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Modular structure and function are ubiquitous in biology, from the scale of ecosystems to the
organization of animal bodies and brains. However, the mechanisms of modularity emergence over
development remain unclear. Here we introduce the principle of peak selection, a process in which
two local interactions self-organize discontinuous module boundaries from a smooth global gradient,
unifying the positional hypothesis and the Turing pattern formation hypothesis for morphogenesis.
Applied to the brain’s grid cell networks, peak selection results in the spontaneous emergence of
functionally distinct modules with discretely spaced spatial periods. Applied to ecological systems,
a generalization of the process results in discrete systems-level niches. The dynamics exhibits emer-
gent self-scaling to variations in system size and “topological robustness” [1] that renders module
emergence and module properties insensitive to most parameters. Peak selection substantially ame-
liorates the fine-tuning requirement of continuous attractor dynamics even within single modules. It
makes a detail-independent prediction that grid module period ratios should approximate adjacent
integer ratios, furnishing the most accurate match to data to date, with additional predictions to
connect physiology, connectomics, and transcriptomics data. In sum, our results indicate that local
competitive interactions combined with low-information global gradients can lead to robust global
module emergence.

INTRODUCTION10

Modular structures are ubiquitous in natural systems, from ecological niches to human communities, and from body11

structures to circuits in the brain. This is probably so because they are robust to localized perturbations [2, 3], faster12

to adapt if the world requires sparse or modular changes [4], and permit flexible, high-capacity computation through13

compositionality [5–10]. In this sense, modularity is the crux of biological organization.14

The prevalence of modularity raises critical questions about its evolutionary and developmental origins: From an15

evolutionary perspective, modular solutions to a given problem form a vanishingly small subset of all possible solutions,16

raising the question of how and why they are selected. From the perspective of development, which we take here, the17

question is how modular structures form, and whether module features such as size, number, and boundary locations18

need to be genetically instructed or spontaneously emerge through unfolding physical processes such as symmetry19

breaking.20

One hypothesis for the developmental emergence of structure is the positional information hypothesis espoused21

by Lewis Wolpert: Gene expression generates spatial morphogen concentration gradients, and different downstream22

genes become activated by thresholding the morphogen concentration [11, 12]. In line with this hypothesis, body23

segmentation in Drosophila [13], Fig. 1a-c, is controlled by a family of genes that become activated at different24

concentrations of maternally deposited Bicoid RNA. This gradient precedes and causally guides spatial bands of25

gene expression whose boundaries demarcate segment boundaries. A distinct hypothesis by Alan Turing is the idea of26

spontaneous pattern emergence from local competitive interactions, minimizing the use of detailed genetic information27

[12, 14]. Supporting this hypothesis is evidence of digit formation via pattern formation in hand morphogenesis [15].28

A clear example of Turing pattern formation comes from the grid cell system in the medial entorhinal cortex (MEC)29

of mammalian brains, Fig. 1d-f. MEC neurons form a triangular grid-like pattern of activity as a function of space30

when animals navigate. Underlying these spatially periodic responses are periodic activity patterns in the cortex31

[16, 17]. Continuous attractor neural network (CAN) models of grid cells are based on Turing patterning [18] and32
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make a number of stringent predictions that are supported by evidence from many studies [19–23]. However, it is33

unclear whether and how these CAN models for single grid cell modules translate to the formation of multiple discrete34

modules of grid cells with distinct periods [24], Fig. 1i.35

The positional and Turing hypotheses individually have weaknesses [12, 25–27]: The positional mechanism is36

susceptible to noise in copy number [12, 28–30], and requires different downstream genetic cascades for each facet37

of structure that specify how and where that structure forms. Its implication that modular structure or function38

are driven by modularity in gene expression runs counter to at least some experimental studies that find continuous39

gradients in gene expression can underlie modular function [28, 31–44]. The pattern forming mechanism typically40

produces structure at a single scale given by the width of the local lateral interactions. These models do not possess41

scale invariance to (self-scaling with) the size of the system undergoing patterning.42

Here, we hypothesize that positional and pattern forming mechanisms can be unified in a way such that modularity43

emerges through self-organization from local interactions without requiring modularity in gene expression, and the44

resulting process is scale-invariant, Fig. 1g. We show that such a process exists and is robust to most parametric45

variation and noise.46

We focus first on the mammalian grid cell system, which exhibits structure on two scales: locally periodic patterns47

and global modules. The model produces strikingly accurate predictions about the sequence of successive spatial48

period ratios in grid cells, improving substantially on existing models. The process exhibits a “topological robustness”49

property that substantially eases the usual fine-tuning requirements of continuous attractor models of grid cells [45].50

It also generates numerous predictions for future physiology, transcriptomics, and connectomics experiments.51

Analyzing the underlying dynamical mechanisms of the process allows us to extract a general principle for global52

module emergence with smooth gradients and local interactions, which we call the peak selection principle. We then53

apply the peak selection principle to a very different problem, showing the emergence of modular multi-species niches54

in an interacting ecological system.55

GENERALIZATION OF CONTINUOUS ATTRACTOR MODELS FOR SINGLE GRID MODULES56

Grid cells in the mammalian medial entorhinal cortex (MEC) of mammals exhibit spatially periodic response57

patterns as animals explore open spaces [16]. Moving ventrally along the long (dorsoventral or DV) axis of MEC, Fig.58

1h, the grid cells form modular and functionally independent subnetworks, with discrete jumps in spatial periodicity,59

Fig. 1i. First, we extend models of grid cells within single modules before considering mechanisms for the formation60

of multiple discrete modules of different scales, which remain unknown.61

The dynamics of grid cells within a module are consistent with predictions of continuous attractor neural network62

(CAN) models [45]. CAN models are based on pattern formation through a linear (Turing) instability, driven by63

strong local interactions between neurons. Realized predictions include cell-cell relationships that are preserved64

across environments [19], and from waking to sleep [20, 21], and the direct demonstration of a toroidal set of stable65

states in the dynamics of single modules, Fig. 1e-f [22].66

Existing CAN models show that grid tuning can arise from either of two specific interaction profiles: a center67

excitation-surround inhibition (Mexican hat) or purely inhibitory surround shape [18], or a uniform local inhibition68

shape (which we term a “Lincoln hat”) [48]. We derive a set of conditions (SI A) that we hypothesize are sufficient69

for grid-like patterning, and show numerically that an infinite set of randomly sampled interaction profiles (kernels)70

under these conditions do so (Fig. 2a). The conditions are simple constraints on the local interaction kernel W : that71

it is radially symmetric, that its integral is negative (inhibition dominated:
∫

W (x, x′)dx′ < 0), and that it is strong72

enough such that that there is some value of k > 0 such that its Fourier transform satisfies W̃ (k) > 1/τ . The latter73

can almost always be made to hold for interactions that satisfy the former by scaling W (SI Sec. A). This result74

significantly expands the generality of CAN models for single grid cell modules.75

FIXED AND GRADED LOCAL INTERACTIONS FOR GLOBAL MODULARITY EMERGENCE76

Physiological experiments reveal biophysical gradients along the DV axis[32, 38, 42], Fig. 1h, raising the possibility
that combining such a gradient with CAN pattern formation mechanisms might lead to the emergence of multiple
discrete modules. We replaced the translation-invariant interaction kernels in CAN grid cell models by kernels with
a slowly increasing width σ(nDV ) along the DV axis of the model neural sheet, SI Fig.11a, where nDV refers to DV
location (while x refers to the general 2-dimensional position on the neural strip):

W g(|x− x
′|) →W (|x− x

′|;σ(nDV )) ≡W g
nDV

(∆).
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FIG. 1. Positional versus pattern-forming mechanisms for structure formation and our hypothesis. (a) The
positional hypothesis: global gradients are thresholded by different downstream gene expression cascades to generate structure
[11]. (b) Fluorescence image of maternally deposited protein bcd RNA (based on maternal bicoid RNA deposition) early in
development of the Drosophila embryo [46] sets up a polarity gradient. (c) A downstream gene-protein expression cascade,
including gap and pair-rule genes, sets up body segment-defining bands by thresholding the bicoid gradient (immunofluorescence
image adapted from [47]; segmentation figure adapted from [13].) (d) Spontaneous self-organized structure emergence (pattern
formation) through competitive lateral interactions [14]. (e-f) The continuous attractor neural network (CAN) model for single
grid cell modules [18] is based on Turing patterning based on local interactions and its predictions are consistent with the
experimental data [19–21, 23]. These include the prediction of a continuous set of stable states with toroidal geometry across
waking and sleep, and its recent confirmation [22]. (g) Our hypothesis: Positional and pattern forming mechanisms can interact
to lead to structure emergence that exhibits the strengths of both mechanisms. (h-i) The long dorsoventral (DV) axis of medial
entorhinal cortex (MEC; image of layers II and III) [32] exhibits smooth-seeming gradients in multiple cellular properties, while
along the same axis, grid cells are organized into discrete modules with discontinuous jumps in their spatial periods (adapted
from [24]).

In numerical simulations, this slow DV variation of the local interaction width in the CAN model produces hexagonally77

arranged activity bumps with a growing period (SI Fig. 11b). However, the variation in pattern period is smooth,78

reflecting the smooth width gradient: there is no emergent modularization (SI Fig. 11c).79

Given that global modularity and local patterning together cover two spatial scales, it might be necessary to80

include two scales in the lateral interactions. However, just as local interactions lead to globally periodic structure, we81

hypothesize that adding a second but still local interaction might be sufficient to induce globally modular structure.82

The meaning of a second interaction must be distinct from merely a shape difference relative to the first, because83

the sum of two local kernels is otherwise just another local kernel, and the graded period result of SI Fig. 11b-c will84

still hold. Therefore, we explored adding a second type of local lateral interaction, W f , which remains fixed across85

the DV axis while the first is graded. The combined interaction is:86

WnDV
(∆x) =W g

nDV
(∆x) +W f (∆x). (1)

We assume that the fixed interaction is wider than the graded interaction, but both interactions are local and much87

smaller than the length of the cortical sheet: σmax ≤ d ≪ L, where d is the width of W f and L is the DV length88
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of the neural sheet. Remarkably, the addition of such a fixed-scale interaction leads the network to spontaneously89

decompose into a few discrete modules, with coherent periodic activity patterns locally and discontinuous jumps90

in period globally, Fig. 2b-d. As with single module grid patterning, there is broad latitude in the shapes of the91

interaction kernels, W g and W f , so long as one is graded and the other is wider but fixed in width along the DV axis,92

Fig. 2f-h. The same combination of a graded-width and a fixed-scale interaction produces robust and spontaneous93

decomposition of dynamics into discrete modules across 1D and 2D network models, Fig. 2e,i. (See SI Sec. D 8 for94

additional model results for 2D networks.)95

The modules that emerge are much larger than both local interaction scales, cf. Fig. 2b, f (where the interaction96

widths are rendered to scale), versus the formed modules in Fig. 2c-e, g-i. Given this surprising result of an emergent97

scale that is not directly related to the underlying physical interaction scales, we seek its causes below.98

Formed modules are functionally independent99

The emergent modules, which are distinct in the periodicity of their patterning, are also functionally independent100

units. In single-module CAN models, providing cells with a velocity input causes the pattern to flow in a direction101

and with a speed proportional to the velocity input — the network can thus track current location by integrating102

a velocity signal [49–52], as grid cells are believed to do [18]. For the distinct modules to independently perform103

velocity integration means that their patterns flow independently, even though connectivity is as continuous across104

module boundaries as it is within modules, which seems intuitively implausible. However, when we drive all modules105

with a common velocity input, we find that the patterns in each module flow independently. The boundaries between106

modules remain sharp and fixed at the same cortical locations, with a spatially discontinuous phase dislocation between107

boundaries with module phases separately updating and shifting relative to each other in time, Fig. 2j. This dynamics108

results in veridical, independent velocity integration within and across modules, so that all cells (even those close to109

the module boundaries) have periodic spatial tuning curves, Fig. 2k.110

ANALYTICAL THEORY OF MODULARIZATON: PEAK SELECTION, TOPOLOGICAL ROBUSTNESS,111

AND SELF-SCALING112

The generality and robustness with which discrete modules emerge from the combination of a fixed-scale and a113

graded-scale local interaction — with very different kernel shapes as in Fig.2b,f — suggests a general principle at114

work. Starting from an initial condition of uniform activity, the network exhibits nearly immediate (within 1-2115

biophysical time-constants τ) signs of modularization, Fig. 3a. Modularization begins before most neurons have116

crossed their nonlinear thresholds, and unfolds concurrently with local periodic patterning (Fig. 3a,e). The system117

also exhibits localized eigenvectors (SI sec G; similar to the Anderson localization phase transition in condensed118

matter physics [53]). Both phenomena point to a linear instability-driven modularization mechanism, hinting at the119

possibility of a unified theory for patterning and modularity. We derive such a theory, summarizing it below with120

details in SI (Sec.B). Besides establishing how, why, and when modularity emerges, the theory accurately predicts121

the discrete pattern periods of all modules, the number and sizes of modules, and the locations of module boundaries122

(explored below).123

The theory examines how infinitesimal perturbations evolve from an unstable initial fixed point s0(nDV ). In124

spatially local windows that are much larger than the local interaction scale σ(nDV ), d but much smaller than the125

full system size L, the dynamics can be decomposed into local Fourier modes (SI sectionD8) and solved because the126

spatial variation in the interaction WnDV
of Eq. (1) is slow. Under the same simple conditions on the interaction127

kernels given above (in Generalization of continuous attractor models for single grid cell modules), the network forms128

a spatially varying patterned state with the following inverse periods (wave vectors) as a function of the DV location129

nDV :130

λ(nDV )
−1 = k∗(nDV ) = argmaxk{W̃ f (k) + W̃ g

nDV
(k)}, (2)

where W̃ denotes the Fourier transform of W .131

The spatial structure of this patterned solution can be gleaned from the interplay between the two terms. Suppose132

the interaction kernel W f is simple: primarily characterized by one length-scale d > σmax and such that other length-133

scales are not prominent and much smaller than d (Fig. 3b, top, orange). Then (except for a set of hypothesized134

measure zero in the space of functions W f ; SI Sec. D for details), its Fourier transform has an approximate form135

(∼ cos(kd−ϕ)), with closely spaced peaks every ∼ 1/d (Fig. 3b, bottom, orange) and a phase ϕ. These local maxima136

remain the same across the neural strip because W f is not graded.137
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FIG. 2. Two local interactions, with graded and fixed widths, respectively, lead to global module emergence.

(a) Generalization of CAN grid cell models: 5 examples from an infinite set of distinct local interaction kernel shapes that can
lead to grid-like patterning. (b) Combining two local interactions, one whose width (σ(nDV )) scales smoothly along the DV
axis (W g

nDV
, green) and a broader but still-local one whose width (d) remains fixed along the neural strip. Interaction widths

indicated below the gradient are drawn to scale relative to the activity shown in (c). (c-e) The two interactions from (b) lead to
spontaneous emergence of modules with distinct periods in 1-dimensional (c) neural strip, with extracted periods shown in (d).
The same kernels applied to a 2-dimensional neural sheet (e), with the 2d autocorrelation function of the local (single-module)
patterns in the neural sheet (bottom). (f-i) Same as (c-e), but for a different pair of interaction kernels W g

nDV
,W f with

distinct gradient shape σ(nDV ) and endpoints (σmin, σmax) from (c-e). (j) The response of the 1-dimensional neural strip shown
over time when the network is driven by a smoothly graded velocity input, white lines highlighting the temporal evolution of
dynamics at the module boundary (inset: magnification of the first boundary). (k) The independent velocity-driven pattern
dynamics in each module result in regular periodic spatial tuning curves (shown are 2 cells per module). See Methods for
parameter and simulation details.

By contrast, W̃ g
nDV

exhibits a broad Fourier peak (of scale ∼ 1/σ(nDV ) ≫ 1/d). The width and location of this138

peak smoothly contracts along the long axis (as σ(nDV ) increases; Fig. 3b, bottom, green). This interaction drives139

spatial patterning and its graded variation is ultimately responsible for changes in period. However, the narrow peaks140

of W̃ f (k) determine the set of potential locations of the global maximum, while the smoothly moving peak from141

W̃ g
nDV

(k) performs “peak selection” on these possibilities (Fig. 3c and SI Movie 1). It sweeps through the narrow142

local maxima of W̃ f , and as it does so one of the narrowly spaced peaks becomes the global maximum. As it sweeps143

on, the global maximum abruptly and discontinuously jumps to the next peak of W̃ f (k), defining the abrupt changes144
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in situ at the same time as local patterning, before most neurons have hit their nonlinear thresholds. (b) Top: Schematics
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Summed Fourier transform of the two local interactions (darker (lighter) blue: more dorsal (ventral)). Middle: The location of
the maximum of the graded interaction varies smoothly as a function of DV location. Bottom: the maximum of the summed
interaction jumps discontinuously (bottom). (e) Dark to light blue curves: activity pattern periods from (a) for early to late
times after initialization. Module boundaries and periods remain unchanged from the earliest time-points. Pink: theoretical
prediction of periods and module boundaries from Eq. 2. (f) Left: Example simple fixed-scale interaction profiles that produce
modularization: profiles can be roughly categorized as diffuse, decaying, or localized. Right: the dominant terms in their
Fourier transforms. (g) The Fourier phases of the interactions in (a). (h) Theoretically predicted sequence of period ratios for
any value of ϕ (blue circles), for module numbers 2-6. Any dependence on ϕ and thus the shape of the fixed-scale interaction
is weaker for higher module numbers (smaller period/dorsal modules). See Methods for parameter and simulation details for
(a) and (e).

in period between modules, Fig. 3c-d. Thus the spatial periods along the DV axis form a discrete set determined by145

the maxima of W̃ f (k), which occur at146

λ−1
m = k∗m ≈

{

2πm+ ϕ

d

∣

∣

∣

∣

m ∈ Z
+

}

. (3)

The module periods are proportional to the width d of the fixed-scale interaction W f , and are given by this scale147

divided by a set of integers m.148

Permitted values of the integers m are determined by the set of local maxima k∗(nDV ) of the fixed-scale interaction149

(in Eq. 2) that fall within the range [η/σmax, η/σmin], where η is a proportionality constant (SI Sec. D 7). It follows150

that the number of allowed periods (and thus modules) is determined by the set of integers m that fit in the following151

interval:152

ηd/σmax − ϕ

2π
≤ m ≤ ηd/σmin − ϕ

2π
(4)

The phase ϕ ∈ [−π, π] is a simple scalar, determined by coarse-grained features of W f (Fig. 3f-g): A diffuse W f
153

out to scale d leads to ϕ ≈ ±π/2 for inhibitory or excitatory interactions respectively; a localized W f at scale d leads154
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to a value of ϕ close to 0 or π for excitatory or inhibitory interactions respectively; a decaying W f also leads to ϕ155

close to 0 or π for inhibitory or excitatory interactions, respectively. Intermediate values of ϕ can be obtained by156

interpolating between these fixed-scale lateral interaction shapes (See Fig. 12 for examples of numerical simulations157

for several cases).158

The analytical expression for module periods obtained by evaluating Eq. 2 on the Fourier transform of W exactly159

predicts the values from numerical simulation (Figs. 3e, 4b, SI Fig. 12). Similarly, the even simpler analytical160

expression for period in Eq. 3 with ϕ computed from W f and without free parameters, also exactly predicts module161

periods from numerical simulation across diverse lateral interaction shapes (Figs. 3a, 4b, SI Fig. 12).162

Period ratio prediction and parameter invariance through topological protection163

The (inverse) module period expression of Eq. 3 supplies a quantitative prediction about module period ratios,164

which have been characterized experimentally [24] and are the subject of several theoretical models [54, 55]. In165

contrast to results in which period ratios have been described with one value regardless of the module number, our166

prediction varies with module: the period ratio of the mth module to the m+ 1th module is given by:167

λm
λm+1

≡ r(m,ϕ) =
(m+ 1 + ϕ/2π)

(m+ ϕ/2π)
. (5)

Note that while the module periods are determined by the scale d of the fixed-scale interaction, the module period168

ratios are strikingly and completely independent of any scale: neither d, σnDV
, nor L. For ϕ = 0, The ratios of169

adjacent modules are simply successive integer ratios, with the integer indexing the module number (Fig. 3h). It is170

also independent of the functional form of gradation in σnDV
.171

The only parameter dependence in the period ratios is through the scalar phase ϕ, which itself depends only on172

coarse properties of the lateral interaction W f (Fig. 3f-h). This extreme invariance of the period ratios to almost all173

parameters is a signature of a topologically protected[1] process (SI Sec.D 7), and is due to the discrete topology of174

the set of successive integers which are generated by the peak selection process. Thus, the modularization process is175

robust to nearly all parameteric variation.176

Emergent self-scaling of modules177

Above we saw that within-module properties like pattern periods within each module are independent of details178

of the lateral interaction kernel shapes, the size L of the neural sheet, the width of the graded interaction and the179

functional form of the gradient. However, total independence of structure emergence from system parameters can be180

a weaknesses of pattern forming dynamics, if structures do not scale with quantities like system size [12, 56].181

Interestingly and surprisingly, if the minimum and maximum widths (σ(0) = σmax, σ(L) = σmin) of the graded182

interaction remain fixed at the original absolute sizes, as does the absolute width of the fixed-scale interaction, while183

the network size L is varied, the number of formed modules remains unchanged, meaning that the module formation184

process has self-scaled to the system size (Fig.4a-b). Each module’s internal periodicity remains unchanged (Fig.4a-b),185

but the modules are now larger in width so that they each occupy the same fraction of the length of the neural sheet186

(Fig.4b). In other words, the dynamics of module formation exhibit an emergent invariance or self-scaling property187

with brain size, automatically adjusting to the size of the substrate without requiring any change in the biological188

and genetic parameters that control connectivity width.189

We can understand this analytically within our theoretical framework: The number of formed modules Nmod is190

given by the number of integers satisfying Eq. (4), and thus is given by:191

Nmod =

⌊

ηd

2πσmin
− ϕ

2π

⌋

−
⌈

ηd

2πσmax
− ϕ

2π

⌉

where ⌊ ⌋, ⌈ ⌉ indicate the floor and ceiling operations, respectively. In words, the number of modules is determined192

by the (integer) difference in the ratios of d with σmin, σmax: it is based on the interplay (difference) between the width193

ratios of the two local kernels, without depending on their specific widths or even the values of their ratios. Consistent194

with the numerical simulation results (Fig.4a-b), the number of formed modules is predicted to independent of the195

size of L if σmin, σmax, d are held fixed, which gives the dynamics its self-scaling property.196

Even more so than for the within-module periods (cf. Eq. 3), the number of modules depends on the shapes of197

W f ,W g only slightly, through the scalar factor ϕ. Large variations in the shape result in the same number of modules198
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(Fig. 2 and additional profiles in SI Fig.12). The number of modules is also notably predicted to not depend on the199

shape of the monotonically varying width function σ(nDV ) (Fig. 4c).200

We can make a more approximate but still fairly accurate prediction for where module boundaries will form (Fig.201

3e, pink, and SI D 7):202

boundary locations ≈ σ−1

(

ηd

(2m+ 1)π

)

. (6)

where σ−1 is the inverse function of σ(nDV ), such that σ−1 ◦ σ(nDV ) = nDV . Unlike the module number and203

period, the module boundary locations are predicted to depend on the shape of the gradient σ(nDV ) (Fig. 3c).204

Numerical simulations confirm the independence of module number and period to changes in the shape of σ(nDV )205

when σmin, σmax are fixed, but that boundary locations and therefore relative module sizes can change (Fig. 4d), see206

SI Sec D 7 for more details.207

Finally, even if σmin, σmax are varied smoothly (while d is held fixed), or if d is varied smoothly (while σmin, σmax208

are held fixed), the number of modules will remain fixed until the change becomes large enough to accommodate209

one additional or one less module. All these features are properties of the topologically robust process of module210

emergence, and the number of modules is a topological invariant of the system [1].211

A corollary of the independence of module number to system size is that the average module size will scale in212

proportion to system size, as L/Nmod. Thus, if the neural sheet is large, the module sizes can be orders of magnitude213

larger than any of the lateral interaction scales, σmin, σmax, d, resolving the mystery of what sets the scale of individual214

modules, why they are unrelated to the local interaction scales, and why they are global in size, Fig. 2b-d,f-h.215

Self-scaling occurs when holding the endpoints of the global gradient fixed as system size is varied, and is a property216

of positional information models. Thus, similar results could have been obtained by applying a set of thresholds to217

the function σnDV
, which then activated different downstream process to specify the boundaries and period for the218

corresponding module, which would correspond to the positional or french-flag model [11]. The difference here is that219

the modules are self-generated and do not require externally imposed thresholds or control. The self-organization220

process allows for mathematical prediction of the periods. An additional consequence for evolutionary dynamics221

is that changing the number of modules in the peak selection mechanism involves simply changing the value of one222

endpoint (σmax or σmin) of the graded interaction function σ(nDV ), rather than creating new gene expression cascades223

for each added module (Fig. 4e).224
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FIG. 4. Emergent self-scaling. (a) Increasing the size of the neural sheet while holding constant the minimum and maximum
graded interaction widths and the fixed interaction width, the within-module periods remain the same but module sizes expand
so that the system has the same number of modules regardless of system size. (b) Extracted periods from results in (a).
The neural axis is scaled (normalized) by network size to compare relative module sizes; the period axis is the same across
plots (preserved periods in each module). Pink: analytical predictions from Eq. 2. (c) Different functions (shapes) for the
monotonically graded interaction width σ(nDV ) are predicted theoretically to result in the same number of modules if the
minimum and maximum values of the width (σmin, σmax) remain unchanged. Shape changes only affect the detailed positions
of module boundaries. (d) k∗ calculated from numerical Fourier transform of interaction matrix with two different gradient
shapes, holding σmin and σmax fixed. Module number and periods remain unchanged, while boundaries shift. (inset) The
shapes of the gradient in the width of the primary pattern-forming interaction for the two choices of gradient shapes. Green
dashed lines are scales corresponding to each local maxima of the secondary interaction. (e) k∗ calculated from numerical
Fourier transform of interaction matrix with three significantly different values of σmin while holding the spatial extent of the
system fixed. The number of formed modules changes from 3 to 5 to 8, while the periods of the first few modules (that are
common across all three simulations) remain unchanged. (inset) The shapes of the gradient σ(x) in the primary pattern-forming
interaction for the three choices of gradient shapes. See Methods and SI SecD 7 for parameter and simulation details.

The simple analytical expressions for module period and period ratios, their parameter (in)dependence, and self-225

scaling properties accurately match the results of full numerical simulations, Fig. 5a.226
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parameter and simulation details.

Neural data matches detailed predicted sequence of period ratios227

We compare our predictions to existing results, which estimate a single ratio across adjacent module pairs [24], by228

averaging the predicted ratios across 4 modules and across different phases ϕ (SI Sec. D 6). This yields a predicted229

value of 1.37, in good agreement with experimental results of an average ratio of ∼ 1.42 across animals as reported230

in[24] and 1.368 for the animal shown in Fig. 5b.231

Further, we compare our more fine-grained successive period ratio predictions with published per-module period232

values. Our prediction with ϕ = 0 matches the sequence of observed period ratios [24] strikingly well, Fig.5c, also for233

other datasets in which multiple grid periods ratios are available from single individuals (SI Sec. D 10).234

PEAK SELECTION ENHANCES ROBUSTNESS WITHIN INDIVIDUAL GRID MODULE ATTRACTOR235

NETWORKS236

We have seen that peak selection-based emergence leads to module formation via patterning on two scales, and237

that the results are invariant to variations in parameters, function shapes, and the form of the global gradients. We238

next investigate and discover that the two-scale interaction and topological structure emergence process also confers239

substantial additional robustness to traditional continuous attractor models. Specifically, this mechanism makes240

continuous attractor dynamics resistant to several forms of weight heterogeneity and activity perturbation.241

Robustness within individual continuous attractor networks242

Standard attractor models [18, 23, 57, 58] require weight homogeneity to generate regular patterns and continuous243

attractor states for representing continuous variables. Heterogeneities degrade the pattern and the continuity of244

attractor states. If the heterogeneities are sufficiently large [59, 60], pattern formation can entirely fail (Fig. 6a, left245

and SI Sec. D 9 for details). This susceptibility of continuous attractor dynamics to noise is one of the fundamental246

open problems for continuous attractor models [23].247

We hypothesize that the second wider-scale local interaction that leads to multi-module formation might enforce248

pattern homogeneity even in the absence of homogeneity in the pattern-forming weights because it imposes an addi-249

tional set of constraints on local pattern formation.250

We numerically simulated the standard CAN model for one grid module (i.e. no gradient in the pattern forming251

interaction), and added noise, both in the shared radial structure of the interaction weights across neurons and i.i.d.252

noise in every weight, SI Fig.20 and SI sec D 9 for details and visualizations). With the same level of added noise253

that largely destroys patterning in conventional attractor networks (Fig. 6a, left), inclusion of a second wider-scale254

local interaction subject to same added noise results in robust and homogeneous pattern formation (Fig. 6a, right).255

We quantified this effect, finding that within-module homogeneity despite weight heterogeneity is substantially higher256

with peak selection than without, Fig. 6b.257
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The robustness enhancement from the addition of a second local interaction for single modules also holds in the258

formation of multiple modules (Fig. 6c). Without a second interaction, weight inhomogeneities drive variations in259

pattern period, whose magnitude scales like 1/σ (the width of the minimum of W̃ ) as the interaction profile is linearly260

stretched by σ, Fig. 6d (left). When a broader second scale is added, its narrower Fourier peaks confine the permitted261

solutions, enforcing a more homogeneous period despite weight inhomogeneity, Fig. 6d (right). Variations in period262

scale as ∼ 1/d, a relative reduction of σ/d. Further, since module periods scale as d/m, the smaller period modules263

should be more robust than larger-period modules. (Details in SI D 9).264

Conceptually, the peaks of the wider local interaction “focus” the dynamics to a narrower region than specified by265

the narrower local interaction alone (Fig. 6d).266
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FIG. 6. Enhanced robustness to weight heterogeneity, noise, and activity perturbation by peak selection. (a)
Left: Weight heterogeneity (here, radial asymmetry and i.i.d. noise) quickly destroys discernable pattern structure in standard
continuous attractor models [18]). (Simulation of a 100x100 neuron network with kernel Wg as in Fig. 2d-e; scale shown by
green bar.) Right: Addition of a secondary wider local interaction (scale shown by orange bar), with noise in both sets of
weights, rescues patterning. (b) Variability in 1-dimensional patterning versus the magnitude of added noise in the weights,
for single-scale weights (green), and for networks with two local interaction scales (orange). Pattern variation is the ratio
of the standard deviation to the mean of the pattern period. (c) The same as (a), showing regularity in period despite the
addition of noise in a 1-dimensional setting. (d) The mechanism for enhanced within-module robustness: the broader local
interaction scale enforces a narrower set of solutions in the energy landscape than possible with the pattern-forming interaction
alone. (e-g) Inter-module dynamical independence: (e) An entire module is transiently silenced for 50 ms; (f) a large fraction
of a module is externally driven by large-amplitude fixed, random, independent perturbations; (g) a continguous region that
spans two modules is transiently silenced. In all cases, the perturbation remains local so neighboring regions and modules are
unaffected, and the perturbed module recovers within one neural time-constant after removal of the perturbation. See Methods
for parameter and simulation details.

Robustness to module-wide and across-module perturbations in activity267

Given that the lateral neural interactions are not discontinuous across modules (weights span modules), and given268

that global modules emerge from local interactions and local dynamics, we wondered whether erasing patterning269

within entire modules or large across-module regions of the network will affect patterning in the rest of the modules.270

Upon silencing activity in one module (mimicking optogenetic inactivation) the other modules, module periods, and271

even adjacent module boundaries remain stable, Fig.6e. When a subset of cells in one module is driven to maintain272

randomly chosen values between 0 and 20Hz, patterned activity is disrupted in adjacent regions of the module, Fig.6f,273

but when the perturbation is lifted, the module period at the perturbation site is restored. If a region spanning the274

boundary between two modules is silenced, the dynamics and periods in spared parts of the two modules remain275

unchanged, and the boundary re-emerges at its pre-perturbation position after removal of the suppressive input276

(Fig.6g). In all cases, pre-perturbation states are restored within one cellular time-constant (≈ τ). These findings277

contrast with existing models of module formation in which modules interact in a stacked architecture [61]: these278
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models exhibit cascading dependencies between modules, so that perturbation of one module will have propagating279

effects across all downstream modules.280

GENERALIZED ENERGY LANDSCAPE VIEW OF MODULE EMERGENCE281

Motivated by the peak-selection process of grid module emergence, we hypothesize that the same principle could282

supply a general mechanism for module emergence even in the absence of periodic pattern formation. The theory can283

be generalized in two steps. First, by translating the linear dynamics of Fourier modes into nonlinear dynamics on284

an general energy landscape, and next translating the Fourier peaks and troughs into multiple rugged local optima285

in the energy landscape (SI Sec. E).286

Consider a generalized energy landscape (Lyapunov function) constructed as the sum of two terms (Fig. 7b): a287

spatially independent term f(θ) that is rugged with multiple similar-depth minima (constructed here as a sample288

from a Gaussian process with a radial basis function kernel, shown in orange in Fig. 7b), and another that has a289

single broad minimum (constructed here as a quadratic term, shown in green in Fig. 7b). The location of the broad290

minimum moves as a function θ0(x) of some smoothly varying parameter x (Fig. 7a). This results in a combined291

energy landscape292

L(θ, θ0(x)) = (1− α)f(θ) + α∥θ − θ0(x)∥2 (7)

The problem can be viewed as regularized optimization on a rugged loss landscape, with a spatially-dependent293

regularizer ||θ − θ0(x)||2 acting as a prior that selects one of the local minima at each location. The dynamics of θ294

are defined as downhill flow on the Lyapunov function landscape: θ̇ = −∂L/∂θ. The landscape is first governed by295

the broad quadratic term, then sculpted by the rugged landscape (with α gradually decreasing with time starting296

from α = 1, SI Sec. F). Smoothly varying the parameter x results in a set of modular solutions with steps along297

the smoothly varying parameter dimension (Fig. 7c), corresponding to the state settling into the local minimum298

closest to the quadratic minimum at that x. This analytical formulation with numerical validation provides a simple299

mathematical framework of peak selection that shows how smooth gradients can lead to discrete patterning and300

modular structure emergence [31, 40, 62] beyond linear instability, Fourier modes, and periodic solutions.301
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FIG. 7. Generalized peak-selection mechanism for module emergence. (a) Parametric gradient of parameter θ0 as
a function of position x. (b) The Lyapunov (generalized energy) function is a sum of two functions: one static function with
multiple local minima, and one with a single broad minimum whose location smoothly varies with x according to θ0(x) . (c)
Fixed points of the dynamics upon simulation of dynamics on this Lyapunov function, as a function of the location x. See SI
Sec. F for simulation details.

SELF-ORGANIZATION OF ECOLOGICAL NICHES THROUGH PEAK SELECTION302

The general principle of topological peak selection — with a smoothly spatially varying “selecting function” and303

a spatially constant fixed interaction that generates multiple local minima — can be applied to generate modularity304

across diverse settings. To illustrate this generality, we explore a biological example that is far from structure305



12

s1

s2

e
n
e
rg

y
 l
a
n
d
s
c
a
p
e

c d

e

f
L

s
p
e
c
ie

s

L

L

spatial correlation

L

L

spatial correlation

L

s
p
e
c
ie

s

0

1

graded input drive self-organized modular niches

scale invariance

a b
sunny

  dry

shady

moist

0 500

0 500

0500

500

500 0

0

0

L

0 300L 0 700

W

g

h

L

i

s
p
e
c
ie

s

L

0 700L

0 300L
0

300

L

0

700

L

0

1

FIG. 8. Self-organization of ecological niches through peak selection: (a) Schematic web of competitive and cooperative
interactions between species. (b) Schematic of ecological niches and smoothly varying spatial resource gradients. (c) Schematic
of the state space of the interacting species system as in (a), ignoring spatial distributions of species and resources, has multiple
attractor states (dots; basins boundaries depicted by black lines). Multi-colored line: One-dimensional variation in resources,
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resource gradient. The resource gradient slowly “tilts” the energy landscape, gradually varying the relative heights of the local
optima and discretely changing the global optimum. (e-h) Typical dynamics of the system: no spatial structure at initialization,
visualized in system state (e) and spatial correlation matrix (f), self-organizes into four ecological niches at steady state (g-h).
(i) Scale invariance: changing the spatial size of the system while maintaining the end points of the resource gradient function
results in the same niche structure. See Methods for parameter and simulation details.

emergence in the brain, at a much larger scale of organization: the emergence of spatial ecological niches in ecosystems306

(Fig. 8a,b).307

Consider a set of species that, if co-localized, interact through cooperation and competition (Fig. 8a). Each species308

requires different resource distributions, and resources vary along environmental gradients. Graded environmental309

conditions are common features of ecosystems that have been implicated in niche formation, and include for instance310

sunlight, temperature, precipitation, and electrochemical gradients [63–68] as well as secondary quantities like veg-311

etation that results from these. In aquatic ecosystems, light and nutrient availability limit the quantity of primary312

producers, which poses fundamental limits on the food web[69, 70]. Changes in such environmental variables and313

nutrient availability is known to alter population dynamics[71–74] as well as inter-species interactions[68, 75, 76], that314

can affect the composition of the formed niche.315

We model this system with Hopfield-like dynamics [77–81], where species interact according to an interaction316

matrix (W ). The interaction defines a set of attractor states in a rugged energy landscape, Fig. 8c, with the317

minima corresponding to the set of possible niches. Interactions are also modulated by spatial distances: two species318

interact via W only if they spatially overlap. Further, species also grow in proportion to the match between the319
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resource inputs and their own resource feature vectors. Formally, consider N species indexed by i and defined by320

M -dimensional resource feature vectors bi that specify their resource needs. Each element of each resource feature321

vector is sampled from independent, identically distributed normal distributions (see Methods for details). A time-322

invariant but spatially varying resource gradient rg(x) is assumed to exist for x ∈ [0, L], that is constructed by linearly323

interpolating between two random vectors drawn from {−1, 1}M . The population dynamics of species i at position x324

and time t+ 1 is given by:325

s(i, x; t+ 1) = H



−δis(i, x; t) +
∑

j,x′

W (i, j)K(x, x′)s(j, x′; t) + bi · rg(x)



 (8)

where H[.] is a nonlinearity, δi is the death rate, W (i, j) is a symmetric interaction matrix quantifying the cooperation326

and competition between species i and j (see Methods for details of construction), and K(x, x′) ≡ K(x − x′) is a327

spatial interaction kernel that vanishes on a length scale much smaller than L. Note that while we only examine the328

symmetric W (i, j) case here, we expect the self-organization of modular niches to hold in general for non-symmetric329

W (i, j) as well. In such a case, the selection may be between different attractor states that need not be fixed point330

attractors.331

This system settles into a steady state s∗. In the energy landscape view, the graded resource inputs rg(x) selectively332

deepen a subset of the minima. As the resource inputs continuously vary in space, the minima that are amplified333

vary with x, leading to a discrete selection of the global minima at each spatial location, Fig. 8d. We examine334

spatial structure through the normalized correlation matrix C(x, x′) =
∑N

i=1 ŝ
∗(i, x)ŝ∗(i, x′), where ŝ is s normalized335

to have zero mean and unit norm. Continuously graded input drive with no initial modularity in the population state336

correlation matrix self-organizes into a steady state with modular niches (Fig.8e-h). The system also exhibits scale337

invariance if the resource gradient endpoints remain fixed as the spatial domain is scaled, even though the spatial338

interaction scale (set by K(x, x′)) is not (Fig. 8i).339

DISCUSSION340

Summary We have combined positional and spontaneous pattern forming (or more generally, symmetry breaking)341

mechanisms to show that structure can robustly emerge at multiple scales from purely local interactions, without342

requiring modular genetic specification or modular connectivity. The resulting mechanism exhibits useful features of343

both processes [12]: structure is noise-tolerant and parameter invariant, self-organizing with relatively little detailed344

genetic instruction, and self-scaling. The mechanism involves only smooth (low information) genetically specified345

gradients combined with local competitive interactions whose parameters are modulated by the gradient(s), from346

which sharp boundaries and modules emerge.347

In the context of grid cells, this is the first work to provide a framework for connecting gene expression (smoothly348

varying gradient(s)), structure (local neural connectivity profiles), and physiology with each other. It therefore allows349

future physiology, connectomics, and transcriptomics experiments to inform and constrain each other. The mechanism350

of module emergence generates a detailed prediction of period ratios between modules and provides a novel result on351

increased robustness of single continuous attractor network models with the addition of a wider local interaction.352

Predictions The theoretical relationships – connecting simple properties of the local interactions and their spatial353

gradients to formed module properties – provide low-dimensional knobs for experimental testing and manipulation.354

The analytical and numerical models can be directly queried for predictions about the effects of varying any of the355

knobs. Here, we enumerate a few example predictions for connectomics (C), transcriptomics (T), development (D),356

and physiology (P): 1) Discrete modules are initially underpinned by merely smooth gradients in gene expression357

and in the interaction weights. (D,T,C) 2) The existence of an interaction that is fixed across the DV axis of MEC,358

and another that smoothly varies in scale (strength or width) across it. These two types of interactions may be in359

different cells and synapses, or the same synapses, for instance a single scaled-width weight profile with an axonal360

or dendritic cutoff radius that is invariant across the DV axis. (C) 3) The detailed and precise relationship of361

adjacent grid periods, as given by successive integer ratios, are distinct from other theoretically interestingpredictions362

[54, 82, 83], and deviations from successive integer ratios should be predictable by alterations in the coarse form of the363

(fixed-scale) lateral interaction profile (P). 4) Invariance of module number and periods to detailed local interaction364

shape and to the shape of the global gradient, and the shifting of module boundaries with gradient shape (T,C,P).365

5) Self-scaling with system size (invariance of module number and periods despite MEC size variations if extremal366

values of the gradient fixed), dependence of these quantities on extremal values of the gradient, and dependence of367

module boundary positions on the functional form of the gradation in lateral interactions. (T,C,P) 6) Bidirectional368

computable relationship between lateral interaction shape and period ratios, through the scalar variable ϕ. (C,P) (3-6)369
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Could be tested across individuals and species. 7) Following MEC-wide silencing, activity patterning in all modules370

should re-emerge independently, rather than sequentially [61]. (P) 8) Quantifiably higher robustness of dynamics371

to connectivity inhomogeneity, beyond the capabilities of conventional attractor models [45]. (C) 9) Independence372

of dynamics between modules and high robustness of dynamics to activity perturbation within and across modules:373

Effects of perturbation to activity are localized to the module it is applied to, without a cascading effect across modules374

[61]. Entirely suppressing one module should not alter others, and suppressing half a module boundary should not375

shift the rest of the boundary. (P) 10) General peak selection mechanism through manipulation of genetic gradients:376

quantitative predictions for altering the number of formed modules, periods, and positions of module boundaries with377

gene expression modulation. (T,D)378

Related work This work directly extends and robustifies continuous attractor models of grid cells [45], from single379

modules to multiple modules, from dependence on specific interaction profiles to an infinite set of kernels for grid380

emergence, and from high dependence on homogeneous weights to a weaker dependence on weight homogeneity.381

It connects to observed DV gradients in MEC [32, 38, 42, 84–87], and also potentially more generally to observed382

gradients that underlie discontinuous function in cortex [31, 43]. Its focus on the theory and mechanisms of emergence383

of structure and function from given weights is complementary to work that models the learning of weights in MEC,384

through biologically plausible Hebbian-like rules [88] or backpropagation-based learning [83, 89–91]. In fact, the385

learning models generally do not produce multiple modules, and in the rare cases where they may seem to, the circuit386

mechanisms that produce them are unknown [89]. We know of only other work that proposes a network mechanism387

for multi-grid module emergence [61]. It has a distinct (stacked) initial and final architecture, and its predictions on388

several of the quantities noted above are interestingly and distinguishably different.389

The general peak-selection principle for module emergence is both an instance and a generalization of the idea of390

spatial bifurcation for the emergence of discrete function from smooth gradients [31, 92]. It permits a number distinct391

modules to form from smooth variations in the spatial dimension, but the broader theoretical framework generalizes392

to variations along abstract parametric dimensions. We have shown three different flavors of peak selection-based393

modularity emergence: peak selection in a pattern-forming process interacting with smooth gradients in interaction394

parameters for grid cells; peak selection via a smoothly varying regularization term in dynamics on a rough landscape395

in the general Lyapunov function approach; and peak selection in a symmetry-breaking process (that is more general396

than Turing-like pattern formation) based on initial condition or resource gradients that tilt the landscape in a397

generalized Hopfield model for niche formation.398

These concepts provide dynamical and mechanistic principles for how modular structure can emerge, in contrast399

to normative models that focus on why or when modular structure is favored [4, 9, 82, 93–100].400

A mechanistic understanding of how discrete structure could emerge from graded precursors connects with extensive401

literature on the existence of smooth biophysical gradients in the brain and body [28, 31–35, 37–44, 92] even when402

function varies discretely.403

Many works explore how structure emergence can occur with precision in the presence of noise [28, 29, 101, 102].404

Some solutions within the positional hypothesis involve spatial or temporal integration of noisy gradients [12, 26, 101].405

Pattern forming mechanisms have some built-in robustness to noise because the patterned state is much lower-406

dimensional than the overall state space [103]. Our observation that peak selection confers substantial additional407

robustness raises the question of whether such a mechanism might assist in tandem with positional mechanisms408

during developmental morphogenesis [104].409
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[62] Andrew L Krause, Václav Klika, Thomas E Woolley, and Eamonn A Gaffney. From one pattern into another: analysis537

of turing patterns in heterogeneous domains via wkbj. J R Soc Interface, 17(162):20190621, 01 2020.538



17

[63] Jordan G Okie, David J Van Horn, David Storch, John E Barrett, Michael N Gooseff, Lenka Kopsova, and Cristina D539

Takacs-Vesbach. Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study540

with soil bacterial communities. Proceedings of the Royal Society B: Biological Sciences, 282(1809):20142630, 2015.541

[64] Diego Alarcón and Lohengrin A Cavieres. Relationships between ecological niche and expected shifts in elevation and542

latitude due to climate change in south american temperate forest plants. Journal of Biogeography, 45(10):2272–2287,543

2018.544

[65] David Schellenberger Costa, Friederike Gerschlauer, Ralf Kiese, Markus Fischer, Michael Kleyer, and Andreas Hemp.545

Plant niche breadths along environmental gradients and their relationship to plant functional traits. Diversity and546

Distributions, 24(12):1869–1882, 2018.547
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MATERIALS AND METHODS672

We use a continuous attractor network (CAN) model [105–107] for grid cells [17, 18, 108, 109], with neural dynamics673

obeying674

∂s(i, t)

∂t
+
s(i, t)

τ
= ϕ





∑

j

W0(i, j)s(j, t) +B(i, t)



 , (9)

where s(i, t) represents the synaptic activation of neuron i at time t, W0(i, j) represents the synaptic strength of the675

coupling from neuron j to neuron i, B(i, t) represents the feed-forward bias to neuron i, and ϕ is a non-decreasing676

nonlinearity, for which we use the rectification function (ϕ(z) = [z]+ = z for z > 0 and 0 otherwise). Each neuron i has677

a preferred direction θi that is used to perform velocity integration. In the one-dimensional version of our setup, each678

spatial location x on the neural sheet has two neurons, with preferred directions θ = 0 and θ = π. Correspondingly, in679

the two-dimensional version of our setup, each location on the neural sheet has four neurons, with preferred directions680

θ = nπ/4 for n ∈ {0, 1, 2, 3}. The synaptic weights W0(i, j) are defined via an interaction kernel W (∆x) such that681

W0(i, j) =W (|xi − xj −∆s(θj)|), (10)

where xi represents the spatial location of neuron i, and l(θ) is a vector with length ∆s oriented parallel to the angle682

θ. The feed-forward bias B(i, t; θ) is given by683

B(i, t) = b+ bvel|v| cos(θi − ψ), (11)

where ψ is the direction of the input velocity signal and |v| is the speed. This results in neurons with direction pref-684

erence θ driving activity in the network towards the direction of their outgoing weight shifts ∆s(θ). This mechanism685

is responsible for velocity integration by the network [18].686

We first described the dynamics under fixed arbitrary kernels, demonstrating that they result in hexagonal pat-687

tern formation. These arbitrary kernels were constructed by interpolating between random points via the following688

protocol: First, we construct ‘x-values’ by considering n + nzero uniformly spaced points from −L to L, which are689

then perturbed by the addition of a randomly sampled number from −L/4n to L/4n (this perturbation makes the690

points less regular, while disallowing consecutive points to be extremely close to each other). Second, we construct691

n ‘y-values’ sampled from a uniform distribution from −1 to 1, and define the remaining nzero y-values to be 0 (the692

nzero values at zero ensure that the interpolated function decays to zero). Then, a cubic spline interpolation (top row693

of Fig. 10a) or a linear interpolation (bottom row of Fig. 10a) is performed between the y-values and the x-values694

to generate an arbitrary function ω(x). This generated function is however not symmetric, as is required for kernel695

functions — thus, we construct the interaction kernel as W (∆x) = ω(∆x) + ω(−∆x). Kernels whose dynamics lead696

to infinitely diverging firing rates are rejected and resampled. These kernels were simulated on sheets with 256× 256697

neurons with aperiodic boundary conditions[18]. n was randomly chosen between 2, 3 or 4, and L was scaled as698

necessary to obtain a large number of activity bumps on the sheet to prevent finite-size effects from distorting the699

hexagonal lattice of activity.700

For the case of module formation through peak selection, the interaction weight kernel W is given by the sum of
two components W = W g

nDV
+W f . The first, W g

nDV
drives local pattern formation, and has a spatial scale σ(nDV ),

which varies smoothly in a gradient along the dorso-ventral axis, and the second, W f has a fixed spatial scale d
everywhere on the neural sheet. A variety of functions W g

x can drive local pattern formation. For concreteness, we
use two specific examples: the Mexican-hat profile[18] (used in Figs. 2a-c,j,k, 11 and SI Fig. 12)

W g
mexican-hat(∆x) =

αE exp

[

−γ (∆x)2

2σmh(nDV )2

]

− αI exp

[

− (∆x)2

2σmh(nDV )2

]

, (12)
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FIG. 9. Local pattern formation in continuous attractor models of grid cells: Through local amplification of random fluctuations,
the lateral interaction forms periodic patterns.

and the box-function profile[110] (used in Fig. 2 and SI Fig. 12)701

W g
box(∆x) = α0 × 1|∆x|<σb(x) =

{

α0 if |∆x| < σb(nDV ),

0 if |∆x| ≥ σb(nDV ).
(13)

For the fixed-width interaction W f (∆x), we implement 3 main types — localized (used in Figs. 2,3 and SI Fig.
12), diffuse (used in Fig. 2 and SI Fig. 12) and decaying (used in SI Fig. 12).

W f
localized(∆x) = αS exp

[

− (|∆x| − dloc)
2

2ϵ2S

]

,

W f
diffuse(∆x) = α1 × 1|∆x|<ddif

,

W f
decaying(∆x) = αT × [ddec − |∆x|]+.

In particular,702

• In Figs. 11 we use only a smoothly varying Mexican-hat pattern forming kernel W =W g
mexican-hat703

• In Figs. 2a-c,g, j,k we use W =W g
mexican-hat +W f

localized704

• In Figs. 2d-f,h we use a ‘Lincoln hat’ profile W =W g
box +W f

diffuse705

• and, in SI Fig. 12 we present numerical simulations of other combinations of pattern forming and fixed-scale706

kernels.707

To construct spatially heterogeneous kernels for analyzing the robustness to inhomogeneity in Fig. 6 we use the
box function to construct

W g
ξ [x,x

′] = α0 × 1|x−x′|×(1+ξg
1
(x′))<σ0

b
(1+ξg

2
(x′)),

W f
ξ [x,x

′] = α1 × 1|x−x′|×(1+ξf
1
(x′))<ddif (1+ξf

2
(x′)),

where ξg,f1,2 (x
′) are independent random numbers chosen uniformly from ϵg,f1,2 × [−1, 1]. For the particulars of Fig. 6b,708

ϵg2 = 0.1 and other noise terms are set to zero (In the one-dimensional case ϵ1 and ϵ2 have the same effect); for Fig.709

6c, ϵg1 = 0.2, ϵg2 = 0.3, ϵf1 = 0.05 and ϵf2 = 0 (See SI Sec. D 9 for more details).710

In Table I we present a list of common parameters used across all numerical grid-cell simulations. Then, in Tables711

II,III we present the parameter values used for the kernels used in our numerical simulations712713
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Parameter Value
τ 30
dt 0.05

b

{

70 in 1D

1 in 2D

bvel

{

105 in 1D

1 in 2D

∆s 2

TABLE I. Parameters held constant across all numerical simulations

W g

mexican-hat parameters Value
αE 1000
αI 1000
γ 1.05

N1D 3000
N2D

y 100
N2D

x 1000

σmh(nDV ) 1/
√

2β(nDV )
β(nDV ) β0 + (β1 − β0)nDV /N ′

N ′

{

N1D in 1D

N2D
x in 2D

β0

{

2.5 × 10−2 in 1D

3/676 in 2D

β1

{

2.5 × 10−1 in 1D

9/338 in 2D

W g

box parameters Value

N1D 5000
α0 -40

σb(nDV ) 15 + 30nDV /N

TABLE II. Pattern forming kernel parameters used for numerical simulations

For the modular niche formation, we consider the setup as described in Eq. 8, with N = 1000 species, each char-
acterized by a random M = 2000 dimensional random feature vector indicating resource preference. We numerically
simulate our setup on a discrete lattice x ∈ {0, L} for L = 300 in Fig. 8i left, and L = 500 otherwise.We instantiate
the nonlinearity H as a shifted Heaviside function, H[x] = 1 for x ≥ 0.5, and H[x] = 0 otherwise, and choose the
death rate δi = 0.1 for all species. To construct W (i, j) as an interaction matrix that quantifies the cooperation and
competition between species, we follow a set up similar to a Hopfield model with {0, 1} activity[111]. We first choose
a set of random points in N -dimensional species space sq for q ∈ {1, · · · , Q}, denoting potential niches. We choose Q

W f

localized parameters Value
αS 4

dloc

{

84 in 1D

50 in 2D

ϵS

{

4.77 in 1D

1.6 in 2D

W f

diffuse parameters Value
αdif -0.25
ddif 135

W f

decaying parameters Value

αT 25
ddec 150

TABLE III. Fixed-scale kernel parameters used for numerical simulations
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such that 1 ≪ Q≪ N . Each sq vectors consists of a +1 at elements corresponding to species that may co-exist, and
−1 otherwise. In practice, we draw each element uniformly from the set {0, 1}, constructing an N ×Q matrix. The
weight matrix W (i, j) is then constructed as

W (i, j) = 0.015×
{

∑Q
i=1 sq(i)sq(j), for i ̸= j

c, for i = j
,

where c is a positive constant set to 10.714

The spatial interaction kernel K(x, x′) = K(x − x′) is chosen to be a Gaussian function with standard deviation715

1.75 (which is much smaller than the entire spatial extent of the system, L). The end points of the resource gradient716

are chosen as two random M = 2000 dimensional vectors with elements draw independently from i.i.d. Gaussian717

distributions with zero mean and standard deviation 2/N , and the preference vectors bi are drawn from i.i.d. Gaussian718

distributions with zero mean and unit standard deviation.719

The initial condition for the simulation is set to be the uniform state s(i) = 0.5 for all i, and the simulation is
run until the dynamics reach a fixed point state. The final formed fixed point state is examined by calculating the
correlation matrix

C(x, x′) =
N
∑

i=1

∩s∗(i, x) ∩ s∗(i, x′)

where

∩s(i) = [s(i)− ⟨s⟩]/
√

∑

i

[s(i)− ⟨s⟩]2

where ⟨s⟩ = (1/N)
∑

j s(j).720

SUPPLEMENTARY TEXT721

The supplemental information is structured as follows: First, in SI Sec. A we present the mathematical analysis for722

pattern formation, and generalize the theory of CAN models of grid cells to show analytically and numerically that723

an infinite set of local interaction kernels can generate a grid cell network, as shown in Fig. 2 and Fig. 10. Second,724

we demonstrate analytically and numerically in SI Sec. B that simply introducing a gradient in the pattern forming725

kernel of the continuous attractor model is not sufficient to result in modularization, as demonstrated in Fig. 1 of726

the main text. Third, in Sec. B 1 we show how the addition of a Gaussian localized kernel results in self-organized727

modularization. Fourth, we show in Sec. D that among arbitrary kernels, those with simple shapes result in a simple728

equation describing the detailed period ratios of the formed grid modules as shown in Fig. 4. Fifth, this will lead729

to simple estimates for the number of modules and their sizes in terms of other system parameters, which we derive730

in SI Sec. D 7. Sixth, after having described our results primarily for the case of one-dimensional grid cells, we then731

demonstrate in Sec. D 8 that our arguments extend naturally to two dimensions, and we present numerical results732

demonstrating the same. Seventh, in SI Sec. D 10 we then demonstrate that our results and predictions of grid period733

ratios are consistent with available data sources to a large extent. Finally, we generalize our result to the context of734

dynamics on a rough energy landscape (SI Sec. E), and provide broader perspectives of our results in the contexts of735

general loss optimization (Sec. F) and eigenvector localization (SI Sec. G).736

Appendix A: Generalization of grid cell CAN dynamics theory: infinite set of interactions produce grid cells737

Existing continuous attractor grid cell models use one of two specific interaction profiles: a center excitation-738

surround inhibition (Mexican hat) shape which for stability has been implemented as a purely inhibitory donut-shaped739

surround [18], or a limited-radius uniform inhibition shape (which we term a “Lincoln hat”) [48].740

Here we extend these results by defining an infinite set of distinct interaction profiles that can give rise to grid741

cell-like patterning. Consider the standard equations for the dynamics of recurrently connected neurons (expressed742

for notational simplicity in the continuum or large neural number limit):743

∂s(x, t)

∂t
+
s(x, t)

τ
= ϕ

[
∫ +∞

−∞

W (x,x′)s(x′, t)dx′ +B

]

, (A1)
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where s(x) is the synaptic activation of the neuron at the vector position x on a 2-dimensional neural sheet, W (x,x′)744

is coupling strength from a neuron at x
′ to a neuron at x, τ is the biophysical time-constant of individual neurons,745

ϕ is a non-negative monotonic transfer function, and B is a uniform feedforward input to all neurons. Further, we746

assume that
∫

W (x,x′)dx < 0, consistent with experiments suggesting that grid pattern formation is dominated by747

recurrent inhibitory circuitry[110]. In this continuum limit, s(x) and W (x,x′) are continuous functions of x and x
′.748

For simplicity, the neural nonlinearity is given by the rectification function (ϕ(z) = [z]+ = z for z > 0 and 0 otherwise.749

This choice is not crucial, as we will see later.750

The interaction weights W (x,x′) are assumed to possess a continuous translation symmetry, W (x,x′) ≡ W (|x −751

x
′|;σ) where σ is the characteristic length-scale of the function (kernel) W . In words, the weight between two neurons752

will depend only on the separation between them (not on their absolute locations). This condition yields activity753

states that are themselves translationally invariant. In this network, the state with roughly uniform activity becomes754

unstable and evolves to a periodic activity pattern via a linear (Turing) instability, when two conditions hold on the755

Fourier transform of the interaction weights W (x) [14, 18, 112–115]. Since W (x,x′) = W (|x − x
′|), it follows that756

W̃ (k) = W̃ (|k|) = W̃ (k), and we can state these conditions in terms of the radial part of the Fourier Transform, k.757

First, the maximum of W̃ (k) should fall at k ̸= 0, i.e.,758

k∗ ≡ argmax
k

W̃ (k) > 0. (A2)

Second, this maximum must be sufficiently large, i.e.,759

W̃ (k∗) > 1/τ. (A3)

The emergent activity patterns have a periodicity of 2π/k∗ [14, 18, 112–115], which scales as σ, the characteristic760

width of the interaction kernel W . The non-negativity of the transfer function results in patterns with hexagonal761

rather than other symmetries [113, 116, 117]. Thus, interaction kernels that satisfy the two conditions above will give762

rise grid-like patterning.763

It is known that Mexican hat-like kernels [18] and Lincoln hat-style kernels [48] generate grid patterning. We764

next provide a general way to explain why, and to determine other kernel shapes that are consistent with grid765

emergence through continuous attractor dynamics. The key for grid-like patterning are lateral interactions W whose766

Fourier transforms are not everywhere negative, and are not only non-negative at k = 0. In fact, an infinite set of767

kernel functions W satisfy these conditions, with rare exceptions. First some exceptions: The Fourier transforms768

of Gaussian and Lorentzian functions have either a single peak at k = 0 (when the functions are positive), or are769

negative everywhere (when the functions are negative), and thus fail to satisfy the first condition. However, as we770

argue in Sec. C, making small perturbations to the kernels results in the conditions being satisfied.771

We next performed numerical experiments to test the hypothesis that randomly generated functions will generically772

have Fourier Transforms that are not negative everywhere or only non-negative at 0, and therefore might generate773

grid-like patterning (see Methods for details of random sampling of kernel functions). We found that indeed randomly774

constructed kernel functions satisfied the hypothesized property for their Fourier transforms: we generated 106 random775

localized kernel functions, and all of these satisfied the conditions of being not negative everywhere or being non-776

negative only at k = 0 (SI Fig.10). We further found that these kernel functions, under the further condition that777

they did not produce diverging neural activity, generated hexagonal patterns. Some of these are shown in Fig. 2a. In778

sum, an infinite set of local interaction profiles will generate grid cell-like activation patterns. Such candidate profiles779

can be generated at random and with very high probability generate grid-like patterning.780

Motivated by the experimental observations described in the main text, we modify the Mexican-hat function to781

introduce a smooth gradient in the characteristic interaction widths σE , σI .782

W g
nDV

(∆x) = αE exp

(

− ∆x
2

2σE(nDV )

)

− αI exp

(

− ∆x
2

2σI(nDV )

)

, (A4)

where σE(nDV ) and σI(nDV ) are now functions that depend on position in the neural sheet, and encode the smoothly783

varying characteristic scale of the Mexican-hat interaction along the dorso-ventral axis:784

σE/I(nDV ) = σE/I + σ′
E/I(0) · nDV . (A5)

For such graded kernels, we will use W (x,x′) and WnDV
(x− x

′) =WnDV
(∆x) interchangeably. In this case, Eq. A1785

then becomes786

∂s(x, t)

∂t
+
s(x, t)

τ
= ϕ

[
∫ +∞

−∞

WnDV (x− x
′)s(x′, t)dx′ +B(x)

]

, (A6)

787788
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FIG. 10. All kernels satisfying the conditions laid out in the main text can result in pattern formation, with appropriate scaling.

Appendix B: Pattern formation with graded kernels789

Under this approximation, we perform a linear stability analysis of the neural dynamics, to identify the the growing790

periodic modes locally at the position on the neural sheet nDV .791

We first identify an unstable steady-state solution to Eq. (A6), which we denote as s0(x). This solution satisfies792

s(nDV )

τ
= ϕ

[
∫ +∞

−∞

WnDV
(x− x

′)s0(x
′)dx′ +B(x)

]

. (B1)

In the limit of very slowly varying changes in WnDV
(∆x) as a function of nDV , the unstable steady state solution793

will be794

s0(nDV ) =
τB̄

1− τW̄
, (B2)

where B̄ =
∫

B(x)dx and W̄ =
∫

WnDV
(x − x

′)dx′. (For τW̄x > 1, the only locally homogeneous steady state is795

s0(nDV ) = 0 due to the rectifying nonlinearity, which as we justify shortly cannot support periodic pattern formation796

due to being a stable fixed point).797

We then consider a perturbative analysis, by examining the evolution of s(x, t) = s0(nDV ) + ϵ(x, t). We apply our
analysis to the early time evolution of this initial condition, such that ϵ(x, t) ≪ s0(nDV ). Inserting our form of s(x, t)
in Eq. (A6), we obtain

∂ϵ(x, t)

∂t
+
ϵ(x, t)

τ
=

ϕ′(W̄s0(nDV ) + B̄)

∫ ∞

−∞

WnDV
(x− x

′)ϵ(x′, t)dx′. (B3)

Since WnDV
(x − x

′) is a local kernel, we approximate the above integral with one evaluated over the region {x′ :
|x− x

′| < l}, with l much larger than the length-scale of the kernel WnDV
at all x. Over this interval, we posit that

ϵ(x′, t) = ϵeik·x
′+α(k)t, where α(k) denotes the growth rate of this ϵ perturbation. Inserting this form into Eq. (B3)

yields,

α(k) + 1/τ = ϕ′(W̄s0(nDV ) + B̄)

∫ ∞

∞

WnDV
(x− x

′)e−ik·(x−x
′)dx′, (B4)

= ϕ′[W̄s0(nDV ) + B̄]F [WnDV
(x− x

′)], (B5)

= ϕ′[W̄s0(nDV ) + B̄]FWnDV
(k) (B6)

where F [WnDV
(x − x

′)] = FWnDV
(k) is the Fourier transform of the interaction kernel corresponding to position798

nDV on the neural sheet. For the rectifying nonlinearity ϕ′ = 1, and the requirement for the periodic perturbation to799

be growing is α(k) = FWnDV
(k)− 1/τ > 0.800
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FIG. 11. (a-c) Naive merger of the two mechanisms by smoothly scaling the width of the pattern-forming lateral interaction
(j) in the grid cell CAN model [45] does not generate global modularity in 2-dimensional (b) or 1-dimensional (c) grid models:
the result is one smoothly varying periodic pattern.

Note that since WnDV
(∆x) is a kernel, it is a radially-symmetric real function, and hence the Fourier transform801

FWnDV
(k) will also be real function that is radially-symmetric in k. Thus, for simplicity, we will only focus on the802

magnitude of k, which we denote as k = |k| ≥ 0 (In this context, for the two-dimensional case, one may re-interpret803

the radial component of the Fourier transform of WnDV
(∆x) as the Hankel transform of WnDV

(|∆x|)).804

By definition, the magnitude of the wave vector k∗ that corresponds to the fastest growing mode locally around805

position x on the neural sheet will be the k that maximizes α(k). Under the approximation of slow changes in the806

length-scale of the interaction kernel WnDV
(∆x), we see from Eq. (B6) that807

k∗(nDV ) = argmaxk FWnDV
(k), (B7)

since WnDV
(∆x) (and hence s0(nDV )) has been assumed to have a negligible dependence on nDV .808
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For WnDV
(∆x) given by Eq. (A4), i.e., without any additional fixed-scale interaction, we obtain from Eq. (B7)809

[k∗(nDV )]
2 =

2

σE(nDV )2 − σI(nDV )2
log

(

αEσE(nDV )
3

αIσI(nDV )3

)

. (B8)

If we assume that σE/I(x) = ηE/Iσ(nDV ), where ηE and ηI are x-independent constants, then we obtain810

k∗(nDV ) ∝ 1/σ(nDV ), (B9)

and hence811

λ∗(nDV ) ∝ σ(nDV ), (B10)

where λ∗(nDV ) is the periodicity of the grid pattern formed locally around position nDV . This results in a smooth812

change of grid period, corresponding to the observation in Fig. 1g of the main text.813

Note that this result is generally true for any pattern forming kernel W g
nDV

(∆x) that has a Fourier transform with814

at least one local maximum, and does not rely on the specific form of a Mexican-hat interaction. Indeed, Eq. (B10)815

holds for any kernel W g
nDV

(∆x) that depends on a length-scale σ(nDV ). As an example, we present the corresponding816

analysis for the box-shaped kernel employed for pattern formation in Ref. [110].817

In this case818

W g
nDV

(∆x) = −W01∆x≤σ(nDV ). (B11)

As discussed above, the quantity of interest is FW g
nDV

(k)

FW g
nDV

(k) =

∫ ∞

−∞

−W01|x|≤σ(nDV )e
ik·xdx (B12)

= −W0

∫

|x|≤σ(nDV )

eik·xdx. (B13)

The above integral can be calculated in a one-dimensional setup to obtain819

FW g
nDV

(k) = −2W0
sin(kσ(nDV ))

k
(B14)

and can be calculated in a two-dimensional setup to obtain820

FW g
nDV

(k) = −2πW0σ(nDV )
J1(kσ(nDV ))

k
. (B15)

In both of the above cases, note that k∗ ∝ 1/σ(nDV ) since σ(nDV ) is the only length-scale characterizing the kernel821

W g
nDV

. In particular, numerical maximization yields822

k∗ ≈
{

4.493/σ(nDV ) on a one-dimensional sheet, and

5.136/σ(nDV ) on a two-dimensional sheet.
(B16)

1. Fixed-scale interactions and modularization823

We now claim that the addition of a fixed-scale kernel, W f (∆x) is sufficient to result in modularization of grid824

periods, with discrete changes in grid period as a function of spatial position along the dorso-ventral axis. This set825

of interactions can effectively be implemented by two populations of interneurons - one with fixed arborization and826

weaker synaptic connections and one with varying arborization length and stronger synaptic connections.827

For simplicity, we shall present the specific Fourier transform computations for the one-dimensional problem, al-828

though we note that all of the qualitative results hold in two dimensions as well, with the Fourier transforms of the829

relevant functions replaced with their Hankel transforms (as shown in Sec. D 8).830

We include an additional weak interaction term W f that critically does not depend on the neural sheet position831

x. For reasons that will become apparent soon, we choose kernels W f (∆x) such that the Fourier transform changes832

sign a sufficiently large number of times. We hypothesize that this requirement is not particularly restrictive, and will833

demonstrate that this holds for most kernels W f .834
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The entire interaction profile is then given by835

WnDV
(∆x) =W g

nDV
(∆x) +W f (∆x). (B17)

We first demonstrate our result with an example of a simple kernel, to justify how Eq. (B7) leads to the emergence836

of discrete grid modules. Consider the localized excitatory interaction837

W f (∆x) = αS exp

(

− (∆x− d)2

2ϵ2S

)

+ αS exp

(

− (∆x+ d)2

2ϵ2S

)

. (B18)

Corresponding to our interpretation of W f (∆x) above being a localized kernel, we choose ϵS ≪ d.838

This choice of WnDV
(∆x) =W g

nDV
(∆x) +W f (∆x) leads to the the Fourier transform,

FWnDV
(k) = FW g

nDV
(k) + FW f (k), (B19)

=
√
2π

[

αEσE(nDV ) exp

(

−σE(nDV )
2k2

2

)

− αIσI(nDV ) exp

(

−σI(nDV )
2k2

2

)

+2αSϵS cos(kd) exp

(

−ϵ
2
Sk

2

2

)]

. (B20)

In our model, the magnitude of theW f (∆x), i.e., αS , is chosen to be smaller than the magnitude of the Mexican-hat839

interaction. Thus we interpret FW f (k) in Eq. (B20) as being a small perturbation to the Fourier transform of the840

standard Mexican-hat interaction, FW g
nDV

(k). Further, since d is assumed to be much larger than the scale of the841

Mexican-hat, σE/I , then the term cos(kd) in FW f (k) oscillates at a k-scale much smaller than the relevant scales of842

FW g
nDV

(k) (see Fig. 3b-c of the main text). Additionally, since ϵS ≪ d, the gaussian envelope multiplying the rapidly843

oscillating term has a scale 1/ϵ, which is much larger than the periodicity 1/d.844

Thus, in k-space, the rapidly oscillating term, FW f (k) can be thought of as predefining a set S = {k1, k2, . . .} of845

local maxima. Under the approximations made above, the addition of the smoother function FW g
nDV

(k), will not846

change the position of the local maxima. This results in the local maxima of FWnDV
(k) also being the same set S.847

Importantly, we note that since S was predefined purely via FW f (k), there is no nDV dependence on the set S.848

Following Eq. (B7), the wave-vector corresponding to the pattern formation at point x on the neural sheet cor-849

responds to the global maxima of FWnDV
(k). Thus, at all points, the pattern formation corresponds to one of the850

discrete set of choices of wave vectors, S = {k1, k2 . . .}. As can be seen from Fig. 3c, the smoothly varying gradient851

in the Mexican-hat term, FW g
nDV

as a function of x picks different choices of ki depending on the position nDV —852

the k ∈ S that is nearest to the maxima of FW g
nDV

(k) will be chosen as the global maxima, and will be the wave853

vector corresponding to the pattern at nDV . We refer to this mechanism as “peak selection”.854

For our particular choice of W f (x) made in Eq. (B18), we obtained855

FW f (k) = 2αSϵS cos(kd) exp

(

−ϵ
2
Sk

2

2

)

. (B21)

We can then approximate the local maxima of FW f (k) as occurring at856

S =

{

2mπ

d

∣

∣

∣

∣

m ∈ Z
+

}

. (B22)

This immediately indicates that the ratios of periods of successive grid modules will be given by857

λm+1

λm
=
m+ 1

m
. (B23)

Thus, the addition of a fixed-scale interaction, W f such as Eq. (B18) results in discrete grid modules. We now858

show that this peak-selection mechanism, and hence modularization, occurs for arbitrary choices of the fixed-scale859

interaction kernel W f (∆x).860
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Appendix C: Kernels that lead to modularization861

The peak-selection modularization mechanism described above arises naturally from the presence of the rapidly862

oscillating term in FW f (k). In fact, for discrete grid modules to occur, the only constraints imposed on the fixed-863

scale kernel W f are: (a) the Fourier transform FW f (k) must have a sufficiently large number of maxima (at least 4864

maxima, corresponding to the 4 grid modules observed in experimental observations); and, (b) these maxima must865

be at scales smaller than 1/σ in k-space. Here we argue that this is generally true for arbitrary kernels, modulo a866

single scaling parameter.867

We hypothesize and give support, without formal proof, that almost every arbitrarily chosen kernel W f (∆x) will868

have a Fourier transform with multiple maxima satisfying condition (a). We will then argue that this kernel can869

always be scaled to satisfy condition (b).870

To motivate our hypothesis, we first note that it is actually possible to construct specific kernels W f (∆x)
whose Fourier transform does not present multiple maxima. For example, the Gaussian kernel, Wgauss(∆x) =
exp[−(∆x)2/2], results in a Fourier transform that is unimodal. However, we hypothesize that such functions are
rare in the space of all continuous functions in L2. Indeed, we can construct a function that is arbitrarily close to the
Gaussian kernel whose Fourier transform will have an infinite number of maxima: Let f0(∆x) = 1[−1,1] be the box
function. Define

fn = f ∗ fn−1

for all n ≥ 1, where f ∗g represents the convolution of functions f and g. By the central limit theorem,
√
nfn(

√
n∆x)871

will approach Wgauss(∆x). However,872

Ffn(k) = [2 sin(k)/k]n, (C1)

which clearly has an infinite number of maxima. Thus, even though the Gaussian kernel has a unimodal Fourier873

transform, we can construct a function gn(∆x) =
√
nfn(

√
n∆x) that is arbitrarily close to the Gaussian kernel (for874

sufficiently large n) but has a Fourier transform that presents an infinite number of maxima.875

In this context, we claim that almost every arbitrarily chosen kernel W f (∆x) will have a Fourier transform with876

multiple maxima. This may be intuited as follows: First note that Fourier space is a dual space, and hence instead877

of considering arbitrary kernels in real space we may equivalently choose arbitrary kernels in Fourier space. Further878

assuming that FW f (k) is a smooth function, we hypothesize that generically smooth functions that are in L2 will879

almost always have multiple maxima and minima. Note that this heuristic also applies to the pattern forming kernel880

as well — we hypothesize that generic L2 smooth functions will have some maxima and minima with a global maxima881

that exists at k > 0 with probability 1, and will not be always negative (in which case a rescaling will make the882

maxima larger than the constant specified by requirement 2 for pattern forming kernels in the main text). Thus we883

expect that kernels will generically result in hexagonal pattern formation, as demonstrated in Fig. 10.884

Thus condition (a) may be satisfied for arbitrary kernels W f (∆x).885

Next, note that scaling a function in real space results in an inverse scaling of the Fourier transform, i.e.,886

F [W f (a∆x) = FW f (k/a). Hence, we can always scale the function W f (∆x) to obtain a Fourier transform with887

maxima that are within any desired scale, allowing condition (b) to be satisfied.888

In Fig. 12, we show examples of modularization arising from different combinations of graded pattern forming889

kernels (W g) and fixed-scale kernels (W f ). In each case, we also present the expected periodicity in each module as890

a function of spatial position as given by the perturbative analysis Eq. (B7). The analytical result based on linear891

stability provides an excellent prediction of the pattern periods per module (see also Main text, Fig. 3e). It also892

predicts the locations of the module boundaries (see also Main text, Fig. 3e) though not as accurately: module893

boundary predictions tend to be slightly but systematically offset relative to the simulated dynamics, due to the894

effects of nonlinearity in the later stages of pattern formation.895

Appendix D: Simple kernels and period ratios896

What kinds of fixed-scale interactions might be present in the medial-entorhinal cortex? As described in the897

main text, in the context of biology, we might expect simple interaction kernels W f to be relevant i.e., the fixed-898

scale interaction profile W f has the following characteristics: (a) there exists a single length-scale d that primarily899

characterizes the shape of W f ; (b) any other length-scales relevant to W f , say scales ϵ1, ϵ2, ... are each much smaller900

than the primary length scale d. Further, we assume that the primary length-scale associated with the fixed-scale901

interaction is larger than the length-scales of the pattern forming kernel, i.e., d≫ σE/I(nDV ).902
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FIG. 12. Examples of modularization and population activity (right column) with various pattern forming and fixed-scale
lateral interactions (left column). In each case the dark-blue curve shows the predicted value of the grid period from Eq. (B7),
and is in close agreement with the numerical simulation of the population activity. Each of the fixed-scale interactions has a
qualitatively different shape, spanning different values of ϕ (see Fig. 3)
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FIG. 13. Sample tuning curves from several neurons in all modules from the network of Fig 2a.

We will demonstrate that simple fixed-scaled interaction kernels result in analytic expressions for grid periods that903

are characterized by a single angular variable ϕ904

λm+1

λm
=
m+ 1 + ϕ/(2π)

m+ ϕ/(2π)
. (D1)

Before filling in the details of our argument, we present an intuitive explanation of the general idea:905

Consider the following basic classes of simple kernels that satisfy the above-described criteria corresponding to a906

length-scale d:907

(a) g(|∆x| − d), for arbitrary functions g(ρ) that are nonzero only over scales |ρ| < ϵi (a localized kernel), and,908

(b) A constant term, that is uniform everywhere up to ∆x = d, after which it falls to zero (a diffuse kernel),909

(c) A decaying term, that decreases from a constant value at ∆x = 0 to zero at ∆x = d (a decaying kernel).910

We also define short-range kernels, as any arbitrary function h(∆x) that is nonzero only over scales |x| < ϵi.911

Any simple kernel W f (∆x) can be generally constructed as a linear combination of the above basic classes. In912

addition, simple kernels may also contain an added component of a short-range kernel.913

To see that simple kernels will generally result in grid period ratios corresponding to Eq. (D1), we will examine the914

approximate Fourier transform structure for each component of the linear combination of simple kernels corresponding915

to a given length-scale d. We first demonstrate that each of the basic simple kernels will result in Fourier transforms916

that are sinusoidal functions with phase shifts and decaying envelopes and hence each basic simple kernel will satisfy917

Eq. (D1). We then show that short-range kernels present Fourier transforms that vary only at large scales, and can be918

ignored in our analyses of simple kernels. We then use these results to demonstrate that all simple kernels constructed919

as the above-described linear combination will have sinusoidal Fourier transforms and will satisfy Eq. (D1).920

1. Localized kernels921

For a general localized kernel W f (∆x) = g(|∆x| − d) we obtain922

FW f (k) = ℜ[e−ikdFg(k)]. (D2)

Since g(x) is supported over a scale ϵ, the Fourier transform Fg(k) will only vary at scales k ∼ 1/ϵ ≫ 1/d. Thus for923

1/d≪ k ≪ 1/ϵ, we can approximate Eq. (D2) as924

FW f (k) = |Fg(k)| cos (kd− ψ) , (D3)

where ψ = arg[Fg(k)]. The local maxima of FW f (k) will then occur at925

S =

{

2mπ + ψ

d

∣

∣

∣

∣

m ∈ Z
+

}

, (D4)

resulting in period ratios described by926

λm+1

λm
=
m+ 1 + ψ/(2π)

m+ ψ/(2π)
, (D5)

which is identical to Eq. (D1) for ϕ = ψ. We also note that we can now ascribe an interpretation to the phase angle927

ϕ — it is the phase difference between FW f (k) and cos(kd).928
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2. Diffuse kernels929

We model a diffuse interaction kernel W f (nDV ) as930

W f (nDV ) = −W01[−d,d] =

{

−W0 if |nDV | ≤ d

0 if |nDV | > d
. (D6)

Corresponding to the discussion above, we look at the Fourier transform FW f (k)

FW f (k) =

∫ +∞

−∞

−W01[−d,d]e
ikxdx =

∫ +d

−d

−W0e
ikxdx (D7)

= −2W0
sin(kd)

k
= −2W0d sinc(kd). (D8)

Note that once again, similar to Eqn. (B21), we obtain a functional form consisting of a periodic function (sin(kd))931

that is multiplied by a decaying envelope 1/(kd). Ignoring the effects of the envelope function, the maxima of this932

function occur at933

S ≈
{

2mπ − π/2

d

∣

∣

∣

∣

m ∈ Z
+

}

, (D9)

which immediately results in period ratios of the form934

λm+1

λm
≈ m+ 1− 1/4

m− 1/4
, (D10)

which corresponds to the result in Eq. (D1) for ϕ = π/2.935

More precisely, the extrema of FW f (k) occur at kmd = q − 1/q − 2/3q3 +O(q−5)936

where q =

(

m+
1

2

)

π. Notably, the errors decay approximately as 1/(πm), and thus for modules generated corre-937

sponding to m ≳ 2 will result in period ratios that approximate Eq. (D1) closely.938

3. Decaying kernels939

Decaying kernels with a scale d may be modeled as any monotonically decreasing function that decays from some940

constant W0 at ∆x = 0, to zero, at ∆x = d. For simplicity, we consider the simplest linear approximation to such a941

kernel, modeled as a triangular kernel. For additional subtleties in the treatment of other decaying kernels, see D 5 a942

The triangular kernel can be written as:943

W f (∆nDV ) =

{

W0(∆nDV − d)/d if ∆nDV < d

0 if ∆nDV ≥ d
(D11)

This function can be written as the convolution of 2 diffuse box functions:

W f (∆nDV ) = (−W01[−d/2,d/2]) ∗ (W01[−d/2,d/2]).

Thus, its Fourier transform is:

FW f (k) = −W 2
0 d

2

(

sin(kd/2)

(kd/2)

)2

= −2W 2
0

k2
[1− cos(kd)].

Once again, we obtain a simple trigonometric function, with maxima at944

S ≈
{

2mπ

d

∣

∣

∣

∣

m ∈ Z
+

}

, (D12)

which immediately results in period ratios of the form945

λm+1

λm
≈ m+ 1

m
, (D13)

which corresponds to the result in Eq. (D1) for ϕ = 0.946
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4. Short-range kernels947

For the case of a short-range kernel W f (∆x) that extends upto a scale ϵ, we note from the Fourier uncertainty948

principle that the characteristic k-scales of FW f (k) will ∼ 1/ϵ ≫ 1/d. Thus, unlike the three other types of simple949

kernels discussed above, short range kernels do not have structure at the scale of 1/d. Since all relevant scales are950

much larger than 1/d, adding short range kernels to any of the other types of simple kernels will not change the951

structure of local maxima at scales of 1/d.952

5. Arbitrary simple kernels953

We now consider a general form for simple kernels, by constructing linear combinations of the above described three954

basic classes of simple kernels each corresponding to the same length scale d and additional short-range kernels.955

W f = alocalW
f
local + adiffuseW

f
diffuse + adecayingW

f
decaying + ashortW

f
short. (D14)

As demonstrated in the preceding sections, the Fourier transform FW f (k) will be given as

FW f (k) = alocal|Fg(k)| cos(kd− ψ)− 2W0adiffuse sin(kd)/k − 2W 2
0 adecaying(1− cos(kd))/k + Fh(k) (D15)

= H0(k) +
3

∑

i=0

Hi(k) cos(kd+ ϕi) (D16)

for some constants ϕi, and some envelope functions Hi(k) for i = 0, 1, 2, 3 that are slowly varying for kd ≳ O(1).956

Under this approximation, FW f (k) is simply the sum of multiple sinusoidal waves with different phases and identical957

frequencies. Thus,958

FW f (k) ≈ cos(kd− ϕ) (D17)

for some ϕ and kd ≳ O(1). Hence, the maxima of FW f (k) occur at959

S ≈
{

2nπ + ϕ

d

∣

∣

∣

∣

n ∈ Z
+

}

, (D18)

which immediately results in period ratios of the form Eq. (D1). Note that the approximations made above imply960

that there may be deviations from our results for the maxima corresponding to small k values — this may manifest961

as deviations in the largest period grid module away from Eq. D1.962

a. Caveats963

Clearly there exist simple kernels with Fourier transforms that are not given by FW f (k) ≈ cos(kd−ϕ). For example964

the Gaussian kernel, W f (∆x) = exp[−∆x2/(2d2)]/(d
√
2π) is a simple decaying kernel (since it has only a single scale965

d). Yet, its Fourier transform is simply FW f (k) = exp[−k2d2/2], which has only a single maximum! However, as966

we have shown earlier, there exist kernels that are arbitrarily close to the Gaussian kernel, whose Fourier transforms967

are given by powers of trigonometric functions, and hence have multiple regularly-spaced maxima with a spacing of968

∼ 1/d. Similarly, there exist additional simple functions[118–120], f(∆x), (like the Gaussian kernel) whose Fourier969

transforms Ff(k) have a small number of maxima. We hypothesize that for all such functions f(∆x) there exist970

simple kernels g(∆x) that are arbitrarily close to f(∆x) and possess regularly spaced maxima.971

6. Period ratios972

Having demonstrated analytically that simple kernels result in a sequence of period ratios given by Eq. (D1), we973

now address the question of the mean period ratio over the sequence and over different values of ϕ. In the main974

text we have demonstrated that setting ϕ = 0 results in a detailed period ratio sequence that is in close agreement975

with the sequence of experimentally observed values. Here we consider the period ratios obtained for other values of976

ϕ, to demonstrate that the experimental observation of mean period ratios being approximated by 1.4 [24] emerges977

naturally from our setup.978
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FIG. 14. Randomly constructed fixed-scale interactions (left column) and their Fourier transforms (right column), in addition
to the hand-designed ones in Fig.3, that give ϕ = 0 .
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FIG. 15. Mean grid-period ratios Ratios of grid periods averaged over 4 modules as a function of the phase shift ϕ in Eq.
(D1)

From Eq. (D1), we obtained that the period ratio, rm = λm+1/λm can be written as979

rm = 1 + 1/(m+ f), (D19)

where f = ϕ/(2π). We ignore m = 1, since that results in a period ratio close to 2, which does not correspond to980

experimental observations. Averaging the period ratio over the next 4 modules (corresponding to rm form ∈ {2 . . . 4})981

results in982

⟨rm⟩m = 1 +
1

3

(

1

f + 2
+

1

f + 3
+

1

f + 4

)

(D20)

As can be seen in Fig. 15, this mean period ratio lies in the range [1.3,1.45], indicating that at all values of ϕ, the983

period ratio obtained from Eq. (D1) matches well with experimental observations. The average of these period ratios984985

over all values of ϕ can also be calculated as986

⟨rm⟩φ,m = 1 +
1

3

[

log

(

5

3

)

+ log

(

7

5

)

+ log

(

9

7

)]

(D21)

which is approximately equal to 1.37.987

7. Module size; number of modules as a topological quantity988

As discussed in the main text, peak-selection for modularization is a highly robust mechanism that is largely989

indifferent to system parameters such as the the particular forms of the fixed-scale interaction and the shape of the990
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gradient. Here we provide an analysis of the number of modules, the scaling of module sizes, and the positions of991

module boundaries, which also exhibit the same robustness. Further, we also describe how this robustness may be992

interpreted as arising from a topological origin, similar to topological robustness in other physical systems like the993

quantum hall effect.994

Recall that for the continuously graded kernel W g
nDV

(∆x) with characteristic spatial scale σ(nDV ) at position nDV ,995

the wave-vector of the formed pattern was proportional to 1/σ(nDV ):996

k∗g(nDV ) = η/σ(nDV ), (D22)

where η is an nDV -independent constant that depends on only the particular form of the graded kernel. Let the spatial997

extent of the system be nDV ∈ [0, L], with σ(nDV ) monotonic such that σmin = σ(0) ≤ σ(nDV ) ≤ σ(L) = σmax.998

We assume for simplicity that the fixed-scale lateral interaction is a simple kernel, such that FW f (k) ∼ cos(kd−ϕ).999

Thus, the local maxima generated by FW f (k) occur at kn ≈ (2nπ + ϕ)/d, where n are the natural numbers. As1000

discussed in the main text, each of these local maxima is ‘selected’ in turn by the moving broad peak of the Fourier1001

transform of the graded kernel, whose position according to Eq. D22 occurs at k∗g(nDV ) = η/σ(nDV ).1002

Notably, the selected maximum km will be robust to small perturbations in the selection function FW g
nDV

(k), since1003

km will remain quantized to one of the discrete values prespecified by the set {kn∥n ∈ N}. In this sense, the chosen1004

maximum km (and hence the corresponding module) presents the hallmarks of a topologically protected state[1]. The1005

topological number corresponding to a given module is the module number m, which is a topological invariant similar1006

to a winding number[1][121].1007

The set of modules expressed through the length of the system corresponds to the set of local maxima kn that1008

lie within the range [η/σmax, η/σmin] that is delineated by the range of peak positions of the graded interaction. It1009

follows that the maxima selected by the graded interaction obey:1010

η

σmax
≤ 2nπ + ϕ

d
≤ η

σmin
. (D23)

Thus, the set of formed modules are determined by the set of integers n that fit in the following interval:1011

−ϕ+ ηd/σmax

2π
≤ n ≤ −ϕ+ ηd/σmin

2π
(D24)

and hence the number of modules Nmod is:

# modules ≡ Nmod

=

⌊−ϕ+ ηd/σmin

2π

⌋

−
⌈−ϕ+ ηd/σmax

2π

⌉

=

⌊−ϕ+ k∗g(0)d

2π

⌋

−
⌈−ϕ+ k∗g(L)d

2π

⌉

(D25)

where ⌊ ⌋, ⌈ ⌉ indicate the floor and ceiling operations, respectively.1012

The above result leads to the following observations: First, the central quantity essential for determining the number1013

of modules is the difference in the integer ratios of the fixed-scale interaction width to the extremal lateral interaction1014

widths, d/σmin, d/σmax. Second, the number of modules depends only on the end-point values σmin, σmax of the1015

smoothly varying width σ(nDV ) the graded interaction; notably, it does not depend on the detailed shape of σ(nDV ).1016

Moreover, if σmin, σmax are varied smoothly (while d is held fixed), or if d is varied smoothly (while σmin, σmax are1017

held fixed), the number of modules will remain fixed, until the change becomes large enough to accommodate one1018

additional or one less module. Thus, the number of modules is also a topological invariant of the system, through the1019

module number m. Third, the number of modules does not depend on the system size L, or the number of neurons1020

nDV the system is discretized into (cf. Fig. 3f). Fourth, since the average module size will be L/Nmod, the module1021

sizes are extensive in L. Thus, for sufficiently large L, the module sizes can be orders of magnitude larger than the1022

scales of the lateral interaction d and σ.1023

Note that the above argument on topological robustness of the modularization of the system is not restricted to1024

the case of simple fixed-scale kernels. Indeed, for any fixed-scale interaction W f , the topological number m for any1025

given expressed module will correspond to selecting the mth maximum of FW f (k), for k > 0.1026

a. Module boundary locations1027

Following the peak-selection arguments made earlier, the module boundaries will occur at spatial locations that1028

have k∗g(nDV ) in between kn and kn+1 (the specific location will depend on the particular forms of the kernels). As1029
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a zeroth order approximation, we can assume that the module boundaries will occur near (kn + kn+1)/2,1030

k∗g(nboundary) ≈
(2n+ 1)π + ϕ

d
(D26)

and thus1031

nboundary ≈ σ−1

(

ηd

(2n+ 1)π

)

. (D27)

where σ−1 is the inverse function of σ(nDV ), σ
−1 ◦ σ(x) = x. Thus, while the specific positions of the module1032

boundaries are dependent on the shape of the gradient σ(nDV ), qualitative features such as the number of modules,1033

module periods and module sizes are indifferent to the particular forms of the gradient (cf. Fig. 3f).1034

In (Fig. 4d), we vary the width of the σ(x) in two different ways: linearly along and in a square root along nDV .1035

This leads to a shift in the module boundary locations that is predicted by fourier theory.1036

8. 2D analysis1037

We have presented a majority of the above analysis for the case of one-dimensional grid cells. Here we briefly
present the analogous computations for the Fourier transforms in two dimensions. We first demonstrate a classical
result relating the Fourier transform of radially symmetric functions to the Hankel transform, which we shall then
use to compute the relevant transforms. Consider the Fourier transform of a function f(x) = f(x, y)

Ff(k) =
∫

f(x)eik·xdx

Ff(kx, ky) =
∫

f(x, y)eikxx+ikyydxdy.

Define polar coordinates in real and Fourier space such that:

x = r cos θ

y = r sin θ

kx = k cosϕ

ky = k sinϕ

This leads to the dot product k · x to be simplified as

kxx+ kyy = rk(cos θ cosϕ+ sin θ sinϕ)

= rk cos(θ − ϕ)

Thus,

Ff(kx, ky) = Ff(k, ϕ) =
∫ ∞

0

∫ 2π

0

rdrdθf(r, θ)eikr cos(θ−φ)

In all cases of interest, the function f is a kernel, and is hence a radially-symmetric real function f(r, θ) = f(r).
Similarly, the Fourier transform Ff will also be a real radially-symmetric function Ff(k, ϕ) = Ff(k). Thus

Ff(k) =
∫ ∞

0

∫ 2π

0

rdrdθf(r)eikr cos(θ−φ), (D28)

=

∫ ∞

0

rdrf(r)

∫ 2π

0

eikr cos(θ−φ)dθ, (D29)

= 2π

∫ ∞

0

rf(r)J0(kr)dr, (D30)

where J0 is the Bessel function of the first kind, defined by

J0(x) =
1

2π

∫ 2π

0

eix cos(θ−φ)dθ.
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FIG. 16. Bessel functions (left column) and period ratios for Bessel function maxima (right column) with their best-fit values
of ϕ for the period ratios corresponding to Eq. (D1)

Equation (D30) defines the Hankel transform (of order zero) of f(r) — the radial component of the Fourier transform1038

of the kernel f(x) is simply the Hankel transform of f(|x|).1039

For the localized gaussian secondary interaction, we can calculate the Fourier transform analytically.

FWlocal(k) = 2π

∫ ∞

0

r
[

αEe
−r2/2σ2

E − αIe
−r2/2σ2

I + αSe
−(r−d)2/2σ2

S

]

J0(kr)dr

= 2π
[

αEσ
2
Ee

−k2σ2

E/2 − αIσ
2
Ie

−k2σ2

I/2 + αSJ0(kd)σ
2
Se

−k2σ2

S/2
]

We can also analytically calculate the Fourier transform for a box-like interaction:

FWdiffuse(k) = 2πW

∫ d

0

rJ0(kr)dr

=
2πW

k2

∫ kd

0

ρJ0(ρ)dr

=
2πW

k2
[kdJ1(kd)]

=
2πWd2J1(kd)

kd

We can similarly also define a two-dimensional equivalent of the decaying kernel, as the convolution of the half-sized
circular box kernel with itself. Thus, by applying convolution theorem to the result on diffuse kernels we obtain

FWdecaying(k) =

[

πWdJ1(kd/2)

k

]2

.

Note that J0(x) and J1(x) display qualitatively similar behavior to cos(x) and sin(x) respectively, apart from an1040

amplitude modulation of the peaks — particularly, we note that the Bessel functions display approximately periodic1041

maxima, which was the central property required for all of our results on modularization and peak selection to apply.1042

We demonstrate this in Fig.16, where we show that the maxima of the Bessel functions are approximately periodic,1043

and fit the form of Eq. (D1) well. In particular, note that the best-fit value of ϕ for J0(k) is approximately 0, which1044

is similar to cos(k), and the best-fit value of ϕ for J1(k) is approximately π/4, which is similar to sin(k).1045

We implemented a 2d simulation that generates 3 discrete modules as shown in Figure 18. For computational1046

feasibility, the simulation was performed in 2 parts: one with x ∈ [0, 0.6N2d
x ] and the other with x ∈ [0.6N2d

x , N2d
x ].1047

The weight matrices for each network were of size 100x1000 each. The weight matrix for a single large 100x20001048

network would have contained 4x1010 elements, which we found prohibitively difficult and slow to run.1049

Fig 19(a) shows another instance of a modular 2d network, the only difference being the value of dloc, which changed1050

from 50 to 45. Fig 19(b) shows the same simulation with 2 distinct random initializations. The pair of resulting1051

modules in each simulation have different relative orientations. Because finite size effects from our simulations also1052

partially constrain the orientations of the modules (data not shown), we cannot make predictions about the relative1053

orientations of the grid modules found in experiments [24].1054
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FIG. 17. Fixed interactions(left, in orange) and their oscillatory Fourier transforms in 1D (left column) and 2D (right column).
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FIG. 18. 2d simulation with 3 modules: (top) Snapshots of population activity showing 3 discrete 2d grid modules,
(bottom) plot of grid spacing and comparision with Hankel transform predictions. Grid spacing determined by calculating the
(neural) spatial auto-correlation of the population firing activity.

9. Robustness to spatial noise1055

In the main text, we discussed how the topological robustness properties of peak selection result in the formed1056

modules being stable to several forms of noise. Particularly, here we focus on the robustness to spatial heterogeneities1057

in the lateral interaction kernels.1058

We first examine the robustness to spatial heterogeneities in the pattern forming kernel W g. To construct such an1059

inhomogeneous pattern-forming interaction, we construct the noisy kernel at location x, by replacing the spatially1060

homogeneous kernel W g[x,x′] = W g[x− x
′], with a spatially heterogeneous kernel W g

ξ [x,x
′] = W g[|x− x

′|+ ξ(x′)],1061
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a

b

FIG. 19. (a) Another instance of a spontaneously formed two dimensional network with parameters given in Table 4. (b) Two
different random initializations of the network from Fig 2h show different relative orientations between the 2 formed modules.

where ξ(x′) is a random number sampled independently for each spatial location x
′ with mean zero and variance ϵ2.1062

In Fig. 20d we present examples of such kernels for the case of W g[x,x′] described by the box function Eq. (13).1063

Note how the independent sampling of ξ(x′) at each location results in a heterogenous kernel W g
ξ that varies in scale1064

at different x, and is no longer radially symmetric.1065

Recall that peak selection entails that the grid period at any location nDV is dependent on the set of potential1066

maxima defined by FW f (k), with a selection between these maxima performed by the broader peak of FW g(k). If1067

noise in the form of spatial heterogeneities are only introduced in W g (and hence introduced in FW g) this results in1068

a noisy selection function. However, since the same maxima will be chosen for a range of selection functions (See Fig.1069

20a-b), the heterogeneity in W g will not be manifested in the emergent grid period.1070

We next consider the addition of similar heterogeneities in the fixed-scale interaction as well, W f (such as in Fig.1071

20c). Note that maxima induced by simple W f are at kn ≈ (2nπ+ϕ)/d, where n are the natural numbers, and hence1072

the grid periodicity of the nth module is given by λn ≈ d/(n+ ϕ/2π). If we consider O(ϵ) noise added to W f in the1073

form of spatial heterogeneities, this would result in an O(ϵ) error in the effective fixed-scale d. However, since λn is1074

approximately d/n, thus the effective noise in periodicity of the nth module, λn, will be O(ϵ/n). Thus, higher module1075

numbers (corresponding to modules with smaller grid periods) have additional error correction beyond the robustness1076

conferred by the topological nature of the peak selection process. This results in clean hexagonal firing fields despite1077

inhomogeneities introduced in all lateral interactions as shown in Fig. 6.1078

10. Comparison of experimental observations with predicted period ratios1079

The general mechanism of peak-selection presented above describes how discrete modules can spontaneously arise1080

in the presence of continuous gradients, by consideration of an additional fixed-scale lateral interaction W f . However,1081

this mechanism does not provide any testable predictions for the ratio of grid periods unless additional assumptions1082

are made. If indeed we assume that W f is a simple kernel, i.e., W f is primarily defined by a single spatial scale, then1083

we demonstrated in SI Sec. D that the period ratios will be given by the simple formula, Eq. D1. In this section, we1084

show that experimental observations of grid periods largely appear to match our predicted period ratios for simple1085

kernels with ϕ = 0.1086

For verification of our main results on the predicted form of period ratios, we examine the literature for grid period
measurements for multiple simultaneously measured grid modules in rats[24, 122–124]. We note that a large fraction
of experimental observations of grid cells with more than one module measure only two modules. For a single pair of
grid periods λ1 and λ2 > λ1, we can always explicitly solve for ϕ and m in Eq. (D1), to obtain

ϕ

2π
=

{

λ2
λ1 − λ2

}

,m =

⌊

λ2
λ1 − λ2

⌋

, (D31)

where {x} represents that fractional part of x, and ⌊x⌋ = x − {x} represents the integer part of x. Thus, a single1087

ratio, because it can always be fit by Eq. (D1), imposes no constraints on the accuracy of the expression.1088
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b

c d

a

FIG. 20. Noise robustness in peak selection process demonstrating how the additional of the smaller oscillatory fourier
transform of the fixed interaction leads to no change in maxima despite smooth movement of the primary peak. (a) Example
pattern forming interaction kernels from 4 neurons without a secondary fixed scale interaction (b) Example composite kernels
from 4 neurons showing both the pattern forming interaction (black) and fixed scale interaction (grey)(c-d) The movement of
the pattern forming interaction leads to a shift in the location of the gloabl maxima in the absence of a secondary interaction.
This secondary interaction prevents any shift in the location of the global maxima when defined by the sum of the pattern
forming interaction and the fixed scale interaction.

It is possible to obtain a value of ϕ from Eq. (D1) and a single pair of periods; however, the estimate obtained from1089

a single pair is not robust: rm depends too sensitively on ϕ. For example, in [24], Rat 13388 exhibits grid periods of1090

≈ 53.24 cm and ≈ 43.00 cm (as estimated from SI Fig. 12b in [24]); Eq. (D1) then yields ϕ/(2π) = 0.199. Assuming1091

a very small measurement error of ∼ 0.5cm in the larger period, such that if it were 53.75 cm instead of 53.24, would1092

yield ϕ exactly equal to zero. A simple sensitivity analysis of the magnitude of error in estimating ϕ can be performed1093

from Eq. (D31):1094

δϕ = 3ϵ
λ2

λ1 − λ2
≈ 3ϵm, (D32)

where ϵ represents the fractional error in the estimate of grid period. Thus, particularly for smaller grid periods1095

(corresponding to larger m), even small errors in grid period estimation can result in a large error in ϕ, making the1096

errorbars in the estimation of ϕ from a single pair of periods large.1097

To obtain results with significant statistical certainty, we focus our analysis on published experimental studies that1098

measure at least 50 grid cells per animal, spanning at least 3 distinct modules. This restriction results in grid period1099

data sets for three rats — we present kernel density estimates of the module periods for each of them in Fig. 21 (Fig.1100

21c corresponds to the data presented in the main text in Fig. 5).1101

We have already demonstrated in Fig. 5 that Rat 14257 presents an extremely accurate match to the period ratio1102

prediction for ϕ = 0 (i.e., predicted period ratios of 2, 3/2, 4/3, 5/4,...); in addition, Rat 14147 (observed period ratios1103

of 1.27 , 1.46 ≈ 3/2, 1.37 ≈ 4/3) and Rat 15708 (observed period ratios of 1.31, 1.49 ≈ 3/2, 1.32 ≈ 4/3) also match1104

ϕ = 0 very well (R2 values of 0.999, 0.979, and 0.968 for Rats 14257, 15708, 14147 resp.) for all grid modules except1105

for the module with the largest period.1106

Why is there an observed discrepancy for the grid module with the largest period? We propose four possible reasons1107

for this discrepancy: Firstly, this discrepancy may be a result of the approximation made in arriving at Eq. (D17)1108

— since the approximation is particularly accurate for kd ≳ O(1), the potentialy mismatch would primarily affect1109

only the largest grid period module. Secondly, as demonstrated in Sec. D 9, the grid module corresponding to the1110

largest grid period will have the least robustness to noise in the fixed-scale interaction, potentially introducing a large1111

variance in the grid period for that module. Thirdly, as can be seen in Fig. 3h and Eq. (D32), the error in estimating1112

the grid period for the first module (m = 1) is the most susceptible to errors in the value of ϕ Lastly, our predictions1113

for grid period ratios Eq. (D1) are for the case of simple kernels that have a single spatial scale. A discrepancy at1114
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FIG. 21. The 3 rats from Stensola et al. with 4 modules and their corresponding periods.

only the largest grid module may thus be suggestive of fixed-scale interactions that are primarily described by a single1115

scale, with an additional low frequency perturbation at a larger spatial scale.1116

However, note that (particularly for Rats 14147 and 14257) there are relatively few grid cells observed from this1117

largest period module, and the resulting uncertainty in period estimation may instead contribute to the error. In1118

sum, apart from the possibility of some additional low frequency perturbations, the experimental data for rats with1119

several simultaneously observed grid modules is largely consistent with the predicted period ratios for simple kernels1120

with ϕ = 0.1121

Skipped modules: Sometimes, neural recordings can miss a module. This can cause a large deviation from our1122

predictions. For example, for a set of 5 modules following period ratios M4/M5 = 1.20, M3/M4 = 1.25, M2/M3 =1123

1.33, M1/M2 = 1.5. If recordings had missed module M4, the measured ratios would be M1/M2 = 1.5, M2/M3 =1124

1.33, M3/M5 = 1.5.1125

However, we do note that available data on multiple modules with a statistically large number of grid cells per1126

module are quite sparse. To obtain further verification of our theoretical results, including the prediction of Eq.1127

(D1) and even more specifically the hypothesis that ϕ is close to zero, additional data with multiple simultaneously1128

observed grid modules will be important.1129
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Appendix E: Lyapunov Function1130

The energy function of continuous time neural networks can be written as [125]:

E(s) =− 1

2

∑

ij

s(i)Wijs(j)

+
∑

i

∫ s(i)

0

ϕ−1 (s) ds−
∑

i

Iis(i), (E1)

where s represents a vector of the synaptic activation at each neuron in the network, and Ii is the input bias to1131

neuron i. For simplicity and since linear analysis does a remarkably good job in predicting the formed modules, let1132

us restrict ourselves to the case of ϕ(x) = x. Also, since the system is locally translationally invariant, we know that1133

the dominant modes are going to be periodic. Hence, we may evaluate the energy function of the network dynamics1134

(in the linearized regime) by assessing the energy of the periodic neural activity modes:1135

sk(x) = A sin(k · x+ δ) +B, (E2)

where k = kk̂ is an arbitrary Fourier space vector, and A,B and δ are arbitrary constants. For these modes, we can
write the energy function in the continuum limit as:

E[sk(x)] = −1

2

∫

dxdx′W (x,x′)sk(x)sk(x
′) +

1

2

∫

dxsk(x)
2

Assuming that the system size L is large,1136

2E[sk(x)] = −
∫

W (x− x
′)[A sin(k · x+ δ) +B][A sin(k · x′ + δ) +B]dxdx′ +

∫

[A sin(k · x+∆) +B]2dx

= −A2

∫

dudvW (u) cos(k · u) +A2

∫

dudvW (u) cos(2k · v + δ) +B2

∫

dxdx′W (x− x
′) + L(A2/2 +B2)

= −A2L

∫

dueik·uW (u) +A2

∫

duW (u)

∫

dv cos(2k · v + δ) +B2

∫

dudvW (u) + L(A2/2 +B2)/2

= −A2LW̃ (k) + LB2W̄ + L(A2/2 +B2),

= −constant1 × W̃ (k) + constant2

where have used the simple trigonometric identity, 2 sin(C) sin(D) = cos(C − D) − cos(C + D), and a change of1137

variables,
∫

dxdx′ = (1/2)
∫

d(x− x
′)d(x+ x

′) =
∫

dudv, with u = x− x
′ and v =

1

2
(x+ x

′).1138

Thus, we obtain that the energy function E[sk] is a simple linear function of the Fourier transform W̃ (k) of the1139

recurrent weight matrix. The minimum energy solution corresponds to the Fourier mode that maximizes W̃ (k).1140

In other words, the dynamics is dominated by the k∗ that maximizes W̃ (k). This result, derived from an energy1141

landscape perspective, is equivalent to the result in Eq. (B7), which we obtained earlier via perturbation analysis.1142

Appendix F: General formulation of module formation dynamics: Discrete peak selection via loss1143

minimization1144

In Sec. E, we demonstrated how the pattern formation on the neural sheet can be derived via an energy minimization1145

approach. Here, we use an energy landscape view to describe how loss function minimization results in modular1146

solutions.1147

The key components for spatially modular solutions to arise from energy minimization are as follows: 1) A spatially-1148

independent loss function f(θ) with multiple local maxima and minima; 2) A gradient in a spatially-dependent variable,1149

θ0(x); and 3) A coupling between the system parameters θ and θ0, that results in a combined loss function1150

L(θ, θ0(x)) = (1− α)f(θ) + α∥θ − θ0(x)∥2 (F1)

Under appropriate constraints on f(θ), solving the following optimization at each x1151

θ∗(x) = argmaxθ L(θ, x) (F2)
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will produce discrete, step-like changes as a function of x. This happens because the smooth minimum given by1152

the ||θ − θ0(x)||2 term effectively selects one of the local minima in f(θ) as the global minimum. As the function1153

||θ−θ0(x)||2 slides smoothly along with x, the peak of f(θ) selected as the global minimum remains the same for some1154

time, then jumps abruptly. These step-like changes are modular solutions to the global optimization problem. The1155

energy function defined in Eq. (F1) can be viewed as a regularized optimization problem, with the spatially-dependent1156

regularizer ||θ − θ0(x)||2 acting as a prior that selects one of the minima of f(θ) at each location (Fig. 22).1157

The correspondence of this general picture with the peak selection mechanism described in the main text follows1158

directly with the following identifications: the spatially independent nonlinear loss function f(θ) with the fixed-scale1159

interaction W f ; the spatially varying parameter prior θ0(x) with the graded scale σ(nDV ) of the pattern-forming1160

kernel; the combined loss L(θ, x) with the full kernel WnDV
; and the spatially-varying, multi-step-like set of optima1161

θ∗(x) with the grid periods λ∗(x), respectively. Similar to peak selection for grid cells, the formed modules in this1162

generalized setting will also inherit topological robustness and stability.1163

We demonstrate a numerical example of this in Fig. 7, where we construct f(θ) as a random sample from a Gaussian1164

process with a radial basis function kernel, and simulate gradient descent dynamics on the loss function L(θ, θ0(x)).1165

To prevent the dynamics from getting stuck in local minima of L, we simulate the gradient descent first purely on1166

the regularization term, with gradually increasing strength of the rugged loss function, through gradually decreasing1167

α with increasing time.1168

Although we primarily focused on the peak selection process in Fourier space for multi-periodic patterning in grid1169

cells, we also showed that it has a general formulation in terms of dynamics on an energy landscape: One (spatially1170

invariant) interaction sets up an optimization problem with multiple local minima, while a second (spatially graded)1171

interaction defines a locally shallow single-optimum landscape, with a smoothly shifting optimum as a function of1172

space. Thus, the shallow optimum selects one of the narrow local optima as the global optimum, with discontinuous1173

jumps to the next local minimum even as the parameters vary smoothly. This analytical formulation provides1174

a simplifying mathematical perspective on how smooth gradients could lead to discrete patterning and modular1175

specialization in the brain and body [31, 40, 62].1176

FIG. 22. A general setting for peak-selection Assuming a loss function f(θ) (blue) and a spatially dependent quantity
θ0 (red), a combined loss function L(θ, x) can be constructed such that the x-dependent optimizer of L(θ, x) will be modular
(green), since it will be constrained to correspond to one of the minima of f(θ).
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Appendix G: The emergence of modules corresponds to the formation of localized eigenvectors1177

As has been observed before [126], a neural network endowed with slowly varying local interactions shows diverse1178

timescales that are spatially localized: different parts of the network respond with disparate temporal dynamics. We1179

also find a localization of eigenvectors in our multi-module grid network, Fig. 23A. Similar to [126], our interaction1180

matrix has a locally circulant form (due to the slowly varying gradient in lateral inhibition width). This is a signature1181

of a phase transition, similar to the Anderson localization transition in condensed matter physics [53]. The eigenvectors1182

for a regular pattern forming interaction in traditional continuous attractor models are delocalized fourier waves which1183

are then transformed into localized fixed-wavelength gaussian wavepackets with the addition of the gradient and fixed1184

scale interaction.1185

We find that in the resulting set of localized eigenvectors, each has a different but constant period, Fig. 23B. These1186

periods exactly match the spatial periods of the modules formed in steady state. In sum, the locally circulant matrix1187

gives rise to eigenvector localization, and the localized eigenvectors correspond to the modules.1188
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FIG. 23. Localization of eigenvectors: A) Eigenvectors of various one-dimensional interaction weight matrices along with
the corresponding inter-peak spacings are localized, B) The periodicity within an eigenvector is constant.
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