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Abstract

In contemporary digital security systems, the generation and management of
cryptographic keys, such as passwords and pin codes, often rely on stochastic
random processes and intricate mathematical transformations. While these keys
ensure robust security, their storage and distribution necessitate sophisticated
and costly mechanisms. This study explores an alternative approach that lever-
ages biometric data for generating cryptographic keys, thereby eliminating the
need for complex storage and distribution processes. The paper investigates bio-
metric key generation technologies based on deep learning models, specifically
utilizing convolutional neural networks to extract biometric features from human
facial images. Subsequently, code-based cryptographic extractors are employed to
process the primary extracted features. The performance of various deep learn-
ing models and the extractor is evaluated by considering Type 1 and Type 2
errors. The optimized algorithm parameters yield an error rate of less than 10%,
rendering the generated keys suitable for biometric authentication. Additionally,
this study demonstrates that the application of code-based cryptographic extrac-
tors provides a post-quantum level of security, further enhancing the practicality



and effectiveness of biometric key generation technologies in modern information
security systems. This research contributes to the ongoing efforts towards secure,
efficient, and user-friendly authentication and encryption methods, harnessing
the power of biometric data and deep learning techniques.

Keywords: cryptographic keys, deep learning models, convolutional neural networks,
fuzzy extractor, biometric face images, code-based cryptosystems

1 Introduction

The rapid advancements in technology and the growing reliance on digital systems
for various day-to-day activities have led to an increasing demand for secure and
user-friendly authentication mechanisms. One of the most promising directions in this
regard is the application of biometric technologies, which are quickly gaining traction
in multiple domains of computer science [1-3]. Biometrics utilizes unique physiological
or behavioral characteristics, such as facial features, fingerprints, and iris patterns, to
establish an individual’s identity with high accuracy [4, 5].

The appeal of biometrics lies in its inherent security, as these unique traits are dif-
ficult to forge or reproduce, and its user-friendliness, as users do not need to remember
complex passwords or carry additional tokens for authentication [4]. Consequently,
biometric technologies have been integrated into a diverse array of applications, rang-
ing from access control in enterprises and criminal identification by law enforcement
agencies to personalized services in medicine, banking, and advertising [3, 5].

However, the widespread adoption of biometrics has also given rise to new chal-
lenges and concerns. Most biometric systems are heavily reliant on large databases
containing an extensive collection of images [6-8], including fingerprints, facial pho-
tos, iris scans, and more. The storage and management of such massive amounts of
personal data introduce significant risks, such as data breaches and malicious use of
stolen biometric information [9-11]. These issues highlight the need for innovative
solutions that address the shortcomings of traditional biometric authentication and
personal identification methods.

In parallel, cryptographic key-based access control methods, employing passwords,
pin codes, and other secret keys [12, 13], have long been used to secure digital sys-
tems. These cryptographic keys are generated using specialized algorithms that rely
on stochastic random processes and complex mathematical transformations [14-17].
While offering a robust security mechanism, the use of cryptographic keys introduces
the need for secure storage and distribution systems, which can be expensive and cum-
bersome to maintain. Additionally, the loss of a cryptographic key could lead to the
loss of access to critical resources, such as bank accounts or customer service accounts.

The advent of quantum computing has further intensified the need for advanced
cryptographic methods, as traditional encryption techniques may become vulnera-
ble to attacks by powerful quantum computers. Post-quantum cryptography seeks to
develop cryptographic algorithms that are secure against both classical and quantum



computational attacks [18, 19]. One promising direction in post-quantum cryptog-
raphy is the use of code-based cryptosystems, which are known to be resistant to
quantum attacks.

In light of the aforementioned challenges, this paper explores an approach that
combines the advantages of biometrics and cryptographic keys while incorporating
post-quantum cryptographic security. We propose a novel method for generating cryp-
tographic keys from biometric facial images using deep learning models and code-based
cryptographic extractors. By deriving cryptographic keys directly from biometric data,
we eliminate the need for storing and distributing secret keys, while maintaining the
security and user-friendliness of biometric authentication.

Furthermore, our approach employs code-based cryptographic extractors to pro-
cess the primary extracted biometric features, ensuring a post-quantum level of
security. We experiment with various deep learning models and assess the perfor-
mance of the extractor based on Type 1 (False Reject Rate, FRR) and Type 2 (False
Accept Rate, FAR) errors. The optimized parameters of our algorithms yield an FRR
and FAR of less than 10%, enabling the use of the generated keys for biometric
authentication.

The remainder of this paper is organized as follows: Section 2 provides a com-
prehensive review of related studies on biometric key generation, cryptographic
extractors, and post-quantum cryptography. Section 3 discusses the feature vector
extractors employed in our methodology. Section 4 presents the feature vector con-
verter for processing the extracted features. Section 5 details the code-based fuzzy
extractor, which ensures post-quantum security. Section 6 reports the experimental
results, while Section 7 compares our approach with existing methods. Finally, Section
8 concludes the paper and discusses potential avenues for future research in this area.

2 Related studies

This paper explores new technologies for generating cryptographic keys from biomet-
ric images using deep learning methods. This direction is developed in many related
works. For example, in [1, 8, 20], the issues of liveness detection and user authen-
tication are studied. In [9, 21-23] and many others, Al methods are examined in
relation to solving the problem of biometric cryptography. The works [24-27] explore
fuzzy extractors, which are developed on the basis of the previous Fuzzy Commitment
[28-30] and Fuzzy Vault Schemes [31-33].

Key generation issues are considered in [34-36]. In [37], it was proposed to use a
code-based extractor to generate keys. This is one of the areas of code-based cryptog-
raphy [38-42], which, as shown in [18, 19, 38], provides high resistance to both classical
and quantum cryptoanalysis. Code-based cryptography is considered a reliable and
secure alternative to modern public-key cryptosystems [43-45]; some algorithms have
already been selected by NIST USA for post-quantum standardization [46].

Thus, a cryptographic extractor based on codes is a promising direction for further
research [4, 47]. At the same time, to use such an extractor, the initial biometric data
must be converted into binary strings with a low error rate (no more than 25%).
Errors can occur for various reasons, for example, due to errors in the processing



of biometric images or due to deliberate distortion. To ensure low FRR values, one
must minimize the error rate in the binary strings of a single user. Biometric images
of another person (for example, an intruder) are also converted into binary strings
with errors. To ensure a low FAR value, the error rate for the biometrics of different
users must be very high. Thus, the central gap in modern research is estimating the
frequency of errors in binary strings of different users. In this work, we investigate
this problem. We use different deep-learning models to generate binary strings and
estimate the error probabilities FRR and FAR before and after applying the code-
based extractor. We optimize the extractor parameters based on the codes to provide
small FRR and FAR. Our experiments with biometric facial images confirm this.

3 Feature vector extractors

In our research, we restrict ourselves to biometric images of faces and explore tech-
niques for generating strong keys. We explore various deep-learning techniques for
extracting biometric features. In particular, we consider one of the most accurate mod-
els Keras Facenet [48] and Face Recognition [49] with accuracy 99.63% and 99.38%,
respectively. We explore the possibilities of using them to generate binary strings.

3.1 Feature vector extraction

Keras Facenet and Face Recognition feature extraction algorithms, given an image
X, return a real-valued feature vector f = ¢(X) € R™ of fixed size ny (here and
hereafter by ¢ : Z — R"f we denote this transformation from an image to a feature
vector).

Feature vectors of two similar people must be “close” to each other while feature
vectors of two different people must be “far away” from each other. There are different
ways how to encapsulate this rule strictly, but in case of Keras Facenet and Face
Recognition packages the vector distance function d,(-,-) is considered:

A
dy(z,y) = |z — yl3

This way, if we have two images of people, say, X and Y, then if d,(¢(X), d(Y))
is small enough than most likely X and Y are images of the same person, whereas if
dy(d(X), ¢(Y)) is large enough, we conclude that X and Y are images of two different
people.

Therefore, it is relevant to introduce the term distance between images as defined
in paper [20] for the Siamese neural network (where each vector element f; has the
same weight). The distance dz(X,Y’) between images X,Y € 7 is a vector distance
between the corresponding feature vectors, i.e.:

dr(X,Y) £ dy(¢(X), ¢(Y)) (1)

As said before, both Keras Facenet and Face Recognition use deep learning
approach: firstly the set of triplets 7 C Z2 is being formed where each element has a
form {A, P, N}, with A and P being the images of the same person, and A with N



of two different people (here letters A, P, N correspond to the terms anchor, positive,
and negative which represent aforementioned relations). Then the algorithm tries to
find such parameters of the neural network to minimize the following loss function
(where 3 is a positive hyperparameter):

L= Y ReLU(dz(A,P)—dz(A,N)+p).
APNeT

In particular, this distance helps us to differentiate when two images correspond
to a single person (we denote such relation as X = Y) and when to two different
people (we denote such relation as X ZY).

Consider the Figure 1. On this figure pairs of images are displayed with a cor-
responding distance between them. As one might see, when 2 images correspond to
two different people, the distance between them is much larger than in case when two
images correspond to a single person.

= 75.45415

= 158.44981

176.91573

= 25.612797

Fig. 1 Distances between 4 pairs of images. Images (besides the author’s ones) are taken from the
CelebA dataset[26]

Speaking more strictly, suppose we have certain hyperparameter 7, which charac-
terizes the boundary between classification ’single person’ and ’different people’, that
is:

e d7(X,)Y) <7 = X =Y
s dz(X,)Y)>17 = X Z£Y



For instance, if we put 7 = 100 in the example above, the first and the fourth
pairs will be identified as the same person, but the second and third ones as different
people, which would correspond to the correct result.

3.2 Binary strings extraction

However, as mentioned in the section 1, we need to form not a real-valued vector, but
a binary string s € "= of a fixed length ny = 128 (here and hereafter, ¥ = {0,1}).

In our research we decided, given a vector f = ¢(X), extracted from the image
X € I, using existing feature extractors, form the binary string s directly, without
changing used neural network parameters. In other words, we will apply a certain
function which we call feature vector converter ¢ : R™f — ¥"s on vector f, yielding
the binary string s = ¢(f).

Keras Facenet / Face Recognition

Our subsystem
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Fig. 2 Structure of our system as a whole: firstly applying transformation ¢ from an image to a
real-valued vector and then applying 1), yielding a binary string.

All things considered, we retrieve the composition of functions ¢ and 1, yielding
the desired function ¥ : R"f — %™ from an image to a binary string: ¥ = 1 o ¢.

3.3 Dataset for the feature extractor evaluation

For a feature vector extractor accuracy evaluation, we will use [50, 51] datasets.

At first, we split the images into batches where in each batch only the images of
one single person are stored. That way, if we take 2 images from the same batch, we
will have the images of a same person, whereas if 2 images are taken from 2 different
batches, we’ll have images of different people.

Binary strings extracted from images of the same batch should differ by no more
than 25%. The frequency of mismatches (error rate) of elements’ binary strings from
one batch is decisive for the calculation of FRR.



Binary strings extracted from images of different batches should differ as much
as possible. The mismatch frequency (error rate) of elements’ binary strings from
different batches is decisive for the FAR calculation.

Apart from splitting the images into batches, for the subsequent accuracy evalua-
tion we would also need to split images into pairs. We will denote such a set of pairs
as PCIxTI.

4 Feature vector converter

As mentioned in the subsection 3.2, feature vector converter should, given a real-
valued feature vector f € R™f, form a binary string s € X" of length n,. Since in our
case ny = ng = 128 =: IV, that significantly simplifies the task.

fi 51

f2 N 52 N
Suppose we have a vector f = | . | € R" and we need to form s=| . | € ¥

N SN

according to some rule ¢ : RY — XV, Let us define 9 in the following way:

N 1(f1>0)
f2 1(f2 > 0)

= 1(f > 0y), (2)

il iy >0

where we denoted by Iol(a > b) a vector that has 1 on i'" position if a; > b; and 0
otherwise.

This result yielded relatively good results since, in average, feature vectors tend to
be distributes around 0. However, one might improve results by applying a simple
adjustment.

To illustrate an issue with the definition 2, consider Figure 3 with N = 2 for
simplicity. If the data is distributed as it is shown on the left, function 1(x > Oy)
yields high accuracy as it distinguishes all the clusters with different people. However,
applying the same function to the dataset shown on the right would not distinguish
any pairs since all of them are located in the same quadrant. To prevent this issue,
we could shift the axes to the expected value of this distribution as a whole.

Suppose that X is a random vector with an expectation value of g := E[X]. Thus,
we define the new feature vector converter as

Y(x) =1(x>p) 3)

Given the dataset D = {Ij, yi },2,, we retrieve a set of feature vectors {¢(Iy)};2,
and approximate the expectation value as simply this set’s mean, that is p =

s 1 O(I)-
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Fig. 3 Applying two indicator functions to two different datasets with 4 people and N = 2. Left:
applying 1(x > Oy ). Right: applying 1(x > p).

5 Code based Fuzzy Extractor

In our implementation, we employ a fuzzy extractor based on the code construction
presented in [37]. This cryptoprimitive utilizes the principles of the McEliece code-
based cryptosystem, as detailed in [43].

We begin by considering a linear block (n, k,d = 2t+1) code defined over the finite
field GF(gq). This code possesses a fast (polynomial complexity) decoding algorithm.
Let G denote the generative k X n matrix associated with this code. In the context of
the McEliece cryptosystem, the public key is given by a k x n matrix, expressed as:

Gx=X-G-P-D (4)

Here, the private keys consist of the following matrices: X, a nonsingular k& x k
matrix with elements from GF(q); P, a permutation n X n matrix; and D, a diagonal
n X n matrix.

It is worth noting that the McEliece cryptosystem often employs binary Goppa
codes [38, 39, 52]. In such cases, the matrices X and P contain elements from the field
GF(2), and the matrix D is omitted.

The ciphertext is represented by a vector of length n, which is computed according
to the following rule:

cx=I-Gx+e (5)
where cx = I- Gx - codeword of masked code with a generator matrix Gy, I
- k-bit public text, vector e - secret error vector with Hamming weight (number of
non-zero positions) that equals to wy(e) = t.
An authorized user, who possesses the secret key, can calculate the vector

T=cy -D'P'=T.-G+e (6)
and decode it to obtain I'. The public text is then computed using the following
relation:

I=TX"! (7)



An attacker, who lacks knowledge of the secret key, cannot compute Equation
6 and utilize a fast (polynomial complexity) decoding algorithm. The attacker can
only rely on Equation 4, which implies the use of highly complex decoders (expo-
nential complexity). By carefully selecting parameters (n,k,d = 2t + 1), we can
achieve an extremely high decoding complexity for potential adversaries. Furthermore,
code-based cryptography offers quantum-resistant security, which can be attained by
significantly increasing the code parameters (n,k,d = 2t + 1).

In the fuzzy extractor from the paper [37], binary strings extracted from biometric
data are interpreted as c% in Equation 5, and the formed cryptographic password is
interpreted as the vector I. The calculation of I, based on the known c%, is associated
with decoding an (n, k,d = 2t+1) code with the generative matrix in Equation 4. This
implies that the solution to this problem is accessible only to someone who possesses
the secret key (matrices X, P, and D).

It is essential to note that decoding a randomly generated sequence may not always
be successful. For example, in the binary case, there are 2" distinct sequences of length
n. In this scenario, only 2* Zf:o C! sequences will be successfully decoded, resulting
in a success probability that decreases proportionally to ¢!:

2k ZE:O 0711 ~ 1 (8)
2n t!

This issue can be addressed by generating a reference biometric dataset without
decoding, as suggested in [37]. For example, let’s assume that we form the reference
binary string ¢y = B as a result of multiple biometric scans and averaging the
acquired data. We presume that a randomly chosen subset of k positions in this vector
remains undistorted, denoted by Bj. We then create the password I through matrix
inversion:

I=B- Gyl (9)

In this case, the matrix Gx, is composed of k columns of the matrix Gx, with

column numbers corresponding to the randomly selected k& positions of the vector B.

The paper [37] also proposed a method for generating a non-secret helper string,

which serves as public information. The use of a helper string significantly reduces the

impact of errors in binary biometric strings. The non-secret helper string is formed as
the check part of the codeword:

where the matrix Gy, is constructed from the remaining n — k columns of the
matrix in Equation 4.
Now, we interpret each newly formed biometric binary vector as a word:

B*=1-Gx +e* (11)

When using a helper string, we assume that the word in Equation 11 consists of
the distorted part Bj affected by the error vector e* and the non-secret, undistorted
helper string P,,_,. In other words, we presume that all non-zero positions of the
error vector e* are concentrated on the k positions of the vector Bj. This approach



allows us to effectively address the challenges posed by errors in biometric data while
maintaining the security and efficiency of the cryptographic process.

6 Experiments

6.1 Evaluation parameters

To assess accuracy of forming binary strings, we define the images binary distance
07(X,Y) between images X,Y € T as a ratio of pairwise mismatched spots in images’
binary string representations (recall that ¥ = 1 o ¢):

1

or(X,Y) 2

[@(X) = 2(Y)llx (12)
Similarly, we define images binary similarity oz(X,Y) as simply:

or(X,Y) 21— 67(X,Y) (13)

Let us see which result we get when applying v to some images from our dataset. As

one might see from the Figure 4, two binary strings of the same person almost coincide.

According to our definition, similarity between these two images is approximately

90%, which is a relatively good result. Yet for two different people, for example, as

depicted on the Figure 5, binary strings differ significantly and in the given example
similarity equals 30%, which is a relatively small value, as expected.

1111101010101010100110010100011101111

1111101010111010100110110100011101111

Fig. 4 Binary string for the pair of images of the same person taken from Celeba dataset. In green
we marked the same characters, whereas in red different ones. For demonstation purposes we included
only 37 string characters.
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0100000010011100707010700000100010010

0010010100100110111100100110011110101

Fig. 5 Binary string for the pair of images of two different people. In green we marked the same
characters, whereas in red different ones. For demonstation purposes we included only 37 string
characters.

Now let us evaluate the accuracy of such converter on the larger dataset. Firstly,
we propose to split set of pairs P into two other sets: Psame = {(X,Y) € P | X =Y}
— set of image pairs of the same person, and Pgig = {(X,Y) € P | X £ Y} — set of
pairs of different people.

Then for the accuracy evaluation we will use two values: Ggame — average similarity
between binary strings, formed for the set of pairs of a single person, and &4;g for the
set of pairs of different people. We define their values as follows:

. 1
O fwme = Y. ox(X.Y) (14)
diff/same X, Y €Paifr/same

Our goal is to maximize the difference Ggame — Gair While keeping Gsame as large
as possible.

6.2 Results

As described in section 4, we considered two feature vector converters: without offset
Y(x) = 1(x > Oy) and with offset ¢(x) = 1(x > p). Now let us evaluate how both
work and which results we get.

6.2.1 Vector converter without offset

In Tables 1 and 2 we included cumulative similarities evaluation described earlier for
two datasets (l[fw and CelebA) and two models (Keras Facenet and Face Recogni-
tion) using vector converter without offset. For Ifw we used 1000 images, for CelebA
approximately 100000 (thus, almost the same number of pairs).

Table 1 Cumulative similarity osame for
pair of images of a same person

Dataset
Model Ifw | CelebA
Keras Facenet 0.773 0.737
Face Recognition | 0.888 0.885

11



Table 2 Cumulative similarity oqig for
pair of images of different people

Dataset
Model Ifw | CelebA
Keras Facenet 0.508 0.517
Face Recognition | 0.797 0.809

The obtained experiment results show that the binary strings extracted by the
Keras Facenet and Face Recognition models differ in error rates. For example, binary
strings for a single person (obtained from images of the same batch) differ by 7-9%
when using the Face Recognition model and by 22-26% when using the Keras Facenet
model. In fact, this means that the Keras Facenet model is of little use for generating
binary strings with such vector converter, because the error rate is at the edge of the
corrective power of the correction codes. The Face Recognition model, on the contrary,
has a high potential for use and a low error rate potentially allows very low FRR
values to be achieved.

6.2.2 Vector converter with offset

Since CelebA dataset contains much more images than Ifw, we decided to use it to
compare a vector converter with and without an offset.

After applying a new feature vector converter for Face Recognition model, we get
results depicted in the Table 3.

Table 3 Vector converter comparison based on Face Recognition model

Evaluation parameters
Osame # of same pairs Odaiff # of diff pairs
1(x > O0pn) 0.890 186682 0.802 139481
1(x > p) 0.745 186682 0.529 139481

Feature converter

In turn, applying the same method to a Keras Facenet model almost did not
change similarities values.

Although applying this method to a Face Recognition decreased &same, difference
Gsame — Oaiff increased from approximately 0.076 to 0.216 which is a drastic change
which makes using Face Recognition even a better option.

6.3 Evaluation and comparison of FRR and FAR

For evaluating FRR and FAR, we will consider two cases. Suppose that as a result of
scanning and processing of the biometric data, we formed the binary string 11, where
the Hamming weight (number of non-zero positions) of an error vector e* characterizes
possible differences of B* with a reference biometric set B. If the number of these
differences does not exceed t (corrective ability (n,k,d = 2t + 1) of a code), using
manipulations 5 and 6 will allow to correctly generate the same password I.

Number of non-zero position of a vector e* is determined by the probability of a
non-zero character occurrence in e*, i.e. probability of distortion of one character of the

12



codeword cx = I- Gx. For an authorized and unauthorized user, these probabilities
are different.

Consider the first case.

Suppose that the vector 11 belongs to the authorized user. We denote the proba-
bility of one character distortion in cx as pg. Then the value of FRR can be estimated
by the formula [37]:

t
Without using helper string: FRR =1 — Z C;pf)(l - po)n_i (15)
i=0
t . . .
Using helper string: FRR =1 — Z Ciph (1 — po)*~ (16)
i=0

Consider the second case.

Suppose that the vector 11 belongs to the unauthorized user. We denote the proba-
bility of one character distortion as p;. Then the value FAR can be evaluated according
to the formula:

t

Without using helper string: FAR = Z Cipi(1—py)"" (17)
i=0
t . . .
Using helper string: FAR = Z Cipi(1 —py)k (18)
i=0

In Tables 1 and 3, we present the empirical estimation of Ggame, Which represents
the average similarity of extracted binary vectors for the same individual using dif-
ferent deep learning models. We utilize these values to calculate pg = 1 — 6game. Our
focus is primarily on the results obtained from the CelebA model, as it comprises a
significantly larger number of images. Consequently, we obtain py = 0.263 for the
Keras Facenet model and pg = 0.255 for the Face Recognition model.

In a similar manner, we assess the value of p; based on the experimental results
for 6qig. We derive the following values: p; = 0.483 for the Keras Facenet model and
po = 0.471 for the Face Recognition model. These findings provide crucial insights
into the performance of various deep learning models in generating binary vectors
for biometric authentication and highlight the potential for further optimization and
improvement in this domain.

The extractor task is to minimize FRR and FAR for various lengths of generated
passwords and various probabilities py and p;.

The considered extractor is based on the use of code-based cryptosystems that
use a linear block (n,k,d) = (2™,2™ — mt, 2t + 1) code with a fast (of polynomial
complexity) decoding. The safest option is considered to be use the binary Goppa
code with parameters

(n,k,d) = (2™,2™ —mt, 2t + 1) (19)
for some m € Z*.

In our experiments, we formed binary strings of length n = 128, i.e. for m = 7.

In the Tables 4 and 5 we show parameters k, d of Goppa codes for different values of

13



t. The tables also show the calculated values of FRR and FAR for various cases. The
third column contains parameter 2~% - probability of guessing a password of length k
bits.

On the Figures 7 and 6 we plotted dependencies of FRR and FAR on different
values of ¢ while using helper string.

As evident from the presented data, without the use of a helper string, the fuzzy
extractor (for the case of n = 128) is unable to achieve low FRR. This observation
holds true for both deep learning models, Keras Facenet and Face Recognition. How-
ever, when a helper string is employed, the situation changes dramatically. We observe
that for larger values of ¢, it is possible to select code parameters that result in both
FRR and FAR taking on acceptable values.

The importance of these indicators cannot be overstated, as they directly influ-
ence the overall performance and security of biometric authentication systems. Low
FRR ensures that genuine users are not rejected by the system, thereby providing
a smooth and hassle-free authentication experience. On the other hand, low FAR is
crucial for preventing unauthorized access by impostors, ensuring the integrity and
confidentiality of sensitive data. Striking a balance between FRR and FAR is essential
for the development and implementation of reliable and robust biometric authentica-
tion systems. The use of a helper string, as demonstrated in our study, has proven
to be a promising approach to achieve this balance and enhance the effectiveness of
fuzzy extractors in the context of biometric authentication.

Table 4 FRR and FAR estimates for various Goppa codes of length 128 (without using helper
string)

Keras Facenet Face Recognition
t k 2=k d FRR FAR FRR FAR
1 121 3.76 x 1037 3 1.0000 0.0000 1.0000 0.0000
2 114 4.81 x 1073° 5 1.0000 0.0000 1.0000 0.0000
3 107 6.16 x 10—33 7 1.0000 0.0000 1.0000 0.0000
4 100 7.89 x 1073¢ 9 1.0000 0.0000 1.0000 0.0000
5 93 1.01 x 1028 11 1.0000 0.0000 1.0000 0.0000
6 86 1.29 x 1026 13 1.0000 0.0000 1.0000 0.0000
7 79 1.65 x 10~24 15 1.0000 0.0000 1.0000 0.0000
8 72 2.12 x 10~22 17 1.0000 0.0000 1.0000 0.0000
9 65 2.71 x 1020 19 1.0000 0.0000 1.0000 0.0000
10 58 3.47 x 10718 21 1.0000 0.0000 1.0000 0.0000
11 51 4.44 x 1016 23 1.0000 0.0000 1.0000 0.0000
12 44 5.68 x 1014 25 1.0000 0.0000 1.0000 0.0000
13 37 7.28 x 10712 27 1.0000 0.0000 1.0000 0.0000
14 30 9.31 x 1010 29 1.0000 0.0002 1.0000 0.0002
15 23 1.19 x 1077 31 1.0000 0.0012 0.9999 0.0011
16 16 1.53 x 107 33 0.9999 0.0078 0.9998 0.0069
17 9 1.95 x 1073 35 0.9997 0.0489 0.9994 0.0411
18 2 0.25 37 0.9994 0.2854 0.9988 0.2288

To date, acceptable indicators of biometric authentication based on the image of
a person’s face are: FRR =~ 25%, FAR ~ 10% [53-55]. At the same time, significant
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Table 5 FRR and FAR estimates for various Goppa codes of length 128 (using helper string)

Keras Facenet

Face Recognition

t k 2k d FRR FAR FRR FAR

1 121 3.76 x 10737 3 1.0000 0.0000 1.0000 0.0000
2 114 4.81 x 10735 5 1.0000 0.0000 1.0000 0.0000
3 107 6.16 x 10733 7 1.0000 0.0000 1.0000 0.0000
4 100 7.89 x 10731 9 1.0000 0.0000 1.0000 0.0000
5 93 1.01 x 1028 11 1.0000 0.0000 1.0000 0.0000
6 86 1.29 x 1026 13 1.0000 0.0000 1.0000 0.0000
7 79 1.65 x 10—24 15 0.9999 0.0000 0.9998 0.0000
8 72 2.12 x 10722 17 0.9987 0.0000 0.9979 0.0000
9 65 2.71 x 10—20 19 0.9877 0.0000 0.9825 0.0000
10 58 3.47 x 10718 21 0.9262 0.0000 0.9054 0.0000
11 51 4.44 x 10716 23 0.7229 0.0000 0.6781 0.0001
12 44 5.68 x 10~ 25 0.3663 0.0036 0.3210 0.0058
13 37 7.28 x 10~12 27 0.0830 0.0744 0.0666 0.0972
14 30 9.31 x 10~10 29 0.0047 0.5023 0.0034 0.5551
15 23 1.19 x 107 31 0.0000 0.9673 0.0000 0.9749

progress has been made in facial recognition technologies in recent years. For example,
according to studies of NIST [56] the best face recognition algorithm has an error rate
of only about 0.08% (under ideal conditions). At the same time, for systems for gener-
ating biometric passwords, the FAR values should be as small as possible, preferably
comparable to the probability of guessing a password. In the Table 4 we highlighted
the case with FRR ~ FAR < 10%. On Figure 8 we considered dependencies of FRR
and FAR in these cases for different values of py and p;.
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7 Comparison results

In this study, we have investigated methods for generating cryptographic keys from
biometric facial images. This is an important research area that has been evolving
in many related works. A major gap in the field of research has been the assess-
ment of error rates in the extracted binary strings, which are vital for the subsequent
evaluation of FRR and FAR.

In our research, we employed deep learning models, Keras Facenet and Face
Recognition, to assess error rates for input images from different clusters:

e Images of faces of the same individual;
e Images of faces of different individuals.

Binary strings corresponding to the same person should have minimal differences
to ensure a low FRR. Conversely, for binary strings extracted from images of different
individuals, the error rates should be as high as possible to achieve low FAR values.

The final comparison of FRR and FAR is presented in Tables 4 and 5. The results
indicate that both investigated models are roughly equivalent in performance. It is
evident that these findings warrant further refinement and validation through indepen-
dent testing. Nonetheless, our study suggests that the deep learning models utilized
in this research hold significant potential for generating cryptographic keys using a
code-based fuzzy extractor.

The development of efficient and secure methods for generating cryptographic keys
from biometric data is essential for the broader implementation of robust biometric
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authentication systems. As the field continues to advance, the importance of validating
and optimizing the performance of deep learning models in key generation will remain
a critical aspect of research. By harnessing the potential of deep learning models and
code-based fuzzy extractors, we can further strengthen the security and reliability
of biometric authentication systems, ultimately enhancing data protection and user
privacy in various applications.

8 Conclusion

Biometrics has become a popular choice for authentication purposes due to its inherent
advantages, such as the uniqueness and non-transferability of an individual’s physical
or behavioral traits. However, traditional biometric authentication methods necessi-
tate the storage of reference biometric images, which poses several challenges. Storing
and processing biometric data require expensive infrastructure and elaborate methods
to protect personal information. These complexities hinder the widespread adoption
and development of biometric authentication systems.

An alternative approach to address these issues involves the generation of biometric
keys that can be created ”on-the-fly” without the need for storing reference biomet-
ric images. These keys should satisfy all the requirements for cryptographic strength
while eliminating the need for storage or distribution. Biometric data is always read-
ily available, enabling the generation of cryptographic keys at any given moment.
This innovative method offers the potential for more secure, convenient, and efficient
authentication processes, paving the way for a new era in biometric-based security
systems.

In this study, we have presented a novel approach to generate secure crypto-
graphic keys from biometric data, leveraging deep learning models and code-based
cryptography for enhanced security. Our method combines the advantages of biomet-
rics, such as the inherent uniqueness and non-transferability of biometric features,
with the robustness and post-quantum security provided by code-based cryptographic
extractors.

We have demonstrated the effectiveness of our approach by experimenting with
various deep learning models, such as convolutional neural networks, to extract bio-
metric features from facial images. Our optimized algorithm parameters achieve an
FRR and FAR below 10%, ensuring the generated keys are suitable for biometric
authentication. Moreover, the use of code-based cryptographic extractors offers a post-
quantum level of security, making our method resistant to potential future quantum
computing attacks.

Our study also addresses the challenge of errors in biometric data by introducing
a non-secret helper string, which significantly reduces the impact of errors in binary
biometric strings. This allows for a more reliable and accurate authentication process
while maintaining the security of the generated keys.

In conclusion, our proposed method offers a promising and secure alternative
to traditional cryptographic key generation and storage, simplifying the process
and enhancing security by utilizing biometric data and post-quantum cryptography.
Future research could explore the applicability of our method to other biometric
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modalities, such as fingerprint or iris recognition, and investigate the potential for
further optimization of deep learning models and cryptographic extractors to improve
the overall performance and security of the system.
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