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Abstract 

The prevalence of client-based web attacks, which exploit web vulnerabil- 
ities, has been increasing with the growth of web sites. Although pattern 
detection has been widely used to protect against web attacks, it has a 
high probability of failing to detect new types of attacks. To address this 
issue, we propose a novel approach for responding to three typical client- 
based web attacks (JavaScript malware, phishing attacks, and script- 
based web attacks) using machine learning algorithms. Our approach 
involves extracting relevant features from source code and URLs, and 
then training and testing various machine learning models (including 
Random Forest, Deep Neural Network, and Convolutional Neural Net- 
work) to determine the final model. Our experimental results indicate 
that our Random Forest model achieved high accuracy rates, with 
99.99% for JavaScript malware, 95.11% for phishing attacks, and 94.77% 
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for script-based web attacks. Furthermore, we developed a Chrome 
extension that uses the learned models to block client-based web attacks. 

 
Keywords: Artificial Intelligence, Machine Learning, Deep Learning, 
Javascript malware, Phishing attacks, Script-based web attacks 

 
 
 
 

1 Introduction 

Due to the prevalence of online services offered by various organizations, 

websites have become a significant target for cyber-attacks [1]. As a result, 

extensive research has been conducted on attack methods and defenses against 

websites [2–5]. Attacks on websites can be classified into two categories: those 

targeting web server applications and those targeting website users. SQL injec- 

tion is a common type of attack targeting web server applications, while cross-

site scripting (XSS) is a script-based attack aimed at web users. Despite the 

increasing number of attacks targeting websites, over 70% of actual web 

attacks occur at the application layer [6]. In recent years, fileless cyber-attacks 

and Advanced Persistent Threat (APT) attacks have become prevalent [7–9]. 

These attacks infiltrate a company’s internal network via a relatively easy-to- 

attack user’s PC. Client-based web attacks such as phishing and script-based 

attacks are commonly used techniques to attack a user’s PC. 

Historically, defenses against client-based web attacks, such as JavaScript 

malware, phishing attacks, and script-based web attacks, have relied mainly 

on pattern detection techniques. Bo Sun’s study, for instance, created a black- 

list that automatically prevents access when the browser detects any pattern 

in the blacklist. The AutoBLG framework was also developed to automati- 

cally scan the web space and add new malicious patterns to the blacklist [10]. 

Nevertheless, attackers can easily evade these pattern detection techniques 

using code obfuscation or other evasion techniques [11]. Furthermore, there is 

a drawback to having all patterns exist in the database, as it can be resource- 

intensive and slow down throughput [12]. Therefore, we propose a method that 

utilizes various machine learning (ML) algorithms to detect client-side web 

attack techniques. 

To detect client-based web attacks, our methodology proceeds as follows. 

First, we obtained a data set from the reputable and reliable Alexa Top Sites. 

We selected essential features using source code analysis and then applied 

RandomForest (RF), deep neural network (DNN), and convolutional neural 

network (CNN) models based on these features. We tested these three models 

and chose the one with the best accuracy as the final detection model. Lastly, 

we developed a Chrome extension that implements the validated model to 

safeguard real users against client-based web attacks. 

The primary contributions of this research are outlined below: Firstly, we 

utilized three different ML algorithms for detecting client-side web attacks. 

Secondly, we gathered a significant amount of data by collecting 71,471 
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datasets for JavaScript Malware, 31,830  for  Phishing,  and  61,731  datasets 

for Script-based web attacks, which were the three main client-side attacks 

we focused on. Thirdly, we have developed a Chrome browser extension that 

utilizes the final RF model we selected. 

The rest of this paper is structured as follows: Section 2 reviews the relevant 

literature on ML algorithms used to defend against client-side web attacks, 

Section 3 outlines the methodology used to collect and analyze datasets for 

detecting client-based web attacks, Section 4 describes the process of develop- 

ing a model to detect three major client-based web attacks, namely JavaScript 

malware, phishing attacks, and script-based web attacks, Section 5 presents the 

experimental results of the final model, Section 6 describes the development of 

Chrome extensions based on the selected model, and Section 7 concludes the 

paper. 

 
 
 

2 Related work 

ML algorithms have been extensively studied for improving web application 

security. WANG Wei-Hong proposed a ML-based countermeasure against mali- 

cious JavaScript. In this study, 2,000 datasets were used to train three models 

(ADTree, NaiveBayes, and Support Vector Machine (SVM)), and the SVM 

model achieved the highest accuracy of 94.38% [13]. Hyunmin Kim et al. 

developed a web browser forensics toolkit that utilized ML algorithms. They 

collected a dataset of 52,500 web pages (10,000 benign and 42,500 malicious) 

and trained three models (SVM, DNN, and RF). Their research found that 

the RF model achieved the highest accuracy with 99.8% [14]. 

Monther Aldwairi conducted a study on detecting Drive-by-Download 

attacks, where models were trained on a dataset of 5,435 web pages and 

achieved an accuracy of 90% [15]. Arun Kulkarni proposed a ML-based 

approach for detecting phishing websites. They extracted nine features from a 

dataset of 1,353 URLs and developed four models (Decision Tree, Näıve Bayes’ 

Classifier, SVM, and Neural Network). The Decision Tree model exhibited the 

highest accuracy of 91.5%, while the other three models achieved an accuracy 

of 80% [16]. 

S. Krishaveni and K. Sathiyakumari developed an XSS attack detection 

model that was trained on 500 URLs and produced a decision tree model 

with 100% accuracy [17]. However, most studies have used small datasets. 

Hyunsang Choi proposed a ML-based method for detecting client-based web 

attacks, such as spamming, phishing, and malware infection. This study col- 

lected 40,000 normal webpages and 32,000 malicious webpages and achieved 

93% accuracy by applying the ML-kNN algorithm [18]. Joshua Saxe proposed 

a deep learning approach for detecting malicious webpages, and the architec- 

ture was designed for deployment on endpoints, firewalls, and web proxies [19]. 

Tom Diethe presented a pattern recognition system for detecting attacks on 

web services that target web servers and server-side applications [20]. 
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There is a lack of research on detecting client-side web attacks that target 

users through their browser. Moreover, previous studies on JavaScript malware 

and phishing attacks have reported low model accuracy due to small dataset 

sizes and insufficient preprocessing procedures. 

Previous research has mainly concentrated on identifying web attacks 

through ML algorithms on the server side. However, client-based defense meth- 

ods can mitigate problems like overload and privacy concerns that may arise 

with server-side defense methods. A study by Jingyu Zhang presents a model 

for identifying cross-site request forgery (CSRF) attacks on clients by exam- 

ining HTTP  requests, content, and the  CSRF handler in  the browser [21]. 

Nonetheless, this method only identifies CSRF attacks. 

This paper presents the development of three detection models for client- 

based web attacks (JavaScript malware, Phishing  attacks,  and  Script-based 

web attacks) using over 30,000 datasets. We have introduced a reliable dataset 

collection method and preprocessing process to improve the model’s reliability. 

Additionally, we have evaluated the accuracy of the models using various ML 

algorithms and selected the model with the highest accuracy. 

 

 
3 Methodology:  Dataset  collection 

The overall methodology of this study is  presented  in  Figure  1.  The  data 

used for the ML algorithm was collected by segregating it into two categories: 

normal data and malicious data. The normal data was  gathered  from  the 

Alexa Top site, which is a tool that provides information about website traffic 

rankings on the web [22]. However, since relying on the Alexa Top site alone to 

determine a site’s safety is not sufficient, two additional measures were applied 

to ensure the safety of the selected sites. In the first step, URLs that do not 

start with https were excluded from the list. In the second step, we utilized 

Google’s Safe Browsing to select URLs of secure websites, which detects unsafe 

websites and ensures the final dataset’s safety. 

 
 
 

 

Fig. 1  Our Methodology: Collecting dataset, three attack dataset, and AI model structure. 
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The paper collects malicious data sets by different methods based on 

the attack types. Three types of malicious data are classified according to 

their characteristics, which include JavaScript malware, phishing attacks, and 

script-based web attacks. Each attack type has its own triggering location for 

malicious behavior. JavaScript malware injects a script into the browser via a 

vulnerability and executes the code as desired by the attacker. The dataset for 

JavaScript malware was obtained from an open malicious data source. Phish- 

ing attacks are attacks that aim to steal personal information through email 

and social network services, and the dataset for phishing attacks was collected 

from the phishing tank site. Finally, script-based web attacks, such as XSS 

and CSRF, are attacks that steal user privileges by accessing the user’s cook- 

ies and session. The dataset for script-based web attacks utilized actual attack 

data sets provided by the industry. 

Table 1 presents a summary of the dataset that includes both normal and 

malicious websites, which are related to three types of client-side attacks. Sub- 

sequently, we will examine the specific code and preprocessing procedures for 

each of the malicious datasets. 

 
Table 1  Dataset of normal data and malicious data 

 

 
JS malware Phishing Script 

Data source Javascript malware Phishing Tank script-based 

Normal data 32,033 15,717 30,437 

Malicious data 39,440 16,113 31,294 

 
 

 

3.1 Javascript malware dataset 

We analyzed the source code from URLs collected from open malicious data 

sources through web crawling and then extracted script tags from the source 

code. Figure 2 shows a sample of one of the JavaScript malware datasets. 

 
 

 
Fig. 2  Example of Javascript malware data 
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Fig. 3 Javascript malware data processing 
 

The data processing method for JavaScript code is shown in Figure 3. We 

collected a total of 32,033 data from the URLs previously collected from the 

Alexa Top site as benign datasets. The malicious JavaScript dataset collected 

a total of 39,440 data from open JavaScript malware sites, as listed in Table 1 

[23]. 
 

3.2 Phishing attacks dataset 

We collected a total of 15,717 URLs and source codes as a benign site dataset 

for the phishing attack model. Figure 4 shows some of the phishing attack 

data. To detect phishing attacks more accurately, it is necessary to check not 

only the URL but also the source code of the website. 

 

 
Fig. 4  Example of Phishing attacks data 

 
 

We also collected a total of 16,113 phishing site URLs and source codes 

through Phishing Tank [24], which updates new phishing sites daily for 

malicious data. 
 

3.3 Script-based web attacks dataset 

We extracted not the entire source code of the website but tags containing 

frequently used attack patterns to extract the dataset of script-based web 

attacks. Figure 5 shows one of the script-based web attack datasets. 

We extracted 7 tags: <a>, <input>, <img>, <script>, <meta>, <form>, 

and <div> from the source. The data processing method is shown in Figure 6. 
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Fig. 5  Example of Script-based web attacks data 
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Fig. 6  Script-based web attacks data processing 
 

 

The script-based malicious dataset created a new dataset by inserting cheat 

sheets into the seven extracted tags. From this insertion, we collected 30,437 

benign data and 31,294 malicious data. 

 
4 Model selection 

Initially, we need to extract features for each attack to develop the model. 

After analyzing the collected dataset and each attack technique, we extracted 

the features and selected the final features through validation. For the fea- 

ture validation task, we used a feature distribution visualization graph of the 

data to highlight the distribution of features briefly. The features that were 

finally selected through the feature verification process, accuracy, were derived 

through a total of three models: RF, DeepNeural Network (DNN), and CNN 

models. 

 
4.1 Javascript malware 

Through JavaScript malware analysis, strings and functions mainly used in 

browser exploits and drive-by attacks were selected as features. As a represen- 

tative example, the split function and the join function, which are methods 

of recombining after dividing the string into pieces,  were  mainly  used  to 

avoid string-based detection. Additionally, the escape function that converts 

a string into ASCII code and the eval function that calculates and executes 
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the JavaScript code were confirmed to appear frequently. These functions are 

used in malicious JavaScript for interpreting obfuscated sources. 

Also, special characters used for obfuscation, such as exploit kits, were 

selected as features. Examples of special characters include \x, $, +, *, and 

|. Figure 7 shows the feature verification work for feature ‘\x,’ and feature 

visualization was performed through the stripplot function. 

 

 
Fig. 7  ‘\x’ feature validation graph 

 
Label 0 refers to a benign dataset, label 1 refers to a malicious dataset, and 

it can be seen that the feature ‘\x’ frequently appears at a higher rate in the 

malicious dataset. Therefore, it is considered a suitable feature for detecting 

JavaScript  malware. 

Figure 8 shows ADODB.Stream, which is commonly used in JavaScript 

malware, selected as a feature and verified. Through this, it can be confirmed 

that the feature ‘ADODB.Stream’ is a distinct feature used exclusively in 

malicious datasets. 

 
Table 2 Javascript malware final feature list 

 

\\x 0x $ + 

% [ 
 | 

* ∼ ˆ @ 

toString Sleep iframe http:// 

onload unonload indexOf charAt 

WScript Shell Script /. 

eval( escape( join( push( 

split( function var max line 

swf exe gif display 

ActiveXObject ADODB.Stream 

 
After analyzing benign and malicious scripts, features were extracted, and 

finally, a total of 38 features were selected through feature verification, as 

shown in Table 2. 
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Fig. 8  ‘ADODB.Stream’ feature validation graph 
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4.2 Phishing attacks 

The features of phishing attacks were extracted by analyzing the URL and 

source code of the phishing site and comparing it with the benign dataset. As 

a result of identifying the features of the URL and the parts where malicious 

actions occur frequently in the source code, several features were discovered. 

Figure 9 and Figure 10 display a portion of the collected benign URL 

dataset and the URL dataset of phishing sites. As a representative feature, it 

can be observed that phishing site URLs are, on average, longer than those of 

benign sites, and special characters appear frequently. Additionally, many cases 

were found where “//” was inserted in the URL path to redirect to another 

site, and due to the prevalence of obfuscated URLs, URL entropy was selected 

as a feature to determine obfuscation. By examining the domain registration 

period of phishing sites through Whois, it was confirmed that the majority of 

phishing sites were active for less than one year. Thus, URL-related features 

were extracted based on these characteristics. 

 

 
Fig. 9  Benign URL dataset of phishing site 
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Fig. 10  Malicious URL dataset of phishing site 
 

 

The process of extracting source code-related features is as follows. In the 

source code of the phishing site, it was observed that external domains were 

entered in  the href attribute value of the link  tag. Additionally, the  action 

attribute value of the form tag or website was disconnected and empty. Fur- 

thermore, there were numerous cases where external domains were present in 

the favicon path or script tag link. 

Figure 11 displays a portion of the source code from the phishing site 

‘http://it-friedli.ch/administrator/components/Login.htm’. Unlike the benign 

source code, it can be observed that an external domain is used as the href 

attribute value. 

 
 

 
Fig. 11  Example of malicious source code(external domain) 

 
 

Additionally, there are many cases where the website is not linked through 

characters such as ‘javascript:void(0)’, ‘#’, or ‘about:blank’ in the href 

attribute value, as shown in Fig. 12. 

 
 

 
Fig. 12  Example of malicious source code (empty) 

 

 
Features were selected through the analysis of URLs and source code, and 

based on this, feature verification was performed using feature importances. 

This can be seen in Figure 13. The graph indicates that the features ‘https’ 
and ‘entropy’ carry the most weight. As a result, a total of 23 features were 

extracted, as shown in Table 3. 

http://it-friedli.ch/administrator/components/Login.htm
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Fig. 13  Phishing attacks feature importances 
 
 

Table 3  Phishing attacks final feature list 
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https url hex url len url short 

url special url dot url entropy php url 

file url IP url webhost whois 

link redirect link out action out favi out 

script out domain in source fromCharCode 

split join escape eval 

 
4.3 Script-based web attacks 

In the case of script-based web attacks, features can be classified into two 

categories. The first category consists of simple strings such as ‘alert’ and 

‘prompt’, while the second category involves combinations of strings. In the 

combined form, tags and JavaScript strings with a high probability of attack 

coexist in the source code. Another case is when event handlers, alerts, ‘doc- 

ument.cookie’, etc., are used together. Additionally, when a tag or a single 

string is used, features were extracted for mixed case or an odd number of 

quotation  marks. 

The features extracted through the aforementioned process were verified 

using the feature importances of the RF model, as shown in Figure 14. 

It can be observed that the features ‘alerts’ and ‘xss’ carry the most weight 

in script-based web attacks. Consequently, a total of 33 features were ulti- 

mately selected, as shown in Table 4, and the likelihood of encountering these 

features in benign data is very low. 

 

5 Experimental  Results 

In this experiment, three algorithms, RF, DNN, and CNN, were used for learn- 

ing. Firstly, the DNN constructed a neural network with two hidden layers of 
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Fig. 14  Script-based web attacks feature importances 
 

Table 4  Script-based web attacks final feature list 
 

alert prompt ‘ odd “ odd 

onErrOr <ScRipt domain xss 

<ifame/on <svg/onload src+alert % alert 

on*+alert on*+prompt on*+location on*+cookie 

<img+alert <img+prompt <img+cookie <img+on+&# 

<img+javascript <input+on+href 

javascript+alert string.fromCharCode() eval 

confirm Tab \x & 

* ‘ [ ] 

 

size 14 and 7, and used a rectified linear unit (ReLU) as the activation function. 

Secondly, CNN constructed a neural network with two convolutional layers of 

size 64 and 32, and two hidden layers of size 32 and 16. ReLU was also used as 

an activation function. Additionally, a dropout layer was added between each 

layer to prevent overfitting in both DNN and CNN. For training, adam was 

used as the optimizer, and binary crossentropy was used as the loss function. 

CNN and DNN were implemented using the Keras and TensorFlow libraries. 

Thirdly, RF was set to 50 trees and implemented using the scikit-learn library. 

 

5.1 Model accuracy 

Based on the previously collected data and features, three models were cre- 

ated for each attack: RF, DNN, and CNN. The first attack model, JavaScript 

malware, achieved high accuracy rates of 99.99%, 99.80%, and 99.83% for RF, 

DNN, and CNN, respectively, using 71,471 data samples and 38 features. The 

second attack model, Phishing attacks, yielded accuracy rates of 95.11% (RF), 

93.71% (DNN), and 92.72% (CNN) with 31,830 data samples and 23 features. 

Lastly, the Script-based web attacks achieved accuracy rates of 94.77% (RF), 

92.53% (DNN), and 92.38% (CNN) based on 61,731 data samples and 33 

features. 
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Consequently, the  JavaScript malware models  consistently demonstrated 

high accuracy rates exceeding 99% across all three models, while the Phishing 

attacks model achieved 95.11% accuracy, with the RF model exhibiting the 

highest accuracy, as shown in Table 5. Similarly, the Script-based web attacks 

model also exhibited the highest accuracy with the RF model achieving 94.77% 

accuracy. 

Table 5 Accuracy, Precision, and Recall of three attack type 
 

 
JS malware Phishing Script 

Number of Data 71,471 31,830 61,731 

Number of Features 38 23 33 

RF Accuracy 99.99% 95.11% 94.77% 

DNN Accuracy 99.80% 93.71% 92.53% 

CNN Accuracy 99.83% 92.72% 92.38% 

Precision 99.98% 98.51% 96.61% 

Recall 99.88% 90.37% 88.06% 

 
 

5.2 Model performance analysis 

In all three models of JavaScript malware, phishing attacks, and Script-based 

web attacks, RF exhibited the highest accuracy. Based on the accuracy results 

of the three attack types, a performance analysis of the RF model for each 

attack was conducted using the confusion matrix. 

The confusion matrix of JavaScript malware is depicted in Figure 15. It 

revealed a total of 2 false positives and 15 false negatives, indicating a precision 

of 99.98% and a recall of 99.88% for the model. 

 
 

 
Fig. 15 JavaScript malware confusion matrix 

 

 
The confusion matrix of Phishing attacks is depicted in Figure 16, revealing 

655 false negatives and 93 false positives. Additionally, it can be observed that 

the precision of the model is 98.51% and the recall is 90.37%. 

 
 

 

Fig. 16  Phishing attacks confusion matrix 
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In the last attack model, Script-based web attacks, a total of 1,593 false 

negatives and 412 false positives were identified. As depicted in Figure 17, the 

Precision and Recall of the model are 96.61% and 88.06%, respectively. 

 

 
Fig. 17  Script-based web attacks confusion matrix 

 
 

 

6 Model application 

We developed a ‘Safe Browsing’ Chrome extension that detects three attack 

models: JavaScript malware, phishing attacks, and script-based attacks, using 

our own data collection method, feature extraction, and verification. We uti- 

lized the RF model, which achieved a detection rate of over 94% for all three 

attack models, in the development of the Chrome extension [25]. 

The process of ‘Safe Browsing’ is illustrated in Figure 18. Since JavaScript 

malware, phishing attacks, and script-based web attacks are all client-side web 

attacks, ‘Safe Browsing’ operates on the client-side rather than the server-side. 

 

 
Fig. 18  ‘Safe Browsing’ process 

 
 

When a client sends a request to the server through a web browser, the 

requested website is checked for safety before the server sends a response. The 

URL and source code of the requested website undergo data preprocessing and 

are then input into the pre-existing RF model. Based on this input, the RF 

model determines whether an attack is detected. If a website has a malicious 

probability of over 90%, it is classified as malicious and blocks users’ requests. 

Websites with a malicious probability below 90% are classified  as normal 

and redirected to the server. The ‘Safe Browsing’ system’s server periodically 

retrains the model to minimize false positives. 

In addition to the percentage classification, the system offers the user an 

option to perform a safety test for each attack type and provides the test 

results. Among JavaScript malware, Phishing attacks, and Script-based web 
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attacks, the user can selectively detect only the desired attack type through 

the safety check. By notifying the user about the safety check result, the sys- 

tem allows them to assess the malicious probability of the accessed website. 

Furthermore, the system includes a whitelist function that enables users to 

exempt specific websites from safety checks for the three attack types. Lastly, a 

concise explanation of JavaScript malware, Phishing attacks, and Script-based 

web attacks is presented to facilitate the understanding of feedback provided 

by the program, thus promoting awareness about the importance of website 

security among general users. 

 

7 Conclusion 

With the recent emergence of various bypass techniques for client-based web 

attacks, existing pattern detection methods have limitations in defending 

against these attacks. Furthermore, as attacks become more advanced, the 

damage range expands, starting from the client PC. In response to these 

evolving attacks, this study focuses on developing a client-based web attack 

countermeasure using ML algorithms. 

This paper presents a detection model for JavaScript malicious code, phish- 

ing attacks, and script-based web attacks, which are frequently encountered 

during web attacks. The datasets used for training the models consist of 71,471 

cases for JavaScript malware, 31,830 cases for phishing attacks, and 61,731 

cases for script-based web attacks. Data preprocessing and feature extraction 

were performed for each attack type, followed by validation of the models 

using RF, DNN, and CNN algorithms. The RF algorithm achieved high accu- 

racy rates of 99.99% for JavaScript malware, 95.11% for phishing attacks, 

and 94.77% for script-based web attacks. Based on this level of accuracy, we 

propose utilizing the RF algorithm as part of our approach. 

To the best of our knowledge, this work represents the first study to apply a 

ML algorithm to counter client-based web attacks at the client end. In addition 

to calculating accuracy, we also consider precision and recall. Furthermore, we 

have developed a Chrome extension that directly applies the proven RF model 

in the browser to enhance user security. 
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