
Client-Based Web Attacks Detection Using Arti�cial
Intelligence
Jiwon Hong

Korea Information Technology Research Institute
Hyeongmin Kim

Korea Information Technology Research Institute
Suhyeon Oh

Korea Information Technology Research Institute
Yerin Im

Korea Information Technology Research Institute
Hyeonseong Jeong

Korea Information Technology Research Institute
Hyunmin Kim

Financial Security Institute
Kyounggon Kim

Naif Arab University for Security Sciences

Research Article

Keywords: Arti�cial Intelligence, Machine Learning, Deep Learning, Javascript malware, Phishing attacks,
Script-based web attacks

Posted Date: May 17th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2920883/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2920883/v1
https://doi.org/10.21203/rs.3.rs-2920883/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

Client-Based Web Attacks Detection Using

Artificial Intelligence

Jiwon Hong1†, Hyeongmin Kim1†, Suhyeon Oh1†, Yerin
Im1†, Hyeonseong Jeong1†, Hyunmin Kim2† and Kyounggon

Kim3*†

1*Best of the Best Program, KITRI, Seoul, 08378, Republic of

Korea.
2Financial Security Institute, 132, Daeji-ro, Suji-gu, Yongin,

16881, Gyeonggi-do, Republic of Korea.
3Center of Excellence in Cybercrimes and Digital Forensics, Naif

Arab University for Security Sciences, 11452, Riyadh, Kingdom

of Saudi Arabia.

*Corresponding author(s). E-mail(s): kkim@nauss.edu.sa;

Contributing authors: hgzone323@gmail.com;

oku00737@gmail.com; dhtngus20@gmail.com;

dpfls9939@gmail.com; jung86357@gmail.com;

hyunmini85@gmail.com.
†These authors contributed equally to this work.

Abstract

The prevalence of client-based web attacks, which exploit web vulnerabil-
ities, has been increasing with the growth of web sites. Although pattern
detection has been widely used to protect against web attacks, it has a
high probability of failing to detect new types of attacks. To address this
issue, we propose a novel approach for responding to three typical client-
based web attacks (JavaScript malware, phishing attacks, and script-
based web attacks) using machine learning algorithms. Our approach
involves extracting relevant features from source code and URLs, and
then training and testing various machine learning models (including
Random Forest, Deep Neural Network, and Convolutional Neural Net-
work) to determine the final model. Our experimental results indicate
that our Random Forest model achieved high accuracy rates, with
99.99% for JavaScript malware, 95.11% for phishing attacks, and 94.77%

1

Springer Nature 2021 LATEX template

2 Article Title

for script-based web attacks. Furthermore, we developed a Chrome
extension that uses the learned models to block client-based web attacks.

Keywords: Artificial Intelligence, Machine Learning, Deep Learning,
Javascript malware, Phishing attacks, Script-based web attacks

1 Introduction

Due to the prevalence of online services offered by various organizations,

websites have become a significant target for cyber-attacks [1]. As a result,

extensive research has been conducted on attack methods and defenses against

websites [2–5]. Attacks on websites can be classified into two categories: those

targeting web server applications and those targeting website users. SQL injec-

tion is a common type of attack targeting web server applications, while cross-

site scripting (XSS) is a script-based attack aimed at web users. Despite the

increasing number of attacks targeting websites, over 70% of actual web

attacks occur at the application layer [6]. In recent years, fileless cyber-attacks

and Advanced Persistent Threat (APT) attacks have become prevalent [7–9].

These attacks infiltrate a company’s internal network via a relatively easy-to-

attack user’s PC. Client-based web attacks such as phishing and script-based

attacks are commonly used techniques to attack a user’s PC.

Historically, defenses against client-based web attacks, such as JavaScript

malware, phishing attacks, and script-based web attacks, have relied mainly

on pattern detection techniques. Bo Sun’s study, for instance, created a black-

list that automatically prevents access when the browser detects any pattern

in the blacklist. The AutoBLG framework was also developed to automati-

cally scan the web space and add new malicious patterns to the blacklist [10].

Nevertheless, attackers can easily evade these pattern detection techniques

using code obfuscation or other evasion techniques [11]. Furthermore, there is

a drawback to having all patterns exist in the database, as it can be resource-

intensive and slow down throughput [12]. Therefore, we propose a method that

utilizes various machine learning (ML) algorithms to detect client-side web

attack techniques.

To detect client-based web attacks, our methodology proceeds as follows.

First, we obtained a data set from the reputable and reliable Alexa Top Sites.

We selected essential features using source code analysis and then applied

RandomForest (RF), deep neural network (DNN), and convolutional neural

network (CNN) models based on these features. We tested these three models

and chose the one with the best accuracy as the final detection model. Lastly,

we developed a Chrome extension that implements the validated model to

safeguard real users against client-based web attacks.

The primary contributions of this research are outlined below: Firstly, we

utilized three different ML algorithms for detecting client-side web attacks.

Secondly, we gathered a significant amount of data by collecting 71,471

Springer Nature 2021 LATEX template

Article Title 3

datasets for JavaScript Malware, 31,830 for Phishing, and 61,731 datasets

for Script-based web attacks, which were the three main client-side attacks

we focused on. Thirdly, we have developed a Chrome browser extension that

utilizes the final RF model we selected.

The rest of this paper is structured as follows: Section 2 reviews the relevant

literature on ML algorithms used to defend against client-side web attacks,

Section 3 outlines the methodology used to collect and analyze datasets for

detecting client-based web attacks, Section 4 describes the process of develop-

ing a model to detect three major client-based web attacks, namely JavaScript

malware, phishing attacks, and script-based web attacks, Section 5 presents the

experimental results of the final model, Section 6 describes the development of

Chrome extensions based on the selected model, and Section 7 concludes the

paper.

2 Related work

ML algorithms have been extensively studied for improving web application

security. WANG Wei-Hong proposed a ML-based countermeasure against mali-

cious JavaScript. In this study, 2,000 datasets were used to train three models

(ADTree, NaiveBayes, and Support Vector Machine (SVM)), and the SVM

model achieved the highest accuracy of 94.38% [13]. Hyunmin Kim et al.

developed a web browser forensics toolkit that utilized ML algorithms. They

collected a dataset of 52,500 web pages (10,000 benign and 42,500 malicious)

and trained three models (SVM, DNN, and RF). Their research found that

the RF model achieved the highest accuracy with 99.8% [14].

Monther Aldwairi conducted a study on detecting Drive-by-Download

attacks, where models were trained on a dataset of 5,435 web pages and

achieved an accuracy of 90% [15]. Arun Kulkarni proposed a ML-based

approach for detecting phishing websites. They extracted nine features from a

dataset of 1,353 URLs and developed four models (Decision Tree, Näıve Bayes’

Classifier, SVM, and Neural Network). The Decision Tree model exhibited the

highest accuracy of 91.5%, while the other three models achieved an accuracy

of 80% [16].

S. Krishaveni and K. Sathiyakumari developed an XSS attack detection

model that was trained on 500 URLs and produced a decision tree model

with 100% accuracy [17]. However, most studies have used small datasets.

Hyunsang Choi proposed a ML-based method for detecting client-based web

attacks, such as spamming, phishing, and malware infection. This study col-

lected 40,000 normal webpages and 32,000 malicious webpages and achieved

93% accuracy by applying the ML-kNN algorithm [18]. Joshua Saxe proposed

a deep learning approach for detecting malicious webpages, and the architec-

ture was designed for deployment on endpoints, firewalls, and web proxies [19].

Tom Diethe presented a pattern recognition system for detecting attacks on

web services that target web servers and server-side applications [20].

Springer Nature 2021 LATEX template

4 Article Title

There is a lack of research on detecting client-side web attacks that target

users through their browser. Moreover, previous studies on JavaScript malware

and phishing attacks have reported low model accuracy due to small dataset

sizes and insufficient preprocessing procedures.

Previous research has mainly concentrated on identifying web attacks

through ML algorithms on the server side. However, client-based defense meth-

ods can mitigate problems like overload and privacy concerns that may arise

with server-side defense methods. A study by Jingyu Zhang presents a model

for identifying cross-site request forgery (CSRF) attacks on clients by exam-

ining HTTP requests, content, and the CSRF handler in the browser [21].

Nonetheless, this method only identifies CSRF attacks.

This paper presents the development of three detection models for client-

based web attacks (JavaScript malware, Phishing attacks, and Script-based

web attacks) using over 30,000 datasets. We have introduced a reliable dataset

collection method and preprocessing process to improve the model’s reliability.

Additionally, we have evaluated the accuracy of the models using various ML

algorithms and selected the model with the highest accuracy.

3 Methodology: Dataset collection

The overall methodology of this study is presented in Figure 1. The data

used for the ML algorithm was collected by segregating it into two categories:

normal data and malicious data. The normal data was gathered from the

Alexa Top site, which is a tool that provides information about website traffic

rankings on the web [22]. However, since relying on the Alexa Top site alone to

determine a site’s safety is not sufficient, two additional measures were applied

to ensure the safety of the selected sites. In the first step, URLs that do not

start with https were excluded from the list. In the second step, we utilized

Google’s Safe Browsing to select URLs of secure websites, which detects unsafe

websites and ensures the final dataset’s safety.

Fig. 1 Our Methodology: Collecting dataset, three attack dataset, and AI model structure.

Springer Nature 2021 LATEX template

Article Title 5

The paper collects malicious data sets by different methods based on

the attack types. Three types of malicious data are classified according to

their characteristics, which include JavaScript malware, phishing attacks, and

script-based web attacks. Each attack type has its own triggering location for

malicious behavior. JavaScript malware injects a script into the browser via a

vulnerability and executes the code as desired by the attacker. The dataset for

JavaScript malware was obtained from an open malicious data source. Phish-

ing attacks are attacks that aim to steal personal information through email

and social network services, and the dataset for phishing attacks was collected

from the phishing tank site. Finally, script-based web attacks, such as XSS

and CSRF, are attacks that steal user privileges by accessing the user’s cook-

ies and session. The dataset for script-based web attacks utilized actual attack

data sets provided by the industry.

Table 1 presents a summary of the dataset that includes both normal and

malicious websites, which are related to three types of client-side attacks. Sub-

sequently, we will examine the specific code and preprocessing procedures for

each of the malicious datasets.

Table 1 Dataset of normal data and malicious data

JS malware Phishing Script

Data source Javascript malware Phishing Tank script-based

Normal data 32,033 15,717 30,437

Malicious data 39,440 16,113 31,294

3.1 Javascript malware dataset

We analyzed the source code from URLs collected from open malicious data

sources through web crawling and then extracted script tags from the source

code. Figure 2 shows a sample of one of the JavaScript malware datasets.

Fig. 2 Example of Javascript malware data

Springer Nature 2021 LATEX template

6 Article Title

Fig. 3 Javascript malware data processing

The data processing method for JavaScript code is shown in Figure 3. We

collected a total of 32,033 data from the URLs previously collected from the

Alexa Top site as benign datasets. The malicious JavaScript dataset collected

a total of 39,440 data from open JavaScript malware sites, as listed in Table 1

[23].

3.2 Phishing attacks dataset

We collected a total of 15,717 URLs and source codes as a benign site dataset

for the phishing attack model. Figure 4 shows some of the phishing attack

data. To detect phishing attacks more accurately, it is necessary to check not

only the URL but also the source code of the website.

Fig. 4 Example of Phishing attacks data

We also collected a total of 16,113 phishing site URLs and source codes

through Phishing Tank [24], which updates new phishing sites daily for

malicious data.

3.3 Script-based web attacks dataset

We extracted not the entire source code of the website but tags containing

frequently used attack patterns to extract the dataset of script-based web

attacks. Figure 5 shows one of the script-based web attack datasets.

We extracted 7 tags: <a>, <input>, , <script>, <meta>, <form>,

and <div> from the source. The data processing method is shown in Figure 6.

Springer Nature 2021 LATEX template

Fig. 5 Example of Script-based web attacks data

Article Title 7

Fig. 6 Script-based web attacks data processing

The script-based malicious dataset created a new dataset by inserting cheat

sheets into the seven extracted tags. From this insertion, we collected 30,437

benign data and 31,294 malicious data.

4 Model selection

Initially, we need to extract features for each attack to develop the model.

After analyzing the collected dataset and each attack technique, we extracted

the features and selected the final features through validation. For the fea-

ture validation task, we used a feature distribution visualization graph of the

data to highlight the distribution of features briefly. The features that were

finally selected through the feature verification process, accuracy, were derived

through a total of three models: RF, DeepNeural Network (DNN), and CNN

models.

4.1 Javascript malware

Through JavaScript malware analysis, strings and functions mainly used in

browser exploits and drive-by attacks were selected as features. As a represen-

tative example, the split function and the join function, which are methods

of recombining after dividing the string into pieces, were mainly used to

avoid string-based detection. Additionally, the escape function that converts

a string into ASCII code and the eval function that calculates and executes

Springer Nature 2021 LATEX template

8 Article Title

the JavaScript code were confirmed to appear frequently. These functions are

used in malicious JavaScript for interpreting obfuscated sources.

Also, special characters used for obfuscation, such as exploit kits, were

selected as features. Examples of special characters include \x, $, +, *, and

|. Figure 7 shows the feature verification work for feature ‘\x,’ and feature

visualization was performed through the stripplot function.

Fig. 7 ‘\x’ feature validation graph

Label 0 refers to a benign dataset, label 1 refers to a malicious dataset, and

it can be seen that the feature ‘\x’ frequently appears at a higher rate in the

malicious dataset. Therefore, it is considered a suitable feature for detecting

JavaScript malware.

Figure 8 shows ADODB.Stream, which is commonly used in JavaScript

malware, selected as a feature and verified. Through this, it can be confirmed

that the feature ‘ADODB.Stream’ is a distinct feature used exclusively in

malicious datasets.

Table 2 Javascript malware final feature list

\\x 0x $ +

% [
 |

* ∼ ˆ @

toString Sleep iframe http://

onload unonload indexOf charAt

WScript Shell Script /.

eval(escape(join(push(

split(function var max line

swf exe gif display

ActiveXObject ADODB.Stream

After analyzing benign and malicious scripts, features were extracted, and

finally, a total of 38 features were selected through feature verification, as

shown in Table 2.

Springer Nature 2021 LATEX template

Fig. 8 ‘ADODB.Stream’ feature validation graph

Article Title 9

4.2 Phishing attacks

The features of phishing attacks were extracted by analyzing the URL and

source code of the phishing site and comparing it with the benign dataset. As

a result of identifying the features of the URL and the parts where malicious

actions occur frequently in the source code, several features were discovered.

Figure 9 and Figure 10 display a portion of the collected benign URL

dataset and the URL dataset of phishing sites. As a representative feature, it

can be observed that phishing site URLs are, on average, longer than those of

benign sites, and special characters appear frequently. Additionally, many cases

were found where “//” was inserted in the URL path to redirect to another

site, and due to the prevalence of obfuscated URLs, URL entropy was selected

as a feature to determine obfuscation. By examining the domain registration

period of phishing sites through Whois, it was confirmed that the majority of

phishing sites were active for less than one year. Thus, URL-related features

were extracted based on these characteristics.

Fig. 9 Benign URL dataset of phishing site

Springer Nature 2021 LATEX template

10 Article Title

Fig. 10 Malicious URL dataset of phishing site

The process of extracting source code-related features is as follows. In the

source code of the phishing site, it was observed that external domains were

entered in the href attribute value of the link tag. Additionally, the action

attribute value of the form tag or website was disconnected and empty. Fur-

thermore, there were numerous cases where external domains were present in

the favicon path or script tag link.

Figure 11 displays a portion of the source code from the phishing site

‘http://it-friedli.ch/administrator/components/Login.htm’. Unlike the benign

source code, it can be observed that an external domain is used as the href

attribute value.

Fig. 11 Example of malicious source code(external domain)

Additionally, there are many cases where the website is not linked through

characters such as ‘javascript:void(0)’, ‘#’, or ‘about:blank’ in the href

attribute value, as shown in Fig. 12.

Fig. 12 Example of malicious source code (empty)

Features were selected through the analysis of URLs and source code, and

based on this, feature verification was performed using feature importances.

This can be seen in Figure 13. The graph indicates that the features ‘https’
and ‘entropy’ carry the most weight. As a result, a total of 23 features were

extracted, as shown in Table 3.

http://it-friedli.ch/administrator/components/Login.htm

Springer Nature 2021 LATEX template

Fig. 13 Phishing attacks feature importances

Table 3 Phishing attacks final feature list

Article Title 11

https url hex url len url short

url special url dot url entropy php url

file url IP url webhost whois

link redirect link out action out favi out

script out domain in source fromCharCode

split join escape eval

4.3 Script-based web attacks

In the case of script-based web attacks, features can be classified into two

categories. The first category consists of simple strings such as ‘alert’ and

‘prompt’, while the second category involves combinations of strings. In the

combined form, tags and JavaScript strings with a high probability of attack

coexist in the source code. Another case is when event handlers, alerts, ‘doc-

ument.cookie’, etc., are used together. Additionally, when a tag or a single

string is used, features were extracted for mixed case or an odd number of

quotation marks.

The features extracted through the aforementioned process were verified

using the feature importances of the RF model, as shown in Figure 14.

It can be observed that the features ‘alerts’ and ‘xss’ carry the most weight

in script-based web attacks. Consequently, a total of 33 features were ulti-

mately selected, as shown in Table 4, and the likelihood of encountering these

features in benign data is very low.

5 Experimental Results

In this experiment, three algorithms, RF, DNN, and CNN, were used for learn-

ing. Firstly, the DNN constructed a neural network with two hidden layers of

Springer Nature 2021 LATEX template

12 Article Title

Fig. 14 Script-based web attacks feature importances

Table 4 Script-based web attacks final feature list

alert prompt ‘ odd “ odd

onErrOr <ScRipt domain xss

<ifame/on <svg/onload src+alert % alert

on*+alert on*+prompt on*+location on*+cookie

<img+alert <img+prompt <img+cookie <img+on+&#

<img+javascript <input+on+href

javascript+alert string.fromCharCode() eval

confirm Tab \x &

* ‘ []

size 14 and 7, and used a rectified linear unit (ReLU) as the activation function.

Secondly, CNN constructed a neural network with two convolutional layers of

size 64 and 32, and two hidden layers of size 32 and 16. ReLU was also used as

an activation function. Additionally, a dropout layer was added between each

layer to prevent overfitting in both DNN and CNN. For training, adam was

used as the optimizer, and binary crossentropy was used as the loss function.

CNN and DNN were implemented using the Keras and TensorFlow libraries.

Thirdly, RF was set to 50 trees and implemented using the scikit-learn library.

5.1 Model accuracy

Based on the previously collected data and features, three models were cre-

ated for each attack: RF, DNN, and CNN. The first attack model, JavaScript

malware, achieved high accuracy rates of 99.99%, 99.80%, and 99.83% for RF,

DNN, and CNN, respectively, using 71,471 data samples and 38 features. The

second attack model, Phishing attacks, yielded accuracy rates of 95.11% (RF),

93.71% (DNN), and 92.72% (CNN) with 31,830 data samples and 23 features.

Lastly, the Script-based web attacks achieved accuracy rates of 94.77% (RF),

92.53% (DNN), and 92.38% (CNN) based on 61,731 data samples and 33

features.

Springer Nature 2021 LATEX template

Article Title 13

Consequently, the JavaScript malware models consistently demonstrated

high accuracy rates exceeding 99% across all three models, while the Phishing

attacks model achieved 95.11% accuracy, with the RF model exhibiting the

highest accuracy, as shown in Table 5. Similarly, the Script-based web attacks

model also exhibited the highest accuracy with the RF model achieving 94.77%

accuracy.

Table 5 Accuracy, Precision, and Recall of three attack type

JS malware Phishing Script

Number of Data 71,471 31,830 61,731

Number of Features 38 23 33

RF Accuracy 99.99% 95.11% 94.77%

DNN Accuracy 99.80% 93.71% 92.53%

CNN Accuracy 99.83% 92.72% 92.38%

Precision 99.98% 98.51% 96.61%

Recall 99.88% 90.37% 88.06%

5.2 Model performance analysis

In all three models of JavaScript malware, phishing attacks, and Script-based

web attacks, RF exhibited the highest accuracy. Based on the accuracy results

of the three attack types, a performance analysis of the RF model for each

attack was conducted using the confusion matrix.

The confusion matrix of JavaScript malware is depicted in Figure 15. It

revealed a total of 2 false positives and 15 false negatives, indicating a precision

of 99.98% and a recall of 99.88% for the model.

Fig. 15 JavaScript malware confusion matrix

The confusion matrix of Phishing attacks is depicted in Figure 16, revealing

655 false negatives and 93 false positives. Additionally, it can be observed that

the precision of the model is 98.51% and the recall is 90.37%.

Fig. 16 Phishing attacks confusion matrix

Springer Nature 2021 LATEX template

14 Article Title

In the last attack model, Script-based web attacks, a total of 1,593 false

negatives and 412 false positives were identified. As depicted in Figure 17, the

Precision and Recall of the model are 96.61% and 88.06%, respectively.

Fig. 17 Script-based web attacks confusion matrix

6 Model application

We developed a ‘Safe Browsing’ Chrome extension that detects three attack

models: JavaScript malware, phishing attacks, and script-based attacks, using

our own data collection method, feature extraction, and verification. We uti-

lized the RF model, which achieved a detection rate of over 94% for all three

attack models, in the development of the Chrome extension [25].

The process of ‘Safe Browsing’ is illustrated in Figure 18. Since JavaScript

malware, phishing attacks, and script-based web attacks are all client-side web

attacks, ‘Safe Browsing’ operates on the client-side rather than the server-side.

Fig. 18 ‘Safe Browsing’ process

When a client sends a request to the server through a web browser, the

requested website is checked for safety before the server sends a response. The

URL and source code of the requested website undergo data preprocessing and

are then input into the pre-existing RF model. Based on this input, the RF

model determines whether an attack is detected. If a website has a malicious

probability of over 90%, it is classified as malicious and blocks users’ requests.

Websites with a malicious probability below 90% are classified as normal

and redirected to the server. The ‘Safe Browsing’ system’s server periodically

retrains the model to minimize false positives.

In addition to the percentage classification, the system offers the user an

option to perform a safety test for each attack type and provides the test

results. Among JavaScript malware, Phishing attacks, and Script-based web

Springer Nature 2021 LATEX template

Article Title 15

attacks, the user can selectively detect only the desired attack type through

the safety check. By notifying the user about the safety check result, the sys-

tem allows them to assess the malicious probability of the accessed website.

Furthermore, the system includes a whitelist function that enables users to

exempt specific websites from safety checks for the three attack types. Lastly, a

concise explanation of JavaScript malware, Phishing attacks, and Script-based

web attacks is presented to facilitate the understanding of feedback provided

by the program, thus promoting awareness about the importance of website

security among general users.

7 Conclusion

With the recent emergence of various bypass techniques for client-based web

attacks, existing pattern detection methods have limitations in defending

against these attacks. Furthermore, as attacks become more advanced, the

damage range expands, starting from the client PC. In response to these

evolving attacks, this study focuses on developing a client-based web attack

countermeasure using ML algorithms.

This paper presents a detection model for JavaScript malicious code, phish-

ing attacks, and script-based web attacks, which are frequently encountered

during web attacks. The datasets used for training the models consist of 71,471

cases for JavaScript malware, 31,830 cases for phishing attacks, and 61,731

cases for script-based web attacks. Data preprocessing and feature extraction

were performed for each attack type, followed by validation of the models

using RF, DNN, and CNN algorithms. The RF algorithm achieved high accu-

racy rates of 99.99% for JavaScript malware, 95.11% for phishing attacks,

and 94.77% for script-based web attacks. Based on this level of accuracy, we

propose utilizing the RF algorithm as part of our approach.

To the best of our knowledge, this work represents the first study to apply a

ML algorithm to counter client-based web attacks at the client end. In addition

to calculating accuracy, we also consider precision and recall. Furthermore, we

have developed a Chrome extension that directly applies the proven RF model

in the browser to enhance user security.

Declarations

Ethical Approval. This article does not contain any studies with human

participants or animals performed by any of the authors.

Competing interests. The authors have no competing interests to declare

that are relevant to the content of this article.

Authors’ contributions. All authors contributed to the study conception

and design. Material preparation, data collection and analysis were performed

by Jiwon Hong, Hyeongmin Kim, Suhyeon Oh, Yerin Im, Hyeonseong

Jeong, Hyunmin Kim and Kyounggon Kim. The first draft of the

manuscript was written by Jiwon Hong and Kyounggon Kim, and all

authors commented on previous versions of the manuscript. Review and

editing were performed by Kyounggon Kim.

Springer Nature 2021 LATEX template

16 Article Title

Funding. The authors did not receive funding from any organization for the

submitted work.

Availability of data and materials. The datasets generated during

and/or analyzed during the current study are available from the

corresponding author on reasonable request.

Acknowledgements. This work was supported as part of the Next Gener-

ation Security Leader Training Program (Best of the Best) funded by Korea

Information Technology Research Institute (KITRI).

References

[1] Kim, G.-H.: Implementation and design of proxy system for web vul-

nerability analysis. The Journal of the Korea institute of electronic

communication sciences 9(9), 1011–1018 (2014)

[2] Schütt, K., Kloft, M., Bikadorov, A., Rieck, K.: Early detection of

malicious behavior in javascript code. In: Proceedings of the 5th ACM

Workshop on Security and Artificial Intelligence, pp. 15–24 (2012)

[3] Pan, Y., Sun, F., Teng, Z., White, J., Schmidt, D.C., Staples, J., Krause,

L.: Detecting web attacks with end-to-end deep learning. Journal of

Internet Services and Applications 10(1), 1–22 (2019)

[4] Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and preven-

tion of drive-by-download attacks. In: Proceedings of the 26th Annual

Computer Security Applications Conference, pp. 31–39 (2010)

[5] Kim, H.Y., Kim, J.H., Oh, H.K., Lee, B.J., Mun, S.W., Shin, J.H., Kim,

K.: Dapp: automatic detection and analysis of prototype pollution vulner-

ability in node. js modules. International Journal of Information Security

21(1), 1–23 (2022)

[6] Yang, H.S., Yoo, S.J.: A study on secure model- b a s e d

virtualization for web application security. Convergence Security Journal

14(4), 27–32 (2014)

[7] Kim, K.-g.: State-Sponsored Hacker and Changes in hacking techniques.

NetSec-KR Seoul, Korea (2017)

[8] Kim, K., Alfouzan, F.A., Kim, H.: Cyber-attack scoring model based

on the offensive cybersecurity framework. Applied Sciences 11(16), 7738

(2021)

Springer Nature 2021 LATEX template

Article Title 17

[9] Lee, G., Shim, S., Cho, B., Kim, T., Kim, K.: Fileless cyberattacks:

Analysis and classification. ETRI Journal 43(2), 332–343 (2021)

[10] Sun, B., Akiyama, M., Yagi, T., Hatada, M., Mori, T.: Autoblg: Auto-

matic url blacklist generator using search space expansion and filters. In:

2015 IEEE Symposium on Computers and Communication (ISCC), pp.

625–631 (2015). IEEE

[11] Choi, Y., Kim, T., Choi, S., Lee, C.: Automatic detection for javascript

obfuscation attacks in web pages through string pattern analysis. In: Inter-

national Conference on Future Generation Information Technology, pp.

160–172 (2009). Springer

[12] Uddin, M., Rahman, A.A.: Dynamic multi- layer signature based intru-

sion detection system using mobile agents. arXiv preprint arXiv:1010.5036

(2010)

[13] Wei-Hong, W., Yin-Jun, L., Hui-Bing, C., Zhao-Lin, F.: A static malicious

javascript detection using svm. In: Proceedings of the 2nd International

Conference on Computer Science and Electronics Engineering, pp. 214–

217 (2013). Atlantis Press

[14] Kim, H., Kim, I., Kim, K.: Aibft: Artificial intelligence browser forensic

toolkit. Forensic Science International: Digital Investigation 36, 301091

(2021)

[15] Aldwairi, M., Hasan, M., Balbahaith, Z.: Detection of drive-by download

attacks using machine learning approach. In: Cognitive Analytics: Con-

cepts, Methodologies, Tools, and Applications, pp. 1598–1611. IGI Global,

??? (2020)

[16] Kulkarni, A.D., Brown III, L.L., et al.: Phishing websites detection using

machine learning (2019)

[17] Krishnaveni, S., Sathiyakumari, K.: Multiclass classification of xss web

page attack using machine learning techniques. International Journal of

Computer Applications 74(12), 36–40 (2013)

[18] Choi, H., Zhu, B.B., Lee, H.: Detecting malicious web links and identifying

their attack types. WebApps 11(11), 218 (2011)

[19] Saxe, J., Harang, R., Wild, C., Sanders, H.: A deep learning approach to

fast, format-agnostic detection of malicious web content. In: 2018 IEEE

Security and Privacy Workshops (SPW), pp. 8–14 (2018). IEEE

[20] Corona, I., Giacinto, G.: Detection of server-side web attacks. In: Pro-

ceedings of the First Workshop on Applications of Pattern Analysis, pp.

Springer Nature 2021 LATEX template

18 Article Title

160–166 (2010). PMLR

[21] Zhang, J., Hu, H., Huo, S.: A browser-based cross site request forgery

detection model. In: Journal of Physics: Conference Series, vol. 1738, p.

012073 (2021). IOP Publishing

[22] Amazon: “Alexa the Top 500 Sites on the Web.” Accessed Nov. 26, 2020.

https://www.alexa.com/topsites

[23] HynekPetrak github. Accessed Oct. 27, 2020. https://github.com/

HynekPetrak/javascript-malware-collection

[24] OpenDNS: “anti-phishing Site.” Accessed Jan. 27, 2021. https://www.

phishtank.com/

[25] oku00737: Safe Browsing. Seoul, Republic of Korea (2020.

[Online].). https://chrome.google.com/webstore/detail/safe-browsing/

nlabjhdjaeiajfgkpafhmdhnfeckpeol

https://www.alexa.com/topsites
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/HynekPetrak/javascript-malware-collection
https://www.phishtank.com/
https://www.phishtank.com/
https://chrome.google.com/webstore/detail/safe-browsing/nlabjhdjaeiajfgkpafhmdhnfeckpeol
https://chrome.google.com/webstore/detail/safe-browsing/nlabjhdjaeiajfgkpafhmdhnfeckpeol

