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Abstract
Estimating groundwater level (GWL) fluctuations is essential for integrated water resource management in
arid and semi-arid regions. This study promotes the multi-layer perceptron (MLP) learning process using
hybrid evolutionary algorithms. This hybrid metaheuristic algorithm was applied to overcome MLP
difficulties in the learning process, including its low conversions and local minimum. Also, the hybrid
model benefits from the advantages of two objective function procedures in finding MLP parameters that
result in a robust model regardless of over and under-estimating problems. These algorithms include none
dominated sorting genetic algorithm (NSGA II) and multi-objective particle swarm optimisation (MOPSO)
in different patterns, including MLP–NSGA-II, MLP–MOPSO, MLP-MOPSO–NSGA-II, and MLP-2NSGA-II–
MOPSO. Temperature, precipitation and GWL datasets were used in various combinations and delays as
model input candidates. Finally, the best model inputs were selected using the correlation coefficient (R2).
Input parameters include temperature and precipitation delays of 3, 6, and 9 months and GWL delays of 1
to 12 months. In the next step, the performance of the different combinations of MLP and hybrid
evolutionary algorithms was evaluated using The root mean square error (RMSE), correlation coefficient
(R), and mean absolute error (MAE) indices. The outcomes of these evaluations revealed that the MLP-
2NSGA-II-MOPSO model, with an RMSE=0.073, R=0.98, and MAE=0.059, outperforms other models in
estimating GWL fluctuations. The selected model benefits from the advantages of both MOPSO and
NSGA-II regarding accuracy and speed. The results also indicated the superiority of multi-objective
optimization algorithms in promoting MLP performance.

Introduction
GWL (Groundwater level) prediction is a complicated process, and its modeling is incredibly
challenging (Adnan et al., 2022) because of its nature and dependence on several hydrogeological and
geological interactions (Agoubi & Kharroubi, 2019). For example, the heterogeneity of the subsurface
environment, data limitation, nonlinear behavior, and model complexity through the coupling of different
equations are crucial challenges for GWL modeling. On the other hand, GWL modeling is an essential tool
for groundwater management. Accurate GWL prediction can provide valuable information for water
allocation, contaminant transport, climate change adaptation and mitigation plan, urban and rural
planning, and assess the impact of overexploitation of GW. Therefore due to the growing global water
scarcity and accelerating global warming, there is a growing need for accurate groundwater resource
quantification for better management along with environmental protection (Li et al., 2015; Noori et al.,
2021; Torabi Haghighi et al., 2020). Furthermore, precise GWL modeling can optimize the monitoring of
GWL, which has time and resource limitations (Kazemi et al., 2021) and needs significant in-situ
measurements (Lee et al., 2019) and interpretation of data quality. 

The GWL fluctuations can be due to (i) climate change and variability and (ii) anthropogenic activity, i.e.,
GW exploitation (Malekinezhad & Banadkooki, 2018). Therefore, GWL modelling needs deep analysis,
extensive and reliable data sources, and an understanding of interactions between different environmental
parameters (Liang & Zhang, 2015). In recent decades many attempts have been made to develop accurate
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and robust models to predict GWL fluctuations properly. These attempts resulted in a variety of GWL
models that can be categorized into four groups, (i) the univariate time series models (Khorasani et al.,
2016; Retike et al., 2022), (ii) conceptual models (Hong et al., 2016; Lyazidi et al., 2020), (iii) the physically-
based models (Bailey et al., 2020; Condon et al., 2021) and (iv) the artificial intelligence (AI)
models (Adnan et al., 2019; Besaw et al., 2010; Chang et al., 2015; Ghazi et al., 2021; Gholami et al., 2015;
Ghose et al., 2018; Guzman et al., 2017; Guzman et al., 2019; Lallahem et al., 2005; Lee et al., 2019; Malik &
Bhagwat, 2021; Mohanty et al., 2015; Nourani et al., 2015; Nourani & Mousavi, 2016; Peng et al., 2017;
Ranjithan, 1993; Roshni et al., 2020; Sahoo et al., 2017; Sun et al., 2016; Zhang et al., 2019; Zhou et al.,
2017). The physically-based and conceptual models have faced some limitations, such as low prediction
accuracy (36) and the need for many input parameters (Rajaee et al., 2019). The univariate time series
models also have the challenge of weak performances in modeling nonlinear and non-stationary
parameters such as climate data series (Moghaddam et al., 2019). 

However, in the last two decades, many studies have investigated the applicability of AI models in GWL
modeling, e.g., ANNs (Rogers), support vector machines (SVM) (Zhou et al., 2017), and fuzzy-based
models (Nadiri et al., 2019). Due to the limitation of the single AI models (Chang et al., 2015; Ghorbani et
al., 2017; Kashiwao et al., 2017; Kombo et al., 2020; Natarajan & Sudheer, 2019; Nourani et al., 2014; Pham
et al., 2019; Yaseen et al., 2019; Zhang, 2003), Most recently, the application of hybrid AI models was
considered in GWL simulation and modelling processes. These hybrid models include a large variety of AI
models such as SVM, ANN, neuro-fuzzy inference system (ANFIS) (Jang, 1993), emotional ANN
(EANN) (Roshni et al., 2020), multilayer perceptron (MLP) (Afan et al., 2014; Deo & Şahin, 2015;
Rakhshandehroo et al., 2012), generalized regression neural network (GRNN) (Roshni el al. 2020)  and
backpropagation neural network (BNN) (Maiti & Tiwari, 2013). These novel models are usually used with
optimization algorithms (e.g., PSO, GA, whale algorithm (WA), weed algorithm (WA), differential evolution
(DE), cat swarm optimization (CSO), and quantum-behaved particle swarm optimisation (QPSO) to
enhance modelling and forecasting. Table 1 provides some recent studies that used hybrid AI models in
GWL modelling. 

Table 1- The list of the published papers in the literature on the hybridized ANN models to GWL modeling.
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No.  Author (year)  Hybrid AI
models 
 

Input
parameters

Frequency Performance
metrics

Area

1 Dash et al.
(2010) (Dash et al.,
2010)

ANN-GA  GWL  Monthly R, E, MAE,
IOA, RMSE 

Mahanadi
river basin,
India 

2 Jalalkamali and
Jalalkamali, (2011)

(Jalalkamali &
Jalalkamali, 2011) 

GA-ANN,
FFNN,
RNN 
 

Piezometers,
T, R

Monthly R2, RMSE,
MAPE

Kerman
plain
(Kerman,
Iran)

3 Sudhee et al.
(2012)

(Sudheer & Shashi,
2012) 

SVM-
QPSO,
ANN

GWL Monthly EFF, R,
RMSE

Andhra
Pradesh,
India

4 Jha and Sahoo,
(2015) (Jha &
Sahoo, 2015) 

ANN-GA GWL, R, T Monthly R2, RMSE,
IOA, NSE,
Bias,
CV

Konan
basin, Kochi,
India

5 Yang et al. (2015)

(Yang et al., 2015) 

WA-ANN,
ANN

GWL Monthly RMSE, R,
EFF

Fujian,
China

6 Nourani et al.
(2015), (Nourani et
al., 2015) 

WA-ANN,
ANN

GWL, R, Monthly R2, RMSE Ardabil
plain, Iran

7 Huang et al.
(2017) (Huang et
al., 2017)  

PSO-
SVM,
PSO-
BPNN

GWL Daily RMSE,
NSE,  R2

Gorges
Reservoir
Area, China

8 Balavalikar et al.
(2018) (Balavalikar
et al., 2018) 

PSO-
ANN,
ANN

GWL Monthly R2, RMSE, R,
MAE, MAPE

Brahmavar,
Kundapur
and Hebri In
 Udupi
district,
India

9 Supreetha et al.
(2019) (Supreetha
et al., 2019) 

PSO-
ANN,
ABC-ANN

GWL, P Monthly RMSE, MAE,
MAPE

Karnataka,
India

10 Roshni,
(2020) (Roshni et
al., 2020) 

EANN-
GA,
EANN,
 GRNN,
FFNN
 

P, GWL Monthly NSE,
RMSE,Bias

Konan
groundwater
basin,
Japan

11 Banadkooki et al.
(2020) (Banadkooki
et al., 2020) 

RBF-
WOA,
MLPWOA

R, T, GWL Monthly NSE, MAE Yazd, Iran
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12 Adnan et al.,
(2023) (Adnan et
al., 2022)

 

ELM-JFO,
ELM-
WOA,
ELM-
HHO

GWL Monthly RMSE,
MAE, R2

Bangladesh

13 Pandey et al.,
(2020) (Pandey et
al., 2020) 

GA-ANN GWL Seasonal R2, RMSE,
MAD, CE,
APE, PI

INDIA

14 Cui et al., (2022)
(Cui et al., 2022)

ANFIS-
PSO,
ANFIS-IA-
GWO,
ANN-
PSO,
ANN-
PSO-
GWO

GWL Monthly NRMGESE, K Bangladesh

15 Ehteram et al.,
(2022) (Ehteram et
al., 2022) 

ANN-
PSO,
ANN-GA,
ANN-
RSA,
ANN-SSA

GWL Monthly RMSE Yazd, Iran

16 Zhang et al.,
(2022) (Zhang et
al., 2022) 

GA-BP,
BP

GWL Monthly RMSE,
MAPE, NSE

China

 

 According to previous work, the hybridization of   GA or PSO with ANN models has shown distinguished
improvement in GWL modeling (Balavalikar et al., 2018; Cui et al., 2022; Dash et al., 2010; Ehteram et al.,
2022; Huang et al., 2017; Jalalkamali & Jalalkamali, 2011; Jha & Sahoo, 2015; Supreetha et al., 2019). As
two well-known optimization algorithms, GA and PSO have deniable effects on improving the performance
accuracy or optimum outputs of the ANN models. GA can support ANN in reducing the local minimum,
which is one of the main limitations of ANN (Kisi & Shiri, 2012; Tahmasebi & Hezarkhani, 2009; Yadav et
al., 2018). GA can improve the topology of ANN and its learning parameters and is equipped with
appropriate local search techniques for locating optimal solutions to non-linear problems (Adib &
Mahmoodi, 2017; Tahmasebi & Hezarkhani, 2009). However, PSO is more efficient than GA regarding
speed and memory requirements, while it has lower accuracy and practicality. Therefore the combination
of PSO and GA can decrease the drawbacks of PSO in solving optimization problems. Although some
studies have combined GA or PSO algorithms with ANN to model GWL, to our knowledge, hybrid PSO and
GA models with ANN have not been considered yet.

Furthermore, previous studies selected ANN parameters by solving single-objective problems to minimize
mean square error (MSE) (Balavalikar et al., 2018; Dash et al., 2010; Ehteram et al., 2022; Jha & Sahoo,
2015; Pandey et al., 2020; Roshni et al., 2020; Zhang et al., 2022). There are a few drawbacks;  MSE is a
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non-linear combination of mean error (bias) and variance, and minimizing the MSE does not imply
minimizing both components (variance and bias). Attempting to minimize variance may result in an under-
fitted model, whereas attempting to minimize bias may result in an over-fitted model. By minimizing the
two parameters, a robust model can be developed (bias and variance). In this research, we planned to
promote ANN structure using the advantages of combined GA and PSO algorithms to predict groundwater
fluctuations in the Yazd–Ardakan aquifer in central Iran from 2000 to 2014. In addition, all parameters of
the ANN model were optimally selected using two objective optimizations (NSGA-II and MOPSO). 

Materials and Methods
In this part, we first introduce our case study and then present the methodology for predicting GWL in the
Yazd-Ardakan aquifer using a hybrid NSGA-II and MOPSO algorithm with an MLP model. NSGA-II-MOPSO
combines the strengths of two powerful optimization methods: Non-dominated Sorting Genetic Algorithm
II (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO). To address multi-objective
optimization problems, this hybrid approach was developed to overcome the limitations of traditional
single-objective optimization techniques. The main objective of MLP-2NSGA-II-MOPSO is to maximize the
number of objectives achieved in a given problem. The algorithm begins by defining a set of possible
solutions that are then evaluated based on a set of objective functions. In the next step, these solutions
are sorted using NSGA-II and refined using MOPSO. The MOPSO algorithm uses a local search approach
to refine the solutions. As a final step, we will select the best solutions based on the trade-offs between the
objectives. As a result, MLP-2NSGA-II-MOPSO is a powerful and efficient optimization technique that can
be applied to a wide range of multi-objective optimization problems. The combination of NSGA-II and
MOPSO makes it a powerful tool for addressing complex optimization problems that require multiple
trade-offs.

Study area
The Yazd-Ardakan aquifer is the region’s primary water source and is essential for industrial and mineral
development. The study area is characterized by a hot and arid climate and is located in Iran’s Yazd
province at 53° 30–55° east longitude and 31° 15–32° 30 north latitude (Fig. 1-a). Mean annual
precipitation and temperature are 102.3 mm and 19.1°C, respectively (Fig. 2). The limitation of water
resources, accelerated area development, and increased competition among exploiters resulted in a
significant decline in aquifer storage (Fig. 1-b).

The minimum and maximum GWL of the Yazd-Ardakan aquifer were observed in October and April.
Figure 2 illustrates the average monthly minimum and maximum temperatures and precipitation values.

To predict groundwater fluctuations in the Yazd–Ardakan aquifer, we applied climate and GW data from
2000 to 2014. Table 2 summarizes some of the model’s input variables. The model structure was created
by dividing data into 80% and 20% for training and testing. Input variables for the model are monthly
precipitation, temperature, and GWL with varying monthly delays (1–12 months). The correlation
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coefficient between variables and groundwater level was calculated to determine whether input
parameters experienced significant delays.

Table 2
Characteristics of model input variables of Yazd-Ardakan aquifer.

Parameter Average Temperature Average Rainfall Water level

Train

Min 8.1 3.2 1032.28

Max 31.4 15.1 1035.987

Average 19.5 5.7 1034.15

Variation coefficient 0.018 0.18 1.14

Test

Min 6.9 5.8 1031.84

Max 31.9 13.8 1036.53

Average 19.3 4.8 1034.17

Variation coefficient 0.045 0.16 1.24

MSE (Mean Squared Error) is an important metric in machine learning. Optimizing the MSE does not
guarantee optimization of both mean error (bias) and variance. As a result, models can be overfitted or
under fitted. It is important to minimize bias and variance to ensure a robust model. The bias-variance
trade-off states that reducing bias increases variance and vice versa. In order to achieve a good model,
both components must be balanced. Thus, bias-variance trade-offs need to be considered when
optimizing MSEs. To achieve this goal, two objective functions are considered. In order to achieve our
objective, we must minimize bias and variance.

Multi-Layer Perceptron (MLP)
The Yazd-Ardakan aquifer’s GWL fluctuations were modeled using MLP with various input parameters.
Rainfall, temperature with delays of 3, 6, and 9 months, and groundwater table with various delays,
ranging from 1 to 11 months, were chosen as input parameters. MLPs are a prevalent artificial neural
network that models non-linear relationships between input variables (Park & Lek, 2016). MLP has been
successfully used to model hydrological processes such as sediment transport (Aksoy & Mohammadi,
2016; Rajaee et al., 2009), time series modelling (Kişi, 2010), and groundwater simulations (Gholami et al.,
2015; Rajaee et al., 2019; Sun et al., 2016). The model structure comprises three distinct types of layers
(Fig. 3).
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1) The input layer contains the input parameters and communicates critical information to the subsequent
layer. The tan-sigmoid approach was used throughout the modeling process as a transfer function.

2) A hidden layer tasked with the responsibility of computing processes and learning algorithms. The
Levenberg-Marquardt algorithm was considered a learning algorithm in this study.

3) Output layer. This layer consists of results extracted from previous layers.

Recent research indicates that a single hidden layer is sufficient to solve non-linear functions and reduce
the complexity of the structure of the ANN model (Hornik et al., 1989; Tang et al., 1991). Thus, a single
hidden layer network was used in this study to predict GWL fluctuations. The Levenberg-Marquardt
algorithm developed the ANN model due to its computational efficiency and suitability for training (Hagan
& Menhaj, 1994). All parameters of the ANN model were optimally selected in this research using two
objective optimizations.

2) Non-dominated sorting based multi-objective evolutionary algorithm (NSGA-II)

NSGA-II is an improved version of Deb’s non-dominated sorting genetic algorithm from 2000. This well-
known evolutionary algorithm has been the subject of extensive research. It is constructed using a genetic
algorithm with a multi-objective process. A key advantage of NSGA-II is its ability to generate solutions
representing the entire Pareto optimal front. Hence, it can provide a range of better solutions than a single
one. A major advantage of NSGA-II is its ability to handle multiple objectives. It can quickly and efficiently
identify the optimal solution for a given set of objectives. Another advantage of NSGA-II is that it can be
scalable. It can be easily scaled up to handle complex optimization problems with many variables.
Consequently, it is ideal for large-scale optimizations.

Survival of the fittest is the main objective of the GA algorithm. This procedure enables them to transfer
genomes from one generation to the next. This means that improved adaptations are formed in
subsequent generations. The NSGA-II algorithm was used to optimize the selection of ANN model
parameters. The process begins with an initial population (chromosomes) and evaluates the fitness
values of all chromosomes using both objective functions (bias and variance). The following non-
dominated fronts were calculated using non-domination rules: obj.1 (i) > obj.1 (j) and obj.2 (i) > = obj.2 (j)
or obj.1 (i) > = obj.1 (j) and obj.2 (i) > obj.2 (j), where i and j are chromosome numbers. Subsequently,
various genetic operations, such as selection crossover and mutation, were used to improve the sorted
initial chromosomes concerning two objective functions. The initial chromosome count was set to 50 to
balance diversity and computational speed. Gaussian mutation and double point crossover were used to
solve the optimization problem in this study (Fig. 4).

3) Particle Swarm Optimization
The PSO is considered a bio-inspired method for optimizing non-linear problems (Kennedy, 1997). The
behavior of biological populations inspires this method to simulate the navigation and foraging behavior
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of a flock of birds or a school of fish. PSO is also known for its efficiency. Compared to other algorithms, it
explores the search space faster and converges faster. Additionally, it is computationally inexpensive and
easily parallelizable, making it ideal for large-scale optimization.

The PSO algorithm employs a population (labeled swarm) source of candidate solutions (labeled
particles). The particle combinations are moved around the search space using simple formulas. Two
fundamental rules govern particle movement: their own best optimization found in the search space and
the best-known position of any particle.

PSO algorithm includes three steps: generation of particle positions and speeds, updating particle speeds,
and finally, updating particle positions. Each particle was repositioned in the space in response to the
speed updates. At the start of the optimization process, each initial particle’s position and speed are
randomly defined. The PSO algorithm proceeds through the stages below until the end condition is
satisfied.

1- Estimating the objective value for all particles.

2- Updating W, C1, and C2 values mentioned in Eq. 2.

3- Updating the personal best and the global best.

4- Estimating each particle’s velocity vector using Eq. 1.

5- Calculating the subsequent location of each particle using Eq. 2.

Each optimization stage updates the position of particles using Eq. 1.

1

Xi indicates the ith particle’s position at the tth iteration in this equation. Eq. 2 is used to calculate the
velocity vector.

2

Where Xi is the ith particle’s position in the tth iteration, Vi denotes the velocity of the ith particle at the tth

iteration, w denotes inertial weight, c1, and c2 denote individual and social coefficients, respectively, and r1

and r2 are random numbers between 0 and 1, respectively. Pi denotes the best position of the first particle
until the ith iteration, and G(t) denotes the best position obtained by the entire swarm up to the ith iteration.
The PSO is capable of pursuing multiple objectives (Coello et al., 2004). One strategy is to maximize a new

−→
Xi =

−−−→
Xi(t) +

−−−−→
Vi(t+1)

−−−−→
Vi(t+1) = w

−−→
Vi(t) + c1r1 (

−−→
Pi(t) −

−−−→
Xi(t)) + c2r2(

−−→
G(t) −

−−−→
Xi(t))
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objective function for operating multiple objectives that are formulated using conventional numerical
optimization. by multiplying the objectives (Oi, i = 1,2...,n) by their corresponding user-defined positive
weights ( , i = 1,2…,n that ), which results in . These weights can be fixed
or changed dynamically throughout the optimization process.

A genetic algorithm and particle swarm optimization combined with a multi-layer perceptron neural
network could be used to improve the topology of MLP and its variables. Thus, in this study, various
NSGA-II and MOPSO models were used to determine the number of hidden neurons, weights, and bias
values for an MLP model. The hybrid MLP-MOPSO model’s flowchart is shown in Fig. 5, and the MLP-
MOPSO-NSGA-II and MLP-2NSGA-II-MOPSO models’ schematic diagrams are shown in Fig. 6. As a robust
algorithm, MOPSO handles a wide range of problems with varying complexities and sizes. This algorithm
can handle problems with a wide range of parameters and objectives, making it suitable for many
applications. The MOPSO is created based on the following levels:

1. Define the problem: The problem needs to be formulated as a multi-objective optimization problem
with more than one objective function that needs to be optimized simultaneously.

2. Initialization: Initialize the population of particles with random values within predefined boundaries.
3. Evaluate fitness: Calculate the fitness of each particle based on the objective functions.
4. Update particle position: Update the position of each particle based on its velocity and the position of

the best particle it has experienced so far.
5. Eliminate invalid solutions: Discard any particle that violates the problem constraints.
6. Pareto dominance: Use Pareto dominance to compare the particles in the current population and

select the non-dominated particles.
7. Update personal best: Each particle stores its best position so far.
8. Update global best: The algorithm selects and stores the best position.
9. Update velocity: Update the particle velocity based on the best particle in the population.

10. Termination: When the algorithm reaches its maximum number of iterations or reaches the desired
level of accuracy, it terminates.

Table 3 illustrates various combinations of MOPSO and NSGA-II algorithms with MLP models. The
training data set includes rainfall, temperature, and piezometric data from the study aquifer with
significant delays. 104 records were used to model each variable, and all models were trained using the
same data.

wi ∑n
i=1 wi = 1 ∑n

i=1 wiOI = 1
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Table 3
MLP model details and parameters

Details MLP ML -GA MLP-
MOPSO

MLP-
NSGA-II

MLP-MOPSO-
NSGA-II

MLP-2NSGA-II-
MOPSO

Type of ANN
model

MLP MLP MLP MLP MLP MLP

Training
algorithm

- GA MOPSO NSGA-II 50%MOPSO &
50% NSGA-II

66% (NSGA-II) &
33% (MOPSO)

Activation
function

tan-
sigmoid

tan-
sigmoid

tan-
sigmoid

tan-
sigmoid

tan-sigmoid tan-sigmoid

Number of the
input layer

1 1 1 1 1 1

Number of
hidden layers

1 1 1 1 1 1

Number of
hidden neurons

5 5 5 5 5 5

C1 1.5 1.5 1.5 1.5 1.5 1.5

C2 1.5 1.5 1.5 1.5 1.5 1.5

Number of
generations

- 100 - 100 100 100

Particle
population

- - 100 - 100 100

Function for
performance

MSE MSE MSE MSE MSE MSE

The GA variables, including selection method, population size, crossover rate, mutation rate, and
generation number, were determined using the hit and trial procedure. Table 4 summarizes the NSGA-II
parameters.
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Table 4
NSGA-II parameter setting

Parameters Setting

Population size 50

Selection rate 80%

Crossover rate 70%

Mutation rate 30%

Crossover type Two-points

Maximum number of iterations 200

Basis of chromosome selection Bias- Variance

Stopping criteria 0.001m2

We evaluated the models using RMSE, MAE (Willmott & Matsuura, 2005), and R (Galton & British, 1885)
indices obtained from Eqs. 3–5 for the training and testing datasets, respectively.

3

4

5

where , ,  and  denote the observed data, the average of the observed data, the predicted value,
and the average of the predicted value, respectively. Also, the n value refers to the number of samples.

Uncertainty of model parameters

RMSE = √∑n
i=1 ((Oi − Pi))

2

n

R =

∑n
i=1 (Oi −

−

Oi)(Pi −
−

P i)

∑n
i=1 (Oi −

−

Oi)∑n
i=1 (Pi −

−

P i)

MAE =
∑n

i=1 |(Oi − Pi)|

n

Oi

−

Oi pi

−
pi
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ANN models face uncertainty with and without neural algorithms. The parameters of model structures in
the neural network can be uncertain. They can include optimized weight and bias values, which have
uncertainty despite being calculable by the obtained algorithms. Generalized likelihood uncertainty
estimation (GLUE) is a popular method to measure uncertainty in the hydrological analysis. It is
extensively used to calculate uncertainty in various areas: for instance, in river flow and flood simulations,
dust estimation, and hydrological modeling. This study uses the GLUE method to estimate the uncertainty
of neural network models due to model parameters:

The prior probability distribution of each parameter estimated should be quantified for which normal
uniform distribution is typically used.

The number of samples is provided from each model parameter based on the Monte Carlo method
and in line with the previous distribution. The study samples were 5,000.

The models are rerun using model parameters to obtain an estimated output.

The correct likelihood values of each parameter are calculated. The GLUE method uses the probability
likelihood function by considering an objective function. The objective function mainly consists of
Nash–Sutcliffe values (Sheng et al., 2019) (Eq. 6).

6

Where, : likelihood value, : Observed data, N: number of data, : Average observed value, and 

: estimated value.

In the next step, a threshold is defined: parameter values are rejected if the likelihood value does not
exceed this threshold. Finally, the posterior probability distribution is determined using Eq. (7):

7

where,  : posterior distribution, : likelihood value, and : prior distribution,

Two indicators measure the uncertainty values of the models. The first indicator is represented by p
(Eq. 8): higher values indicate that a higher percentage of points falls within the 95% confidence band,
thus less uncertainty. The second indicator is represented by r (Eq. 9): the higher its values, the higher the
uncertainty and confidence bandwidth.

P (Y |θi) = 1 −

N

∑
n=1

[YO − Ŷ O (θi)]
2

N

∑
n=1

(YO − Ȳ O)
2

P (Y |θi) YO Ȳ

Ŷ O (θi)

P (θi|Y ) =
P (θi) ∗ P (Y |θi)

N

∑
i=1

P (Y |θi)

P (θi|Y ) P (Y |θi) P (θi)
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8

9

Where, : upper bound of groundwater level, : lower bound of groundwater level, : standard
deviation, : the number of observations enveloped by 95% prediction uncertainty band, n: number
of data

Results and Discussion
The correlation between different input parameters (lagged temperature, precipitation, and GWL) with GWL
for modeling is presented in Table 5.

Table 5
The correlation between precipitation, temperature, and groundwater

data and groundwater levels
Temperature r Precipitation r GW level r

T(t-1) -0.2 R(t-1) 0.25 G(t-1) 0.99

T(t-2) -0.34 R(t-2) 0.44 G(t-2) 0.99

T(t-3) -0.82 R(t-3) 0.91 G(t-3) 0.98

T(t-4) 0.65 R(t-4) 0.76 G(t-4) 0.98

T(t-5) -0.51 R(t-5) 0.65 G(t-5) 0.98

T(t-6) -0.78 R(t-6) 0.83 G(t-6) 0.98

T(t-7) -0.45 R(t-7) 0.51 G(t-7) 0.97

T(t-8) -0.62 R(t-8) 0.45 G(t-8) 0.98

T(t-9) -0.75 R(t-9) 0.86 G(t-9) 0.98

T(t-10) -0.56 R(t-10) 0.35 G(t-10) 0.99

T(t-11) -0.32 R(t-11) 0.2 G(t-11) 0.99

T(t-12) -0.42 R(t-12) 0.24 G(t-12) 0.99

p = ∗ 100
NGW

n

r =

n

∑
t=1

(GWU − GWL)

nσo

GWU GWL σo

NGW
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As seen the Table 5 that precipitation and temperature with 3, 6, and 9 months lags have more influence
on GWL than others and are selected as inputs for GWL modeling. The correlation between GWL and GWL
different lags range between 0.97 to 0.98, thus, G (t-1), G (t-1), …. G (t-12) were selected as input
parameters for GWL modeling.

Table 6 sums up the outcomes of the testing and training stages of the hybrid and stand-alone MLP
models in GWL modeling.

Table 6
Performance evaluation of MLP models

Model/criteria R RMSE MAE

  Test Train Test Train Test Train

MLP 0.86 0.899 0.181 0.17 0.151 0.21

MLP-GA 0.89 0.912 0.178 0.158 0.156 0.14

MLP-NSGA-II 0.9576 0.9606 0.115 0.1116 0.092 0.088

MLP-MOPSO 0.9034 0.9225 0.123 0.12151 0.148 0.13

MLP-2NSGA-II-MOPSO 0.986 0.972 0.073 0.092 0.059 0.069

MLP-MOPSO-NSGAII 0.963 0.960 0.0972 0.111 0.102 0.095

Of different models, MLP-2NSGA-II-MOPSO outperforms other models with the highest R (0.972) and the
lowest RMSE (0.092) and MAE (0.069) in GWL estimation (Table 6). As seen, combining the optimization
algorithm with the MLP improves the model performance and forecasting accuracy (hybridization of MLP
with two-objective algorithms (NSGA-II )). Previous studies also confirmed hybrid ANN models with two-
objective optimization algorithms perform better than single-objective optimization (Trưởng & Dao, 2020;
Yadav et al., 2021).

MLP-NSGA-II model provides better improvement; decreases in RMSE and MAE of the MLP-GA model from
0.18 to 0.11 and from 0.15 to 0.095 and increases in R from 0.921 to 0.96 in the training stage. The train
and test stages of the stand-alone MLP model and the proposed hybrid models MLP-NSGA-II, MLP-
MOPSO-, MLP-2NSGA-II-MOPSO-, and MLP-MOPSO-NSGA-II-, are depicted in Fig. 7.

The results show that hybridization of the MLP with optimization algorithms improves the model accuracy
and performance compared to stand-alone MLP (Fig. 7). Also, two-objective algorithms, including NSGA-II
and MOPSO, are used, have better performance than single-objective algorithms such as GA. The best
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performance is related to MLP-2NSGA-II-MOPSO model. The model accuracy was improved in previous
studies such as (32, 58, 61, 64, 67, 69, and 70).

The hybrid MLP-2NSGA-II-MOPSO model benefits from the integration of the search engines of both
algorithms to generate a new population. Therefore it can establish the divers and wast pareto optimal
solution. During each iteration, according to the ranking, the population is separated into halfs, the
analysis is performed by NSGA-II, using upper half of the population. MOPSO algorithm modify the lower
half effectively using different operators.

MOPSO-NSGAII is a multi-objective optimization algorithm that combines the strengths of both Multi-
Objective Particle Swarm Optimization (MOPSO) and the Non-Dominated Sorting Genetic Algorithm II
(NSGAII). This algorithm has proven to be more effective for multi-objective optimization problems than
NSGAII. MOPSO-NSGAII maintains a larger population size and has a better convergence rate than NSGAII.
With a larger population size, the algorithm can explore a broader search space and identify more diverse
solutions. Hence, more non-dominated solutions can be identified, and convergence is faster. To store non-
dominated solutions, MOPSO-NSGAII uses a dynamic archive. By comparing the current population with
the archive, the algorithm can detect new non-dominated solutions. A non-dominated solution set can be
reached more quickly. In addition, MOPSO-NSGAII employs a local search strategy that further improves
accuracy. The algorithm finds the best solutions more accurately by performing local searches. MOPSO-
NSGAII outperforms NSGAII through a larger population, dynamic archives, and local search operators.
The combination of these features makes MOPSO-NSGAII more effective in multi-objective optimization.

Uncertainty of model parameters
Results indicated that using two-objective algorithms has effectively improved the model performance
(Fig. 8). For example, NSGA-II improved P-value from 0.89 to 0.91 and R from 0.24 to 0.19 compared to the
MLP-GA model. Also, the MOPSO-MLP model in the same process affects the model performance,
increasing the P-value from 0.89 to 0.9 and decreasing R from 0.24 to 0.2. Also, results indicated that the
MLP-2NSGA-II-MOPSO model has lower uncertainty than other models due to having the highest values of
P and lowest values of R. It means that a combination of the two algorithms (NSGA-II and MOPSO)
improves the model accuracy by using more search agents and operators. Further, the MLP model has the
highest uncertainty due to the lowest P-value and the highest R-value. NSGA-II-MOPSO is a meta-heuristic
method that can be used to optimize the parameters of the MLP model. It uses an evolutionary algorithm
to search for the optimal parameters, taking into account a number of objectives simultaneously. Thereby
it can reduce the uncertainty of the MLP model since it can find the optimal settings for the model.

In general, the uncertainty of the model outputs is caused by three primary sources: the first source is the
uncertainty of the data and knowledge, the second one, called parametric uncertainty, is related to
unknown model parameters; and the third one, known as the structural uncertainty, is derived from
physical complexity of the phenomena. In this work, the main source of the uncertainty is the parametric
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Conclusion
This paper simulated GWL fluctuations of the Yazd-Ardakan aquifer in central Iran using MLP hybridized
with various evolutionary algorithms. Evolutionary algorithms, including NSGA-II and MOPSO, were
hybridized with MLP in different patterns such as MLP-NSGA-II-, MLP-MOPSO-, MLP-MOPSO–NSGA-II and
MLP-2NSGA-II–MOPSO. Using two-objective optimization algorithms will result in an optimal selection of
ANNʼs parameters. The RMSE, R, and MAE indices assessed the model’s performance. Temperature and
precipitation delays of 3, 6, and 9 months and groundwater level delays of 1 to 12 months were significant
at the 5% level as input parameters. The results indicate that the MLP-2NSGA-II-MOPSO- model, with an
RMSE = 0.073, R = 0.98, and MAE = 0.059, outperforms other models in estimating GWL fluctuations.
Uncertainty analysis showed the same results and verified the best operation of the MLP-2NSGA-II-MOPSO
model. Also, the primary source of the uncertainty analysis in this paper is the parametric one derived from
the hybrid models of GWL prediction due to the regulative parameters and weights created in the training
stage of models and the lack of historical data on groundwater withdrawal. The second one is more
important in this study.
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Figure 1

Study area in Iran (a).Location of piezometer across Yazd-Ardakan aquifer (b) the and water level
fluctuation (c).
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Figure 2

Mean monthly precipitation (a), maximum temperature (b), and minimum temperature (c) of the Yazd-
Ardakan aquifer (based on the Yazd station)
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Figure 3

Multilayer Perceptron network structure
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Figure 4

MLP-NSGA-II schematic diagram
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Figure 5

The flowchart of MOPSO-MLP
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Figure 6

(a) Hybrid model of MLP-2NSGA-II-MOPSO- and (b) MLP-MOPSO-NSGA-II.
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Figure 7

Residual plots of different models in the training (A) and testing (B) stages.
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Figure 8

The uncertainty values of the models


