that microstate dynamics between GFP peaks convey physiologically
relevant information, although these topographies display lower GFP values (Zanesco et al. 2020) and
are sometimes assumed to contain mostly noise.

Shi et al. (2020) chose a related, but fundamentally different approach by analyzing power spectra at the
EEG sensor level restricted to the lifetime of GFP-peak interpolated microstates of a given class (marginal
spectrum). Both approaches reveal reduced alpha frequency band power, yet the results in Shi et al.
(2020) do not provide information about the periodic occurrence of microstates themselves. The
marginal EEG spectra in Shi et al. (2020) are compatible with both the presence and absence of periodic
microstates. The key determinant is the extent of phase-locking between electrodes (Koenig & Valdés-
Sosa 2018). Uncoupled, phase-independent alpha oscillators could still produce alpha frequency peaks at
individual sensors, and thus in the marginal spectra, but would destroy the periodic recurrence of
individual microstates. Our results demonstrate that periodicity is one aspect of temporal microstate
ordering that is present in the baseline but is lost at relatively low propofol concentrations and even
before impairment of cognitive task performance occurs.
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In summary, non-interpolated microstate sequences contain frequency information that can be
pharmacologically modulated and is not accessible in interpolated sequences.

Microstate sequence predictability and information storage

Apart from periodicity, we evaluated non-interpolated and interpolated microstate sequences regarding
their relaxation time (τ), Shannon entropy (h0), entropy rate (h1), and active information storage (AIS).

The relaxation time of a sequence is calculated from the transition probability matrix and therefore
informs about single time step transitions ( ). An advantage over the full matrix representation
is that τ quanti�es the transition probabilities across all microstates. More formally, τ describes how fast
the microstate generating process approaches equilibrium if perturbed. We found reduced relaxation
times under moderate propofol sedation in non-interpolated and interpolated sequences (Fig. 4).
Interpolated sequences have larger absolute τ values as interpolation introduces longer state durations
and therefore a slower approach to equilibrium. Assuming that microstate sequences are not completely
deterministic but contain some inherent stochasticity, a shorter relaxation time suggests a reduced
predictability of future states from past values, as the correlation with past states is lost over a smaller
number of time steps. In terms of brain state dynamics, this indicates a lower coherence of brain states
over time, or in other words, that past brain states exert less in�uence on which network will be activated
in the next step (Jia et al. 2021). The limitation of the relaxation time approach is the short time window
considered and that it describes linear system properties only. Markov surrogate data of microstate
sequences are constructed from the same transition matrix as the actual EEG-derived sequence and
therefore have identical relaxation times, but they do not model periodic microstate properties (von
Wegner et al. 2017). Relaxation time is thus a useful descriptor of global time scale changes between
experimental conditions but cannot be expected to capture all aspects of temporal order.

Entropy rates were computed for a history length of �ve samples, which was limited by the length of EEG
segments (10 sec). Longer histories require more samples to reliably estimate the joint entropies from
which the entropy rate was calculated. Although there were no signi�cant differences between sedation
levels for total Shannon entropy, entropy rates increased in deeper sedation and correlated positively with
the propofol plasma concentration (Fig. 4). There are two interpretations of entropy rates, �rst as a
measure of time series complexity in the sense of randomness, the other as a measure of sequence
predictability. Our �ndings indicate that microstate sequences are less ordered and closer to a random
sequence at moderate propofol concentrations. Technically, given a sequence of brain activations, these
states are less useful in predicting which activation pattern the brain will generate next. In Jia et al.
(2021), this effect was interpreted in terms of putative cognitive control networks which appear to be less
active, or less effective, during the execution of creative tasks, allowing for more degrees of freedom in
choosing the next functional network to become active. In the context of propofol, we hypothesize that
these control mechanisms are pharmacologically constrained and less capable to direct the �ow of
network activity. With regard to Kolmogorov complexity, microstate sequences under propofol are more
complex compared to baseline. Our results can therefore be translated to the �ndings that Artoni et al.

n → n + 1
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(2022) reported for Lempel-Ziv complexity, which is another measure of Kolmogorov complexity. The two
approaches, based on two different datasets, agree in describing an increased sequence complexity at
low propofol concentrations which might be related to a transient hyperexcitable brain state (Ching &
Brown 2014).

AIS measures whether correlations between past states can be used to predict the next brain state. The
concept is closely related to entropy rate and indeed, for a constant total (Shannon) entropy h0, the sum
of entropy rate (h1) and AIS equals h0. As we could not predict whether h0 would change under propofol,
we evaluated all three quantities. Statistical analysis revealed no signi�cant changes in h0 between
sedation levels but the linear correlation between propofol concentration and Shannon entropy of
interpolated sequences was positive. Active information storage only showed changes for non-
interpolated sequences, and these were concordant with the entropy rate changes discussed in the
previous paragraph. With increasing entropy rate at deeper sedation levels, lower AIS values demonstrate
that correlations with past microstates contribute signi�cantly less to future states.

A reduced fraction of asymmetric transition matrices, i.e., time-irreversible microstate dynamics, was
observed under moderate sedation for non-interpolated sequences (Fig. 5). Loss of temporal
directionality can be interpreted as a dynamic state closer to equilibrium and was observed during the
transition to unconscious states in non-human primates in (Sanz Perl et al. 2021) and (de la Fuente et al.
2023). Sanz Perl et al. (2021) used an approach similar to ours but based on electrocorticography data.
Data were discretized and the asymmetry of the transition probability matrix was used to measure how
far brain activity was from thermodynamic equilibrium. The authors found that different states of
reduced consciousness were associated with brain states closer to equilibrium, including sleep and
several anesthetic drugs (Sanz Perl et al. 2021). The underlying concept is that living systems, and
especially the brain as an information processing subsystem, are not expected to be operative close to
thermodynamic equilibrium. We addressed the question of non-equilibrium dynamics under propofol
which has not been answered for human EEG microstate sequences. In our earlier study 14/20 subjects
showed evidence of non-equilibrium microstate dynamics in relaxed wakefulness (von Wegner et al.
2017). We now found that moderate propofol sedation was associated with microstate dynamics closer
to equilibrium, in accordance with Sanz Perl et al. (2021) and de la Fuente et al. (2023). Our data shows
that the shift towards equilibrium dynamics in humans occurs even before consciousness and cognitive
performance are markedly affected. The lower fraction of non-equilibrium sequences at baseline (resting-
state) compared to our earlier study is probably explained by shorter EEG segments in the underlying
dataset (10 sec). The null hypothesis of the statistical test is symmetry, which is more likely to be
accepted for smaller sample sizes, i.e., shorter sequences (lower test power). Test results for interpolated
microstate sequences make clear that interpolation produced a drastic shift towards symmetry as non-
equilibrium dynamics were almost absent at baseline. Given evidence from other studies, we believe that
the shift towards equilibrium dynamics observed in interpolated sequences is an arti�cial effect that
obscures potentially relevant features of true brain state dynamics.
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It remains an open question whether hysteresis effects as described in (Kim et al. 2018) for ketamine and
sevo�urane anesthesia can be found in EEG microstate data under propofol. Our statistical analysis
between the sedation depths labeled by (Chennu et al. 2016) revealed no signi�cant differences between
baseline and recovery, that is induction of and emergence from anesthesia. This could also be due to the
comparatively light sedation level. Microstate analysis of continuous EEG recordings during induction
and emergence might help to answer this question.

Sedation with maintained awareness

All results describe changes in healthy subjects without loss of consciousness. We excluded a subgroup
of subjects (n = 7) from the published dataset. Chennu et al. (2016) described a subgroup of n = 7
subjects with signi�cantly reduced stimulus perception rates in this dataset. Upon visual inspection of the
non-interpolated EEG segments, we found EEG features of light sleep in their baseline condition. We
therefore excluded this subgroup from our analyses while they were included in other studies (Chennu et
al. 2016; Shi et al. 2020). The remaining subgroup (n = 13) was assumed to be awake at all sedation
depths as their perceptual hit rates were above 80% for all but one subject even under moderate propofol
sedation. Thus, stages of quantitatively altered consciousness in a clinical sense were not reached.
Nevertheless, mild propofol sedation induced signi�cant changes that could be quanti�ed with spectral
and information-theoretic measures. In analogy to the results by Artoni et al. (2022), it would also be
interesting to track the measures introduced in this study in deeper sedation stages with loss of
consciousness. As an outlook, the same methods could be employed to assess pathologically reduced
states of consciousness.

In summary, our study provides new insights into the pharmacological modi�ability of microstate syntax
principles, in particular their periodic properties and short-range predictability. Propofol reversibly
attenuates microstate periodicity and moves microstate transitions closer to equilibrium dynamics, but
these effects can be obscured by microstate sequence interpolation.
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Figure 1

Microstate maps. Map topographies are shown for each sedation level (baseline, mild sedation, moderate
sedation, recovery) and the grand mean (GM) from the modi�ed K-means algorithm. Map labeling
follows Custo et al. (2017).
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Figure 2

Microstate periodicity at multiples of approximately 50 ms (20 Hz) in non-interpolated sequences is
attenuated under moderate propofol sedation. Autoinformation functions (AIF) for the sedation levels a)
baseline, b) mild sedation, c) moderate sedation, and d) recovery. The left column shows results for non-
interpolated microstate sequences, the right column for GFP-peak interpolated microstate sequences.
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Figure 3

Power spectral densities (PSD, Sxx) show 10 Hz oscillations at the EEG sensor level and 20 Hz peaks for
characteristic microstate functions for non-interpolated sequences only. PSD at the EEG sensor level (PSD
of the �rst principal component, mean and 95% con�dence interval in blue) and for characteristic
microstate functions (mean PSD in black, linestyle indicates the microstate class, see legend on the top
right) are shown for each sedation level (a) baseline, b) mild sedation, c) moderate sedation and d)
recovery). The EEG-PSD shows a reduced alpha amplitude in moderate propofol sedation. Microstate
PSDs show propofol-related attenuation (c) when no interpolation is applied (left).
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Figure 4

Microstate sequence parameters show faster microstate dynamics and higher entropy rates with
increasing propofol sedation. Transition matrix relaxation time (τ), Shannon entropy (h0), entropy rate
(h1), and active information storage (AIS) for different sedation levels (a) non-interpolated sequences, c)
interpolated sequences), and as a function of propofol plasma concentration (µg/ml) (b) non-interpolated
sequences, d) interpolated sequences). Differences at the group level (for the sedation levels base =
baseline, mild = mild sedation, mod = moderate sedation, rec = recovery) were assessed with one-way
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ANOVA (α = 0.05) followed by post-hoc pairwise Tukey tests (pFWE<0.05). Signi�cant pairwise differences
are indicated by horizontal brackets (a, c). Spearman correlation coe�cients are shown as insets in (b, d)
if signi�cant (p<0.05).

Figure 5

Temporal irreversibility decreases under moderate sedation for non-interpolated sequences only.

Bar graphs indicate the fraction of EEG segments per subject with an asymmetric transition matrix (mean
and standard deviation across subjects) in the four sedation levels (base = baseline, mild = mild sedation,
mod = moderate sedation and rec = recovery) for a) non-interpolated sequences and b) interpolated
sequences. Interpolated sequences show hardly any asymmetric transition matrices and no statistical
differences between sedation levels. Note the different y-axis scaling in b) to make differences from zero
visible. Differences were tested by one-way ANOVA and post-hoc pairwise Tukey tests. Signi�cant
pairwise differences (pFWE<0.05) are indicated by horizontal brackets.
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Figure 6

Correlation analysis between microstate sequence parameters and behavioral markers did not reveal any
signi�cant results. Sedation levels are indicated on the upper right (base = baseline, mild = mild sedation,
mod = moderate sedation, rec = recovery). a), c) reaction times (ms) and b), d): percentage of correct
answer (‘hit rates’, %) did not show any signi�cant Spearman correlations with the tested microstate
sequence parameters (τ, h0, h1, AIS) for non-interpolated (a, b) or interpolated (c, d) microstate sequences,
respectively. Statistical results were Bonferroni corrected over the n=16 correlation analyses.


