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Metastability is ubiquitous in nature and is observed through the crossing of an energy

barrier toward a configuration of lower energy as, for example, in chemical processes [1] or

electron field ionization [2]. In classical many-body systems, metastability naturally emerges

in the presence of a first-order phase transition and finds a prototypical example in super-

cooled vapour. In the last decades, the extension to quantum field theory and quantum

many-body systems has attracted significant interest in the context of statistical physics

[3, 4], protein folding [5, 6], and cosmology [7–9], where thermal and quantum fluctua-

tions are expected to trigger the transition from the metastable state (false vacuum) to the

ground state (real vacuum) via the probabilistic nucleation of spatially localized bubbles

[10, 11]. However, the long-standing theoretical progress in estimating the relaxation rate

of the metastable field via bubble nucleation has not yet found a counterpart in terms of

experimental observations. Here we experimentally observe and characterize bubble nucle-

ation in isolated and coherently-coupled atomic superfluids, and support our observations

with numerical simulations. The agreement between our results and a novel analytic formula

based on instanton theory confirms the quantum-field character of the observed decay, and

promotes coherently-coupled atomic superfluids as emulators of out-of-equilibrium quantum

field phenomena.

A supercooled gas is a classic example of a metastable state which exists just across a first

order phase transition. The passage to the ground state (the liquid phase) is mediated by reso-

nant bubble nucleation when the energy gain provided by the liquid bulk is compensated by the

cost of the surface tension. This energy balance leads to a critical bubble size and a stochastic
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formation of the bubble typically occurs around nucleation spots given by impurities in the gas or

imperfections at the container. The extension of this idea to a quantum many-body or a quantum

field system has attracted extensive attention in a wide range of scenarios and length scales, from

the understanding of early universe [7–9] to the characterization of spin chains [3, 4]. In all these

models, the metastable state at the origin of the bubble nucleation, is identified as “false vacuum”

and the role of surface tension is taken by a genuinely quantum term. In the purest form, the

false vacuum decay into the ground state would take place through quantum vacuum fluctuations

[10, 11] (similarly to impurities in the classical case). However, as for example in the early universe,

the tunnelling is equally likely to be boosted by thermal fluctuations, and the process would be of

the type styled “vacuum decay at finite temperature” [12] (see [13, 14] for a review).

In the cosmological case, the energy scales are well above any that are accessible to experi-

ments, and the phenomenon of false vacuum decay remains one of the most important yet untested

processes considered in theoretical high energy physics. Recently, the extreme flexibility of neutral

and charged atoms tabletop experiments and the advances of classical and quantum computer

algorithms have paved the way for the proposal of experimental environments [15–22] and virtual

simulators [23, 24]. Up to now only numerical results have been achieved and the experimental

observation of an analogue to false vacuum decay would therefore be of high significance.

In tabletop experiments, the observation of bubble nucleation requires several ingredients which

are difficult to arrange simultaneously. First, a mean-field interaction-induced energy landscape

composed of an asymmetric double well represents the minimal requirement for the decay from the

metastable state to the absolute ground state via macroscopic tunneling across the energy barrier,

followed by relaxation; see sketch in Fig. 1. Second, unlike in the ordinary quantum tunneling of

a single particle [1, 25, 26], it is an effective field describing the system that changes state. Third,

the time resolution of the experiment should cover many orders of magnitude to allow for the

investigation of the predicted exponential time-dependence on the tuning parameters. This must

be associated to a high stability and accuracy of the tuning parameters. An extended ferromagnetic

superfluid [27] possesses the ideal properties to act as a field simulator, in particular its first order

phase transition character, the long range coherence and the flexibility to control its experimental

parameters within a stable and isolated environment. In tight analogy with supercooling, in an

extended quantum system the presence of a spatial region with different magnetization to the bulk

carries a positive kinetic energy due to the winding of the field at the interface, see Fig. 1.

In this letter, we present the experimental observation of bubble formation via false vacuum

decay in a quantum system. We observe that the bubble nucleation time scales exponentially with
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FIG. 1. Mean-field energy and bubble formation. The cloud is initially prepared with all the atoms in |↑⟩
(A). While the single |↓⟩ spin state is energetically lower (E↓ < E↑) in the center of the cloud, in the low

density tails the situation is opposite. The interface has a positive energy which adds up to the double

minimum energy landscape emerging from the ferromagnetic interaction. Macroscopic quantum tunneling

can take place resonantly to the bubble state (B) which has a |↓⟩ bubble in the center, whose core energy gain

compensates for the interface energy cost. The barrier crossing can be triggered by quantum fluctuations in

the zero-temperature case (dashed arrow) or by thermal fluctuations at finite temperature (empty arrow).

After the tunneling process, in the presence of dissipation, the bubble increases in size to reach the ground

state (C), without coming back to (A).

an experimental parameter that is connected to the energy barrier properties. Theoretical and

numerical simulations support our observations and allow us to confirm the quantum field origin

of the decay and its thermal activation.

The experimental platform is composed of a bosonic gas of 23Na atoms, optically trapped and

cooled below the condensation temperature. The gas is initially prepared in the internal state

|F,mF ⟩ = |1,−1⟩ =|↓⟩, where F is the total angular momentum and mF its projection on the

quantization axis. A microwave radiation with amplitude ΩR coherently couples the |↓⟩ state

to |2,−2⟩ =|↑⟩. The relevant scattering lengths for such a two-level system are a↓↓ = 54.5 a0,

a↑↑ = 64.3 a0, and a↓↑ = 54.5 a0, and lead to the condition ∆a = (a↑↑ + a↓↓)/2− a↓↑ < 0, i.e., to a

system with a ferromagnetic ground state [27].

The trapping potential is axially symmetric and harmonic in all three directions, but strongly

asymmetric (axial and radial trapping frequencies ωx/2π = 20Hz and ωρ/2π = 2kHz), producing

an elongated system with inhomogeneous density and spatial size given by the longitudinal and
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FIG. 2. Protocols and bubble observation. a) Experimental protocol. Ellipses illustrate the cloud magne-

tization at different t and the two sketches show the energy landscape for positive (up) and negative (down)

δ. b) Collection of integrated magnetization profiles Z(x) after different waiting times t. For each value of t,

7 different realizations are shown. c) Magnetization profiles for the realizations marked with arrows in panel

(b). d) Measured probability P (empty circles) to observe a shot with a bubble at fixed time is shown. The

probability is well fitted to an exponential curve (grey continuous line) until it saturates to 1.

radial Thomas-Fermi radius Rx = 200µm and Rρ = 2.5µm. At the end of each experimental

realization, we image the two spin states independently and extract their density distributions.

The transverse confinement is tight enough to suppress the radial spin dynamics of the condensate.

We therefore integrate each image along the transverse direction and obtain the integrated 1D

density profiles n↑(x) and n↓(x), from which we extrac the profile of the relative magnetization

Z(x) = [n↑(x)− n↓(x)]/[n↑(x) + n↓(x)].

The coupled two-level system can be studied by separately treating the total density (n =

n↑ + n↓) and the spin (n↑ − n↓ = nZ) degrees of freedom. While the density is simply dominated

by a continuity equation, the spin degree of freedom is ruled by a magnetic mean-field Hamiltonian,

which shows a first-order phase transition in the central region of the cloud for ΩR < |κ|n, where
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κ ∝ ∆a is the relevant interaction parameter; see Methods.

The first-order phase transition originates from a symmetry breaking when the energy landscape

as a function of the magnetization Z goes from a single to a double minimum at ΩR < |κ|n =

2π × 1150Hz. At fixed ΩR, the experimentally tunable parameter is the detuning δ between the

two-level system and the coupling radiation. For small enough |δ|, the energy landscape E(Z)

is represented by an asymmetric double well, that turns symmetric for δ = 0. In particular, for

positive δ, the energy is minimized by positive values of Z, and viceversa The relevant parameter

for the bubble nucleation is the shape (height and width) of the energy barrier separating the two

wells that the system needs to overcome as a field, i.e., in a macroscopic manner. This depends on

δ, n and ΩR. When |δ| exceeds a critical value δc, the metastable well disappears [27]. Borrowing

the nomenclature from ferromagnetism, ±δc correspond to the edges of the hysteresis region and

their value depends both on ΩR and |κ|n.

Figure 2(a) illustrates the experimental protocol. We first transfer the whole system from |↓⟩
to |↑⟩ with a π pulse. While keeping ΩR constant, δ is linearly ramped down from δi/2π = 5.5 kHz

to a variable δf on a timescale between 20 and 60 ms. Since the ramp starts with δ ≫ ΩR, the

system follows the spin rotation remaining in the local ground state until δ < 0 when such a local

ground state becomes a metastable state; see inset in Fig. 2(a). Once δf is reached, the states are

independently imaged after a variable waiting time t.

If δf > 0, the whole system is and remains in the absolute ground state |↑⟩, whereas for

δf < 0, after a variable time, a macroscopic region in the central part of the system flips to |↓⟩,
generating a bubble; see examples in Fig. 2(b) and magnetization profiles in (c). On average

the bubble occurrence probability is larger if the waiting time is longer [see Fig. 2(b) and (d)].

For a quantitative analysis, at each t, we repeat the measurement up to 10 times in order to

investigate the statistical formation of bubbles. Note that, while in uniform systems the bubbles

would stochastically nucleate in random spatial positions, our nonuniform density profile of the

atomic sample strongly favors the nucleation at the center of the cloud, where δf is closest to δc.

A useful quantity to characterize the bubble nucleation in time is Ft = (1 + ⟨Z⟩t/⟨Z⟩t=0)/2,

which was used in Ref. [3] to compare an exact diagonalization approach in a zero-temperature spin

chain to instanton predictions. Here ⟨·⟩t stands for Z measured at time t and averaged over many

realizations. In Fig. 3(a) and (b), we show the average magnetization ⟨Z⟩t profile as a function

of waiting time for two values of detuning. Since the bubble appears always in the center of the

system, to compute Ft, we extract the mean magnetization ⟨Z⟩t in the central 20-µm-wide region

(≈ Rx/10). The resulting Ft, plotted in panel (c), initially remains flat, and then it exponentially
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decays because of the bubble nucleation. Both features were also observed in Ref. [3] and the

understanding of the starting plateau is still an open question from the theoretical point of view. We

find that the measured Ft is well described by the empirical function (1− ϵ)/
√

1 + (et/τ − 1)2+ ϵ,

which is 1 for t = 0, scales as t2 for small t and is exponentially decaying to ϵ for large t. The two

fitting parameters are τ , that describes the characteristic timescale for the bubble formation, and

ϵ, that takes into account that the asymptotic magnetization Zt=∞ can be different from the one of

the ground state, ZTV (F = 0). Note that the timescale τ is related to the exponential decay, while

the empirical formula takes into account an initial plateau present in the averaged magnetisation

Ft. (in Methods we show that the plateau length and τ are strictly connected).

Numerical simulations based on 1D Gross-Pitaevskii equations, reported in Fig. 3(d) and (e),

qualitatively reproduce the experimental observations. In the numerics, classical noise is included

to simulate the effect of a finite temperature (more details can be found in Methods). Data in

Fig. 3(d) and (e) are obtained by averaging over 1000 different noisy realizations of the real-time

dynamics: the large statistics allows us to directly extract the exponential decay time τsim through

a linear fit of ln(Ft).

In Fig. 3(g), we report six experimental values of τ obtained for ΩR = 2π×300 Hz, plotted as a

function of the distance from the critical detuning, (δf − δc)/|κ|n. The results show an exponential

dependence on the tuning parameter over two orders of magnitude, from a few to hundreds of ms.

Such a sensitivity to a parameter is remarkable for ultracold atoms experiments. In particular, the

experimental observation of the quasi-exponential dependence of τ with respect to δf in an interval

of the order of 100Hz critically relies on the magnetic field stability better than a few tens of µG

[28].

The values of τsim for the simulations [light symbols in Fig. 3(g)] qualitatively show the same

behaviour of the experimental data. The agreement becomes even quantitative [dark symbols in

Fig. 3(g)], by using a rescaling of |κ|n and a small shift of δ. The need for such a rescaling was

demonstrated in Ref. [27], as a consequence of dimensionality, noise and non complete adiabaticity

of the preparation protocol. In Fig. 4, we compare experimental τ and rescaled numerical τsim, for

four different values of ΩR, by using the same rescaling for all four panels.

Our observations are consistent with the scenario of a condensate spinor field initially in a

ferromagnetic metastable state, which decays via macroscopic tunneling to bubbles (domains) of

the ferromagnetic ground state. The escape of a quantum field from the false vacuum, occurring

via macroscopic tunneling, and the bubble formation finds a suitable description in terms of an

instanton, or critical solution to the field equations in imaginary time [10–12]. Such a theory
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FIG. 3. Measurement of the evolution of Z(x) in time after the ramp on δ for ΩR/2π = 300Hz, for

δf/ΩR = −1.70 in (a) and −1.79 in (b). c) Value of Ft evaluated in the 20 µm central region of the

cloud are fitted by the empirical expression reported in the text (squares for data in (a) and pentagons

for (b)). Error bars are the standard deviation over up to ten repetitions. d-e) Numerical simulations for

δf/ΩR = −1.52 in (d) and −1.585 in (e). Value of Ft for the simulations (triangles for data in (d) and

stars for (e)). The red dashed lined are linear fits in the exponentially decaying part. g) Experimental τ

and numerical τsim timescale of the bubble formation as a function of (δf − δc)/|κ|n. Error bars include

statistical uncertainties on the fit and uncertainty on the δf − δc coming from magnetic field stability and

calibration. Numerical timescale of the bubble formation τsim is shown before (light symbols) and after

(dark symbol) rescaling. The empty triangle is an experimental point taken with a preparation ramp twice

slower than the others, to verify the impact on the nucleation time resulting from a residual non-adiabaticity

in the preparation of the sample.

provides a threshold energy scale, below (above) which quantum (thermal) fluctuations dominate:

zero-T quantum tunneling is expected to be dominant when T is below the critical temperature

T ∗ = ℏ|κ|n/kB. Considering the peak density in our system, we estimate T ∗ ≃ 50 nK. Although

the temperature of our condensates is T = 1.5µK ≫ T ∗, given the harmonic confinement and the
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FIG. 4. Decay time τ and τsim and instanton theory. Experimental τ and simulations τsim are obtained

as explained in the text for ΩR/2π = 300, 400, 600 and 800 Hz. A rescaling common to all ΩR is applied

to the horizontal axes of the simulation; see text. Dashed and full curves are fits of the experimental and

simulation data according to the instanton formula. Full markers stand for simulation results while empty

markers for experimental data. Error bars include statistical uncertainties on the fit and uncertainty on the

δf due to on the magnetic field stability.

exchange interaction which pushes the thermal component away from the condensate, we estimate

an effective local temperature of about 250 nK in the condensate region which is still larger than

T ∗ in the region where the bubbles appear. Therefore we expect the macroscopic tunneling to be

in the thermally activated regime.

Within the instanton approach, the bubble nucleation probability has the characteristic

timescale τ , which has an exponential dependence A(Ec/kBT )
−1/2eEc/kBT . Ec(δ, κn,ΩR) is the

energy of the critical solution and strongly depends on the shape of the many-body potential and

in particular on the barrier height (Fig. 1). The pre-factor A depends on fluctuations about the

critical solution, but there are very few models for which this factor is calculable, at present. We

therefore regard the pre-factor A as a fitting parameter in the following analysis. We can estimate

Ec, and provide an analytical expression in the limit of vanishing metastable well (small δf − δc),

by considering a homogeneous 1D system. The potential for the magnetization field Z can be
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written as (see, e.g., Ref.[27] )

V (Z) = κnZ2 − 2Ω(1− Z2)1/2 − 2δfZ (1)

and the instanton energy reads

Ec

ℏ|κ|n =

√

ℏn

2m|κ|

∫ ZFV

ZTP

[

V (Z)− V (ZFV )

|κ|n(1− Z2)

]1/2

dZ, (2)

where ZTP is the classical turning point (in the inverted potential V ) and ZF (alse)V (acuum) the value

of the magnetization of the metastable state. Most of our data are taken in a regime where the

barrier is much smaller than the depth of the ground state well. In this limiting case the instanton

energy reads

Ec

ℏ|κ|n ∝
√

ℏn

2m|κ|

(

δf − δc
|κ|n

)

5
4
(

ΩR

|κ|n

)

1
6
( |δc|
|κ|n

)−1
4
, (3)

where δc = κn[1− (Ω/(|κ|n))
2
3 ]

3
2 : see Methods. We compare the previous expression to the exper-

imental data and numerical simulations using a two-parameter fit ln τ = lnA + bÊc + ln(bÊc)/2,

where Êc =
√

2m|κ|/(ℏn)Ec/ℏ|κ|n is the rescaled energy. The results are shown in Fig. 4. Con-

sidering the approximations used to derive Eq. (3) – in particular the absence of the trapping

potential, no phase fluctuations and small barrier – the agreement is remarkable and the instanton

theory appears to capture the main dependence of the false vacuum decay rate on the microscopic

parameter δf which is responsible for the broken Z2 symmetry.

In this paper, we present solid evidence of the thermally-induced macroscopic tunneling of a

coherent quantum field, manifested by bubbles of true vacuum phase nucleating in a false vacuum

state. The true and false vacua are the local and global energy minimum of a ferromagnetic atomic

Bose-Einstein condensate, respectively. The experimental results clearly show an exponential de-

pendence of the decay rate on the microscopic parameters and the hysteric region width. Such a

dependence is successfully captured by numerical simulations and more remarkably by a simple

instanton theory based on a reduced energy functional for the magnetisation. Our platform paves

the way to explore the process of bubble formation and growth in intricate detail, and to build a

new bridge between low energy and high energy phenomena characterized by metastability within

a first order phase transition. In this spirit our work opens up new avenues in the understanding of

early universe, as well as ferromagnetic quantum phase transitions. The possibility of engineering

the barrier properties via injection of tailored noise and of deterministically seeding bubbles are

promising future directions for experimental investigations with focus on the role of dissipation,
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the existence of shortcut-to-adiabaticity [29, 30], the creation of entanglement, of domain wall con-

finement [31], and relativistic and non relativistic aspects of the bubble nucleation and dynamics.

Furthermore an experimental effort towards colder systems would allow us to reach the tunnel-

ing regime dominated by quantum fluctuations. A natural extension of the present work goes to

dimensionality larger than one, where the theoretical treatment is challenging.
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METHODS

I. FERROMAGNETISM IN ELONGATED MIXTURES

The ferromagnetic properties of atomic superfluid coupled mixtures are experimentally mea-

sured and discussed in [27]. Here we summarize the key ingredients which help understanding the

results presented in the main text of the article.

Our system is composed of two sodium hyperfine states |F,mF ⟩ = |2,−2⟩ ≡ |↑⟩ and |1,−1⟩ ≡
|↓⟩, where F is the total angular momentum and mF its projection. The two populations

n↑(x, y) and n↓(x, y) are independently measured by shadow imaging. Starting from the two

two-dimensional pictures of the cloud, we determine the relative magnetization Z(x) as Z(x) =

(n↑(x) − n↓(x))/n(x), where n↑,(↓)(x) =
∫

n↑,(↓)(x, y)dy and n(x) =
∫

(n↑(x, y) + n↓(x, y))dy are

the 1D integrated densities. The integration along y takes advantage of the suppressed radial

dynamics. In local density approximation (LDA), the energy per particle associated to the spin

channel of the mixture is

E(Z, ϕ) ∝ −δf
2
Z +

κn

2
Z2 − ΩR

√

1− Z2 cosϕ (4)

where the phase ϕ is the relative phase between |↑⟩ and |↓⟩. The detuning δf used in the text is

equal to δB + n∆ where δB is the experimental controllable detuning. The quantity κ and ∆ are

associated to the collisional proprieties of the mixture and are

∆ ≡ g↓↓ − g↑↑
2ℏ

< 0 (5)

κ ≡ g↓↓ + g↑↑
2ℏ

− g↓↑
ℏ

< 0 (6)

where g↓↓, g↑↑ and g↓↑ are the two intra species and the inter species coupling constants. Note that

n∆ derives from the |↑⟩ and |↓⟩ self interaction asymmetry.

In an elongated cloud having a parabolic Thomas Fermi density profile, the ferromagnetic phase

is located in the center of the cloud where the non liner term |κ|nZ2/2 is maximal. Under the

condition |κ|n < Ω, in fact, the energy per particle is characterized by a symmetric double minimum

structures a signature of the symmetry breaking typical of the ferromagnetic phase. At non zero

detuning, the symmetry of the two wells is broken. Thanks to the tuning knob δB, which is linearly

proportional to the applied magnetic field, one can change the relative energy difference between

the two energy minima, converting one or the other state into the absolute ground state or the

metastable state. The tails of the cloud remain in the paramagnetic regime, having smaller density,

and Z of the only energy minimum is unambiguously determined by δB.
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Due to the asymmetry between |↑⟩ and |↓⟩, there exists a range of values of δB where the sign of

the Z at the energy minima in the center (−) and at the tails (+) is opposite, but the system can

still maintain a homogeneous positively-magnetized profile being metastable in the center. When

the detuning is decreased below the critical value δc (see main text), the metastable minimum

disappears resulting in a unique steady magnetic profile with negative Z in the center and positive

Z in the tails.

While the spin energy profiles of Eq. (4) are useful to explain the presence of two minima sepa-

rated, this LDA representation only shows the LDA energy landscape per particle and not the total

energy of the system. For instance, the LDA energy profiles don’t include the contribution coming

from the interface between opposite Z, whose kinetic energy represents a further contribution to

the total energy barrier, as intended to be shown in Fig. 1 in the main text.

II. CALIBRATION AND ANALYSIS PROCEDURE

An important calibration concerns the determination of the critical detuning at which the double

well energy landscape is expected to disappear. We determine δc by performing the same protocols

used in [27] to measure the hysteresis width of the ferromagnetic regime. This consists in the same

ramp shown Fig. 2(a) of the main text, applied with a null waiting time.

The data used in the main text are obtained in the range of δ directly above the critical one.

Thanks to the appearing of the bubble in the center of the cloud, we first determine the presence

of the bubble by fixing a threshold Zbubble = 0.2. If the average magnetization in the central

40 pixels is below Zbubble, one bubble is counted. The total bubble counts at fixed waiting time

determines the probability P , as plotted in Fig. 2(c) of the main text. We verify that the choice of

the threshold Zbubble and the averaging area do not critically impact on the outcomes presented

here. Once the bubble is detected, the full magnetization profile is initially fitted by using a double

sigmoidal function,

A

[

arctan

(

x− xr
sr

)

− arctan

(

x− xl
sl

)]

(7)

where A is the amplitude and x(r),[l] and s(r),[l] are the (right) [left] centers and sigmas of the two

sigmoids. The positions x(l),[r] are then used as starting values for a second fitting routine that

independently analyses the left and right bubble interfaces. This second step is used to better

determine the exact positions of the interfaces without the effects of cloud asymmetry and offsets.

The obtained values x(l),[r] allow to determine the bubble size as σx = xr − xl
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III. DETERMINATION OF τ AND ALTERNATIVE τ50%

In the main text we explain how we determine the characteristic decay time τ by fitting Ft to

(1− ϵ)/
√

1 + (et/τ − 1)2 + ϵ. This formula allows us to extract τ even for experimental sequences

with limited statistics and it results to be robust against the initialisation of the fitting parameters.

To verify the solidity of our approach we also considered a different characteristic time τ50%

defined as the time at which the probability P to observe a bubble is 50%. This approach is a

valid alternative for measurements featuring a limited statistics. To determine τ50% we fit P with

the following function:

P (t) = Min[a1 ∗ (et/a2 − 1), 1] (8)

with a1 and a2 as free parameters. These two are then used to determine τ50% from

1

2
= a1 ∗ (et50%/a2 − 1) (9)

We check, within the statistical uncertainties, that the value of τ50% does not change by using

different fitting functions (linear, exponential with offsets in time and P ). Figure M1 shows that

τ and τ50% are compatible both for the experimental measurements and numerical simulations. In

particular, simulation results allow us to conclude that, while τ50% is expected to be influenced by

the delay time before the bubble decays, τ50% is still a good approximation of τ . This suggests

that the delay time and τ are related and further investigations are necessary to understand how.

In general, we conclude that the determination of τ used in the main text is solid. In particular,

one notes that the two methods rely on two very different observables, the mean magnetization

FIG. M1. τ vs τ50% for experimental (a) and numerical (b) results. The two quantity are compatible to

each other within error bars in experimental results and show only small deviation in simulation data. Color

code for the points is the same used in the main text and the blue line marks τ =τ50%.
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in the center, averaged over all experimental shots (τ), and the probabilistic presence of a bubble

(τ50%).

IV. NUMERICAL SIMULATIONS

The numerical results presented in the main text are based on one-dimensional Gross-Pitaevskii

simulations. The parameters are chosen to faithfully reproduce the experimental conditions: in

particular, the system trapped by a harmonic potential with frequency ω0 ≃ 2π×16 Hz, so that the

Thomas-Fermi radius is L ≃ 200µm; moreover, interactions are chosen to obtain |κ|n0 = |∆|n0 ≃
2π×1.1 kHz, n0 being the total density in the center of the cloud. The system is first prepared,

through imaginary-time evolution, in the ground state corresponding to δf = 2π×1 kHz, thus,

regardless of the value of ΩR, it is almost fully polarized in the | ↑⟩ state.

A white noise of amplitude equal to 3% of the central density is added on top of the ground

state: this corresponds to an injected energy of roughly ε/kB = 215 nK. We then let the system

evolve in real time, without changing any parameter and we observe that, after a transient, the

noise distribution becomes stationary; we interpret this result as thermalization of the mixture to

a temperature T ∝ ε. Under an ergodicity assumption, we can determine the dynamics of the

system by averaging over many repetitions of the same time-evolution, each one obtained starting

from a different noisy sample. To summarize, we perform mean-field simulations in which noise

plays the role of an effective temperature. Of course, these do not allow to investigate the role

of quantum fluctuations: however, since the estimated experimental temperature is much higher

than |κ|n0/kB ∼ 50nK, the dynamics is likely to be dominated by thermal noise and a comparison

with classical field simulations is justified.

The real-time dynamics after thermalization reproduces, once again, the experimental protocol:

a detuning ramp with speed ∼ 50 Hz/ms is applied in order to reach the false vacuum state

corresponding to some final δf < 0; the magnetization of the system is then monitored for a

waiting time in the range [10, 300]ms, depending on the simulation parameters.

In order to extract the characteristic decay time τ and τ50, we compute:

F (t) =
⟨Z(x ∼ 0, t)⟩ − ZTV

ZFV − ZTV
(10)

where ⟨Z(x ∼ 0, t)⟩ is the statistical average of magnetization over the central 10 µm of the cloud. If

the number of samples is sufficiently high (we use 1000), this function represents the probability of

not observing a bubble at time t. Therefore, τ50 is computed, by definition, by solving F (τ50) = 0.5.
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The FVD rates are obtained instead via a linear fit of logF (t): in most cases the predicted

exponential behaviour is found within a time interval corresponding to F (t) ∈ [0.3, 0.7]; small

adjustments of this window are necessary for the simulations associated to the smallest and longest

tunnelling times.

V. ISTANTONS

The theoretical description of vacuum decay is non-perturbative and based on instanton solu-

tions to the equations of motion using an imaginary time coordinate. The classical field theory

for this system reduces down to a field theory for the magnetisation Z. For thermal instantons,

bubbles nucleate at a rate (see e.g.[14])

Γ = 1/τ = A (βEc)
j/2 e−βEc . (11)

where β = 1/(kBT ) and Ec is the energy of the instanton. The factor A depends on fluctuations

about the instanton and j is the number of translational symmetries. There should be one zero

mode j = 1 if there is translational invariance in the system. (The bubbles in the experiment

always nucleate near the centre, so translational invariance is suspect. Fortunately, the power law

dependence has only a small effect on the results). There are a very limited number of models for

which the pre-factor A is calculable at present, and we will therefore regard A as a fitting parameter

in the subsequent analysis. Note that the non-perturbative approach is valid when the exponent is

larger than one, i.e. for temperatures kBT < Ec. At even lower temperatures, vacuum fluctuations

become the dominant seeding mechanism. In our system this happens for kBT < ℏ|κ|n ∼ 50 nK,

and the resulting vacuum decay rate would be far less than the rate seen in the experiment.

The energy for a thermal instanton includes a gradient contribution

Ec =
ℏn

4

∫ {

ℏ

2m

(∇Z)2

1− Z2
+ V

}

dx, (12)

where the potential

V = κnZ2 − 2ΩR(1− Z2)1/2 − 2δfZ. (13)

We can scale out the dependence on the density so that Êc = Ec/(ℏn
2ξ|κ|) for the length scale

ξ = ℏ/(m|κ|n)1/2. For thermal bubbles in one dimension, the instanton calculation is equivalent

to a WKB approximation to the action, with the familiar WKB form

Êc =
1

2

∫ ZFV

ZTP

(

2(V − VFV )

|κ|n

)1/2 dZ√
1− Z2

, (14)
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TABLE I. Fitting coefficients for the thermal instanton model of vacuum decay with j = 1. The fit is limited

to (δf − δc)/ΩR > 0.05 to ensure that bÊc > 1.

ΩR/2π aexp(σa) bexp(σb) asim(σa) bsim(σb)

300 0.54(0.09) 56.5(1.9) 0.93(0.06) 55.0(1.9)

400 0.83(0.42) 44.4(6.1) 0.70(0.07) 41.3(0.87)

600 0.02(0.43) 30.3(3.7) 0.01(0.14) 29.8(1.3)

800 0.30(0.75) 25.8(5.7) -0.44(0.11) 25.3(0.9)

The integral extends from the turning point ZTP to the false vacuum ZFV . The extra factor

(1− Z2)−1/2 is due to the form of the derivative terms in the energy (12).

The experimental data has been used to determine the best parameters in a fit for ln τ =

lnA+ bÊc − ln(bÊc)/2. The results are given in Table I. The condensate number density is given

by n = (kBT/ℏ|κ|n)b/ξ. For the temperature T = 1 µK, the values of n at lower Ω are around

half of the value expected for the system, but not unreasonable given the limitations of the one

dimensional treatment. If the bubble only fills a fraction of the cross-section, it effectively feels

only part of the integrated density.

In the case of small potential barriers, the potential can be expanded to cubic order about an

inflection point at Zc and δ = δc, where

δc = κn(1− Z3
c ), Zc =



1−
(

ΩR

|κ|n

)

2
3





1
2

. (15)

The integral in this case can be performed exactly,

Êc ≈ 1.77

(

δf − δc
|κ|n

)

5
4
(

ΩR

|κ|n

)

1
6
( |δc|
|κ|n

)−1
4

(16)

To verify that the instanton prediction and simulation are consistent, we repeat numerical

simulations at fixed δf and variable ε. We observe that the extracted τ results proportional to e(1/ε)

and this well justifies the association between the injected noise parameter ε and the temperature

T .

[1] H. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica

7, 284 (1940).

https://doi.org/https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/https://doi.org/10.1016/S0031-8914(40)90098-2


17

[2] K. C. Kulander, K. J. Schafer, and J. L. Krause, Atoms in Intense Laser Fields (Academic Press, New

York, 1992) p. 247.

[3] G. Lagnese, F. M. Surace, M. Kormos, and P. Calabrese, False vacuum decay in quantum spin chains,

Phys. Rev. B 104, L201106 (2021).

[4] A. Milsted, J. Liu, J. Preskill, and G. Vidal, Collisions of false-vacuum bubble walls in a quantum spin

chain, PRX Quantum 3, 020316 (2022).

[5] A. J. Baldwin, T. P. J. Knowles, G. G. Tartaglia, A. W. Fitzpatrick, G. L. Devlin, S. L. Shammas,

C. A. Waudby, M. F. Mossuto, S. Meehan, S. L. Gras, J. Christodoulou, S. J. Anthony-Cahill, P. D.

Barker, M. Vendruscolo, and C. M. Dobson, Metastability of native proteins and the phenomenon of

amyloid formation, Journal of the American Chemical Society 133, 14160 (2011), pMID: 21650202,

https://doi.org/10.1021/ja2017703.

[6] D. Ghosh and A. Ranjan, The metastable states of protein, Protein Science 29, 1559 (2020).

[7] C. Hogan, Gravitational radiation from cosmological phase transitions, Monthly Notices of the Royal

Astronomical Society 218, 629 (1986).

[8] M. E. Shaposhnikov, Baryon Asymmetry of the Universe in Standard Electroweak Theory, Nucl. Phys.

B 287, 757 (1987).

[9] S. M. Feeney, M. C. Johnson, D. J. Mortlock, and H. V. Peiris, First observational tests of eternal

inflation: Analysis methods and wmap 7-year results, Phys. Rev. D 84, 043507 (2011), arXiv:1012.3667

[astro-ph.CO].

[10] C. G. Callan and S. R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys.

Rev. D 16, 1762 (1977).

[11] S. R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15, 2929 (1977),

[Erratum: Phys. Rev. D 16, 1248 (1977)].

[12] A. D. Linde, Decay of the False Vacuum at Finite Temperature, Nucl. Phys. B 216, 421 (1983),

[Erratum: Nucl.Phys.B 223, 544 (1983)].

[13] A. Mazumdar and G. White, Review of cosmic phase transitions: their significance and experimental

signatures, Rept. Prog. Phys. 82, 076901 (2019), arXiv:1811.01948 [hep-ph].
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