
Improving Lungs Cancer Detection Based on Hybrid
Features and Employing Machine Learning
Techniques
Jing Yang 

Universiti Malaya
Por Lip Yee 

Universiti Malaya
Abdullah Ayub Khan 

Benazir Bhutto Shaheed University Lyari
Mohammad Shahbaz Khan 

Children’s National Hospital
Hanen Karamti 

Princess Nourah bint Abdulrahman University
Amjad Aldweesh 

Shaqra University
Lal Hussain  (  lall_hussain2008@live.com )

University of Azad Jammu and Kashmir
Abdulfattah Omar 

Prince Sattam Bin Abdulaziz University

Research Article

Keywords: Non-small lung cancer (NSCLC), Small cell lung cancer (SCLC), Support vector Machine (SVM),
Classi�cation, autoencoder, Gray-level co-occurrence (GLCM), and Haralick texture features

Posted Date: May 24th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2929395/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2929395/v1
mailto:lall_hussain2008@live.com
https://doi.org/10.21203/rs.3.rs-2929395/v1
https://creativecommons.org/licenses/by/4.0/


   

 

 
 

Improving Lungs Cancer Detection Based on Hybrid Features 

and Employing Machine Learning Techniques 
Jing Yang1,*, Por Lip Yee2, Abdullah Ayub Khan3, Mohammad Shahbaz Khan4

, Hanen Karamti5, , Amjad 

Aldweesh6,*, Lal Hussain7,8, *, Abdulfattah Omar9 

 

1Department of Computer System and Technology, Faculty of Computer Science and Information Technology, 

Universiti Malaya, 50603 Kuala Lumpur, Malaysia (Email: Yj741655109@163.com) 

2Faculty of Computer Science & Information Technology, Universiti Malaya, 50603 Kuala Lumpur, Malaysia. 

(Email:porlip@um.edu.my) 

3Department of Computer Science and Information Technology, Benazir Bhutto Shaheed University Lyari, Karachi 

75660, Pakistan (Email: abdullah.ayub@bbsul.edu.pk) 

4Children’s National Hospital, 111 Michigan AVE NW, Washington, DC, 20854, USA 

5Department of computer sciences, College of Computer and Information Sciences, Princess Nourah bint 

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia 

6College of Computer science and information technology, Shaqra University, Saudi Arabia 

7Department of Computer Science and Information Technology, King Abdullah Campus Chatter Kalas, University of 

Azad Jammu and Kashmir, Muzaffarabad, 13100, Azad Kashmir, Pakistan  

8Department of Computer Science and Information Technology, Neelum Campus, University of Azad Jammu and 

Kashmir, Athmuqam, 13230, Azad Kashmir, Pakistan. 

9Department of English, College of Science & Humanities, Prince Sattam Bin Abdulaziz University, Saudi Arabia, 

 

Corresponding Authors: Lal Hussain (lall_hussain2008@live.com), Amjad Aldweesh and Jing Yang 

 

Abstract: Lung cancer detection using machine learning involves training a model on a dataset of medical images, such as CT scans, to identify 

patterns and features associated with lung cancer. Past researchers developed different computer aided diagnostic (CAD) systems for early pre-

diction of lung cancer. The researchers extracted single features such as texture, morphology etc.; however, by combining the features, accuracy 

can be improved. In this study, we extracted Gray-level co-occurrence (GLCM), autoencoder and Haralick texture features. We combined these 

features and computed the performance using robust machine algorithms including Decision tree (DT), Naïve Bayes (NB) and support vector 

machine (SVM) with different kernel functions. The performance was evaluated using standard performance measures. The hybrid methods such 

as GLCM + Autoencoder, and Haralick + Autoencoder yielded highest detection performance using SVM Gaussian and radial base function (RBF) 

with sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) with accuracy of 100% and AUC 1.00 followed by 

SVM polynomial yielded an accuracy of 99.89% and AUC of 1.00; GLCM + Haralick using SVM Gaussian yielded accuracy (99.56%), SVM 

RBF yielded accuracy (99.35%). The results reveal that the proposed feature extraction methodology can be usefully used to predict the lung 

cancer for further diagnosis at early stage.  

Keywords: Non-small lung cancer (NSCLC), Small cell lung cancer (SCLC), Support vector Machine (SVM), Classification, autoencoder, 

Gray-level co-occurrence (GLCM), and Haralick texture features 

MSC: Artificial Intelligence, Machine Learning, Lung Cancer, cross validation 
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1. Introduction 

According to the recent statistics of lung cancer in 2022 [1], there were about 2.36 million new cases of lung cancer 

expected for diagnosis and out of which 85% belong to non-small cell lung cancer. The non-small cell lung cancer 

(NSCLC) is diagnosed using radiofrequency (RF) and stereotactic body radiotherapy (SBRT). The other type of lung 

cancer is small cell lung carcinoma (SCLC). Both types have different methods for treatment and spreading. NSCLC is 

different from SCLC and slowly grows. While SCLC is growing rapidly related to smoking, spread in whole body 

quickly and forms tumor. The lung cancer deaths are related to the number of cigarette smoked [2]. NSCLC is so 

named because the cancer cells in this type of lung cancer do not look small and uniform under a microscope, as they 

do in small cell lung cancer [3]. The further subtypes of NSCLC include squamous cell carcinoma, large cell carcinoma, 

and adenocarcinoma. NSCLC is commonly caused by smoking, exposure to radon and air pollution, but also can occur 

in people who never smoked. The symptoms of NSCLC can include a persistent cough, shortness of breath, chest pain, 

and coughing up blood.  

The SCLC, which is a more aggressive and strong-growing lung cancer type, accounts for about 10-15% of all lung 

cancer cases [4,5]. It is so named because the cancer cells in this type of lung cancer look small and uniform under a 

microscope. SCLC is commonly caused by smoking but can also occur in people who never smoked. SCLC often 

spreads (metastasize) to other parts of body early in the course of the disease, so it is frequently advanced at the time of 

diagnosis. The diagnosis is typically made with imaging tests, such as a computer tomography (CT) scan or chest 

X-ray, and confirmed through a biopsy. Treatment options for SCLC typically involve a combination of chemotherapy 

and radiation therapy [6]. If the cancer is limited to one area of the chest, surgery may be used as well. Prognosis for 

SCLC is generally poor, with a median survival time of about a year from the time of diagnosis. Due to the aggressive 

nature of this disease, early diagnosis and treatment are important for improving outcomes. 

The SCLC is directly linked with cigarette smoking and aggressive types of lung cancer. Therefore, SCLC have 

different methods for treatment and diagnosis than NSCLC. The NSCLC early detection can be very helpful with sur-

vival rate of 35% to 85% depending on the stage and tumor type. Usually, most of the tumor are late detected so overall 

5-year survival rate for NSCLC remains 16% only. Chemotherapy is utilized for SCLC which provokes 60% of response 

for NSCLC patients. The excessive tobacco uses, and smoking causes the lung cancer around 90% cases. Other factors 

that may lead to lung cancer include air pollution exposures, radon gas, asbestos and chronic infections. In addition, 

many hereditary and there have been suggested both inherited and acquired mechanisms of lung cancer susceptibility. 

Radiation therapy, surgery, targeted therapy and chemotherapy are also choices for lung cancer treatment [7]. 

As radiation and x-rays were discovered at the end of the 19th century, physicians used these results to examine 

the human body and approaches to non-surgical cancer treatment came along. Hospital radiologists and surgeons 

started working together and with the use of computers, significant cancer data began to accumulate in 1968. For the 

past 50 years, considerable effort has been made in this field. Tests or imagining modalities typically conducted to 

evaluate the stage of lung cancer some of them are Computed Tomography (CT), this is the process that includes the 

detailed pictures of the anatomy and lung tumor are precarious for treatment planning. For cancer staging, CT scans of 

the chest are essential and the abdominal CT scan is used for locating secondaries and metastases [8]. Positron emission 

tomography (PET) scan utilize radioactive sugar as cancer cells rapidly uses sugar and is essential for the identification 

of spread to lymph nodes or other organs [9]. One of the best currently available scans is magnetic resonance imaging 

(MRI) scan that is used for the scanning of brain. Scanning of brain may be necessary to decide the propagation of 

tumor in brain [10]. 

Artificial intelligence (AI) can be used in the detection and diagnosis of lung cancer [11]. One approach is using AI 

algorithms to analyze medical imaging, such as CT scans, to identify signs of lung cancer. This can help radiologists 

make more accurate and efficient diagnoses [12]. Additionally, AI can also be used to predict lung cancer progression 

and the effectiveness of treatment plans using hand-crafted features and dynamic features extraction approaches [13–
17]. However, it is important to note that the use of AI in the medical field is still in early stages and further research is 

required to fully understand its potential and limitations in the detection and treatment of lung cancer.  

A study proved low-dose spiral CT to be more effective than conventional chest radiography in detecting lung 

cancer at early stages [18]. Radiological features of CT lung cancer are often Solitary Pulmonary nodules. However, 

most of the Pulmonary Nodules (PN) in lung cancer have a similar appearance to benign ailments such as tuberculosis, 

inflammatory pseudo tumor, cardiac tames, and aspergillosis [19]. In 1991, helical CT was implemented in chest im-

agery and the state of CT images of thoracic structures was dramatically improved [20]. Various rows (4, 8, 16, 32, 64 

and 128) of the Analyzer are used for these new CT scanners. With the introduction of Multislice CT scan, high reso-

lution images can be obtained quickly which provide a greater volume of information and a more accurate detection of 

lung pathologies. A conventional CAD system involves processing multiple images, performing different tasks, and 



 

 

then classifying these into tumors or benign lesions [21]. The CAD device is used specifically to detect lung cancer. This 

method addresses the issue of designing a computer-based system to obtain the highest features from the differenti-

ated unusual region of the lung CT images, and those features could be utilized to specifically identify lung tumors 

from the CT as favorable or destructive. A recent study achieved sensitivity of 80% for detecting nodules with malig-

nant potential and resulted in 0.85 false positive readings per section. In short, computer aided diagnosis of lung nod-

ules is likely to have an important role in CT based screening tests in the near future [22]. 

The previous researchers utilized the single feature extracting approach, limited pre-processing steps and default 

parameters for machine learning algorithms. The pre-processing steps play a vital role for providing a better and ac-

curate analysis. As this dataset was previously investigated by [23] comprised of CT images using entropy based 

complexity techniques to investigate the nonlinear hidden dynamics with limited pre-processing steps and single 

features extracting strategy. The dataset was imbalanced and small, so to avoid overfitting, we utilized the 10-fold 

cross validation and data augmentation based on random cropping, random flipping, color shifting, Gaussian noise, 

image scaling. Moreover, the feature extraction strategy also plays a vital role to improve the prediction performance. 

Researchers are devising tools to improve the feature engineering approach. Apart, single and hybrid features can also 

matter to improve the diagnostic capability. The hybrid feature approaches are often used for classification tasks, as the 

relationships between the features and the class labels are often complex and cannot be modeled using a single feature. 

The main contributions of this study are: 

• Hybrid approach: We utilized the hybrid features approach. We extracted different features comprising of GLCM, 

Haralick texture, and autoencoder. We combined these features by concatenating which combined the contributions of 

different features combination. To the best of our knowledge, the hybrid features extracting strategy along with diverse 

pre-processing steps and parametric optimization approach is utilized which further improved the prediction per-

formance.  

• Parametric optimization: Likewise, the machine learning classification algorithms performance can be further im-

proved by optimizing the hyperparameters. We utilized grid search method to obtain the optimal features of machine 

learning algorithms. We then fed these features as single, and hybrid features by concatenating different features to 

different robust machine learning (ML) classification algorithms after optimizing their parameters as reflected in Fig-

ure 1. The proposed approach yielded the highest detection performance. 
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Fig 1: Schematic Diagram with hybrid features extraction approach to detect lung cancer a) Over schematic dia-

gram, b) Extraction of GLCM quantitative features from lung cancer CT images 

 

Figure 1 a) depicts the schematic flow of our work. In the first step, the lung cancer images are read as input. We 

then extracted Autoencoder, Haralick and GLCM features from these images.  Figure 1 b) reflects few examples of the 

GLCM features extracted from NSCLC and SCLC subjects. Similarly other features were extracted from lung cancer 

types. We then utilized the single and hybrid features extracting approach. We combined the features with hybrid 

approach such as GLCM + Autoencoder, Haralick + Autoencoder, GLCM + Haralick. These hybrid features are then fed 

as input to machine learning classifiers such as SVM with different kernels, NB and DT by optimizing the parameters 

of these algorithms. 

 

2. Materials and Methods 

2.1.Datasets 

 The dataset utilized in this study, provided by Lung Cancer Alliance (LCA) can 

be obtained at request on their official website 

(https://www.prnewswire.com/news-releases/lung-cancer-alliance-launches-first-open-access-patient-driven-website-

for-ct-scans-and-clinical-data-95842964.html). This dataset is utilized and detailed previously by [23] and similar other 

studies. The database images are in the Digital Imaging and Communications in Medicin (DICOM) format with total 76 

patients with a total of 945 images including 377 images of NSCLC and 568 of SCLC subjects.  

2.2.Pre-Processing 

https://www.prnewswire.com/news-releases/lung-cancer-alliance-launches-first-open-access-patient-driven-website-for-ct-scans-and-clinical-data-95842964.html
https://www.prnewswire.com/news-releases/lung-cancer-alliance-launches-first-open-access-patient-driven-website-for-ct-scans-and-clinical-data-95842964.html


 

 

Image pre-processing refers to the techniques used to prepare an image for analysis or processing in computer 

vision applications [24,25]. The purpose of image pre-processing is to enhance the quality of an image and make it 

easier to analyze, segment, and extract features from image. 

Image Resize 

Image resizing refers to the process of changing the size of an image. This can be done for various reasons, such as 

to fit the image into a specific space, to reduce the file size, or to increase the resolution. There are two common 

methods for resizing images: interpolation and resampling [26]. We used interpolation which involves estimating the 

value of pixels in an enlarged image based on the values of surrounding pixels. When resizing an image, it is important 

to consider the aspect ratio of the image, which is the proportion of the width to the height. If the aspect ratio is not 

preserved during resizing, the image may become distorted. To preserve the aspect ratio, the image can be resized 

proportionally [27], either by specifying only one dimension and letting the other dimension be calculated automati-

cally, or by using an aspect ratio constraint. 

Data Augmentation 

Data augmentation is a technique used in machine learning to artificially increase the size of a dataset by gener-

ating modified versions of the original data [28]. The goal of data augmentation is to reduce overfitting, which occurs 

when a machine learning model performs well on the training data but poorly on new, unseen data. By increasing the 

size and diversity of the training dataset, data augmentation can help to prevent overfitting and improve the general-

ization performance of a machine learning model. 

We utilized the following data augmentation techniques: 

 

1. Random cropping: Randomly cropping a portion of the original image can increase the size of the dataset and provide 

new perspectives on the objects in the image [29]. 

2. Random flipping: Randomly flipping [30] the image horizontally or vertically can provide new views of the objects in 

the image and help the model to learn more robust features. 

3. Random rotation: Randomly rotating [31] the image can help the model to learn features that are invariant to orienta-

tion. 

4. Color shifting: Changing the brightness, saturation, or hue of the image can help the model to learn features that are 

invariant to color [32]. 

5. Gaussian noise: Adding Gaussian noise to the image can help the model to be more robust to noise in the input data. 

6. Image scaling: Scaling the image up or down can help the model to learn features that are invariant to scale [33]. 

2.3.Hyperparameters optimization  

Hyperparameter optimization is the process of selecting the best hyperparameters for a machine learning algo-

rithm. Hyperparameters are parameters that are not learned from the training data, but rather set prior to training [34]. 

They control the learning process of the algorithm and can have a significant impact on its performance. 

We utilized the following hyperparameters for Support Vector Machines (SVM), Naïve Bayes, and Decision Trees: 

Support Vector Machines (SVM: 

1. C: The C hyperparameter controls the trade-off between achieving a low training error and a low testing error. A 

smaller C value will result in a wider margin and a lower training error, while a larger C value will result in a narrower 

margin and a higher training error. 

2. Gamma: The gamma hyperparameter determines the shape of the radial basis function that is used to map the input 

data to a higher-dimensional space. A smaller gamma value will result in a more complex model, while a larger 

gamma value will result in a simpler model 

Naïve Bayes Smoothing parameter: The smoothing parameter, also known as Laplace smoothing, controls the 

strength of the smoothing applied to the probabilities in the Naïve Bayes model [35–37]. A larger smoothing parameter 

will result in a smoother probability distribution, while a smaller smoothing parameter will result in a more discrete 

distribution. 

Decision Trees 

For decision tree, the parameters utilized were [38–41]: 



 

 

1. Maximum depth: The maximum depth hyperparameter controls the maximum depth of the decision tree. A smaller 

maximum depth will result in a simpler model, while a larger maximum depth will result in a more complex model. 

2. Minimum samples per leaf: The minimum samples per leaf hyperparameter controls the minimum number of samples 

that must be present in a leaf node in order for it to split. A smaller minimum samples per leaf will result in a more 

complex model, while a larger minimum samples per leaf will result in a simpler model. 

Minimum samples per split: The minimum samples per split hyperparameter controls the minimum number of 

samples that must be present in a split in order for it to occur. A smaller minimum samples per split will result in a 

more complex model, while a larger minimum samples per split will result in a simpler model. 

2.4.Grid Search Method 

To determine the optimal hyperparameters for a machine learning algorithm, one commonly used method is 

grid search, which involves training the model with different combinations of hyperparameters and selecting the 

combination that results in the best performance on a validation dataset [42–45]. Another method is random search, 

which involves randomly sampling hyperparameter combinations and selecting the combination that results in the 

best performance on a validation dataset. Grid search is a technique for hyperparameter optimization in machine 

learning. It involves systematically searching over a predefined set of hyperparameter values, training the model with 

each combination of hyperparameter values, and selecting the combination of values that results in the best perfor-

mance on a validation set. 

The following procedure was utilized: 

1. Define a set of hyperparameters for the model, along with a range of possible values for each hyperparameter. 

2. Create a grid of all possible combinations of hyperparameter values. 

3. Train the model with each combination of hyperparameter values, using a validation set to evaluate the performance of 

the model for each combination. 

4. Select the combination of hyperparameter values that result in the best performance on the validation set. 

5. Train the final model using the selected hyperparameter values and the entire training dataset. 

Grid search is a simple and effective method for hyperparameter optimization [42–45], but it can be computation-

ally expensive and time-consuming, especially for models with many hyperparameters or a large range of possible 

values for each hyperparameter. For this reason, more efficient methods for hyperparameter optimization, such as 

randomized search and Bayesian optimization, have been developed. These methods are able to explore the hyperpa-

rameter space more efficiently and often converge to the optimal hyperparameters more quickly than grid search. 

2.5.Training/ Testing Data Validation  

The 10-fold cross validation is a technique used to evaluate the performance of a machine learning model [46]. 

It is a resampling method that involves dividing the dataset into 10 equal-sized subsets, or "folds", and then training 

and evaluating the model on 9 of the folds while using the remaining fold as the validation set [47]. It involves dividing 

the original training dataset into K folds (where K is a positive integer), and then training the model K times, with each 

time using a different fold as the validation set and the remaining K-1 folds as the training set. 

2.6.Feature extraction  

Feature extraction is a process of identifying and extracting relevant information from datasets in order to rep-

resent them in a more compact and informative way. In the context of machine learning, feature extraction is often 

used to pre-process data before they are fed into a model. The goal is to extract features that are most relevant to the 

task at hand and that capture the underlying patterns in the data. The machine learning algorithms requires the most 

specific feature extracting approach. Recently, the researchers computed hybrid features [48–50] ,and different features 



 

 

extracting approaches [50–54] to improve various imaging pathologies detection. In this study, we have applied feature 

extraction strategies which are GLCM, Haralick, and Autoencoder. 

2.6.1. Haralick Texture Features 

The images texture properties are computed using Haralick Features. The Haralick features were utilized in 

previous studies to solve many classification problems [55–57], specifically for colon biopsy classification [58,59]. In 

this effort, we suggest the Haralick texture feature are extracted from lung cancer Computer Tomography (CT) 

images.  

1.Mean: 

It is instantly associated with the heterogeneity of the image spectrum. The mean for an image is measured uti-

lizing below equation. 

               𝑀 =  1𝑀𝑁 ∑ ∑ 𝑝(𝑖, 𝑗)𝑁
𝑗=1                                                 (1)   𝑀

𝑖=1  

2. Variance: 

The variance measures the spread of the distribution about the mean value in the image. It describes the inten-

sity variation around the mean.  

                                                 𝑉𝑎𝑟   = ∑ ∑(𝑖 − 𝜇)2𝑝(𝑖, 𝑗)                                     (2)𝑁−1
𝐽=1

𝑁−1
𝑖=1  

3. Standard Deviation: 

The standard deviation has been the second pivotal moment that measured contrast population. It is likely to be 

distributed and therefore can be represented as a measure of high and low contrast homogeneity. 

                                                    𝑆𝑑𝑒𝑣 =  [ 1𝑀𝑁 ∑ ∑(𝑝(𝑖, 𝑗) − 𝜇)𝑁
𝑗=1

𝑀
𝑖=1 ]1 2⁄                                  (3) 

4. Contrast:  

The contrast is defined as a measurement of the intensity between the pixels and the surrounding images. 

Mathematically: 

 

                                                                 𝐶𝑜𝑛𝑡 = ∑ ∑(𝑖 − 𝑗)2𝑁
𝑗=1

𝑁
𝑖=1 𝑝𝑖𝑗                                         (4)  

5. Entropy:  

Entropy is the randomness measurement used to distinguish the input image texture. The following expression 

describes it as:                                                 𝐸𝑡𝑟𝑜 = ∑ ∑ 𝑝(𝑖, 𝑗) log 𝑝(𝑖, 𝑗)𝑗  𝑖                                             (5) 

6. Correlation:  

Correlation is widely used in statistics, data analysis and machine learning. It is used to identify the relationship 

between different features and target variable in a dataset to select the most relevant features and understand the un-

derlying patterns in the data. Mathematically. 



 

 

                                𝐶𝑜𝑟𝑟 =  ∑ ∑ (𝑖 − 𝑚𝑖)(𝑗 − 𝑚𝑗)𝜎𝑖𝜎𝑗
𝑁

𝑗=1
𝑁

𝑖=1                                                (6) 

7. Energy:  

Energy can be described as measuring the magnitude of repetitions of pixel pairs. It estimates the image's regu-

larity. The energy preference will be high if the pixels are quite similar. 

                                                     𝐸𝑛𝑒𝑟 =  ∑ ∑ 𝑝(𝑖𝑗)2                                                 (7)𝑁𝑗=1𝑁𝑖=1  

  

8. Homogeneity:  

Homogeneity is an important consideration when working with data, as it can affect the performance of a model. 

In general, a more homogeneous dataset will lead to better model performance, while a more heterogeneous dataset 

may require more advanced techniques to handle the variability in the data. Mathematically,  

                                                             𝐻𝑔𝑒𝑛 =  ∑ ∑ 𝑝𝑖𝑗1 + |𝑖 − 𝑗|𝑁
𝑗=1                                           (8)𝑁

𝑖=1  

9. Kurtosis:  

In digital image processing, kurtosis values are computed through noise and resolutions measurements. 

                                                   𝐾𝑢𝑟𝑡 =  1𝑀𝑁𝜎4 ∑ ∑(𝑝(𝑖. 𝑗) − 𝜇)4𝑁
𝑗=1

𝑀
𝑖=1                                     (9) 

10. Skewness:  

This feature is based on geometrical moments of patches of images. Skewness is an asymmetry measure or ab-

sence of symmetry.  

                                               𝑺𝒌𝒆𝒘 =  𝟏𝑴𝑵𝝈𝟑 ∑ ∑(𝒑(𝒊, 𝒋) − 𝝁)𝟑𝑵
𝒋=𝟏                                       (𝟏𝟎)𝑴

𝒊=𝟏  

2.6.2. Grey Level Co-occurrence Matrix (GLCM) 

GLCM was one of the most popular techniques of consistency studies. As a unique and popular texture analysis 

tool, it considers the properties of images associated with second-order figures. 

The performance is equated with a microprocessor solution. GLCM, first presented by Haralick, is a forceful 
method for calculating consistency features. Suppose a picture to be investigated is quadrangular and has  𝑁𝑥 

column and 𝑁𝑦  row. Supposing that the gray level looking to pixels is quantize to 𝑁𝑔  Ng levels. Let 𝐿𝑥 =1,2,3,4,5,6 … … … . 𝑁𝑥 be the column, 𝐿𝑦 = 1,2,3,4,5,6 … … … . 𝑁𝑦 be the row, and 𝐻 = 1,2,3,4,5,6 … … … . 𝑁𝑔 be the set of 𝑁𝑔 quantized grey level. The texture framework data is specified by the matrix of comparative frequencies 𝑄𝑢,𝑣   

with two adjacent pixels parted by shift 𝑐  and angle θ.1 The GLCM is calculated with the subsequent equation: 
Supposing a picture to be investigated is quadrangular and has  𝑁𝑥 column and 𝑁𝑦 row. Supposing that the 

gray level looking to pixels is quantize to 𝑁𝑔  Ng levels. Let 𝐿𝑥 = 1,2,3,4,5,6 … … … . 𝑁𝑥  be the column, 𝐿𝑦 =1,2,3,4,5,6 … … … . 𝑁𝑦 be the row, and 𝐻 = 1,2,3,4,5,6 … … … . 𝑁𝑔 be the set of 𝑁𝑔 quantized grey level. The texture 

framework data is specified by the matrix of comparative frequencies 𝑄𝑢,𝑣   with two adjacent pixels parted by shift 𝑐  and angle θ.1 The GLCM is calculated with the subsequent equation: 𝑄(𝑢, 𝑣, 𝑑, 0) = {(𝑥1, 𝑦1), (𝑥2, 𝑦2) 𝑓(𝑥1, 𝑦1) = 𝑖 𝐻( 𝑥2, 𝑦2) = 𝑗, (𝑥1, 𝑦1) − (𝑥2, 𝑦2) = 𝑐           (11) 𝐾 = (𝑥1, 𝑦1), (𝑥2, 𝑦2) 



 

 

Where 𝑥, 𝑦 is the amount of incidences within the windows magnitudes, where the strength rank of a pixel two 

of kind deviations as of 𝑣 to 𝑢 the position of the 1st pixel is (𝑥1, 𝑦1) and that of the 2nd pixel is (𝑥2, 𝑦2), 𝑐  is the 

distance be-tween the pixel couple, θ is the point of view in the two pixels. The synchronize matrix define is not the 
symmetric. If the GLCM is considered with a symmetry, after that one viewpoint up to 180o want to be measured. A 

symmetric synchronize matrix can be figured by an appearance.                            𝑄(𝑢, 𝑣, 𝑑, 0) 𝑘 = (𝑄(𝑢, 𝑣, 𝑑, 0) + 𝑄(𝑢, 𝑣, 𝑑, 0), 𝑇) 𝑑𝑖𝑣𝑖𝑑 𝑏𝑦 2     (12)  
Where 𝑄(𝑢, 𝑣, 𝑑, 0), 𝑇  is a transpose of 𝑄(𝑢, 𝑣, 𝑑, 0). Possibility approximations are gained by dividing to each 

entry in 𝑄(𝑢, 𝑣, 𝑑, 0) by the sum of entirely probable intensity variations (𝐾𝑥 , 𝐾𝑦) with the space d and track θ i.e. (𝐾𝑥 , 𝐾𝑦), 𝑑, 0 

Thus, a normal form of GLCM is gained as seen in the following equation. 

                                         𝑄(𝑢, 𝑣, 𝑑, 0) 𝑋 = 𝑃(𝑖, 𝑗, 𝑑, 𝜃) + 𝑃𝑇(𝑖, 𝑗, 𝑑𝜃)2 ∗ ∑ 𝜃𝐿𝑥𝐿𝑦 , 𝑑, 𝜃                                (13) 

Where, 𝑄(𝑢, 𝑣, 𝑑, 0) 𝑋 is standardized GLCM. The expression: 2 × (𝐾𝑥 , 𝐾𝑦), 𝑐, 0 

 Equation (3.13) is constant, and Equation (3.12) can be reworded as in Equation 14 to be appropriate and to 

evade separation on FPGA while addressing the separation needs of the additional hardware properties that can 

reduce the performance of FPGA strategy.                                         𝑄(𝑢, 𝑣, 𝑑, 0) 𝑁 = 𝑃(𝑖, 𝑗, 𝑑, 𝜃) + 𝑃𝑇(𝑖, 𝑗, 𝑑𝜃)2 ∗ ∑ 𝜃𝐿𝑥𝐿𝑦 , 𝑑, 𝜃                                (14) 

The above mathematical framework of GLCM is a square matrix with components that corresponds to the relative 

frequency of occurrence of gray-level pairs of pixels separated in a specified direction by a certain range. For a dis-

placement vector 𝑑(𝑑𝑥, 𝑑𝑦), the elements of a 𝐺 × 𝐺 gray level co-occurrence matrix are identified as 𝑃𝑑 = (𝑖, 𝑗) =|{((𝑟, 𝑠)), (𝑡, 𝑣)) ∶ 𝐼(𝑟, 𝑠) = 𝑖, 𝐼(𝑡, 𝑣) = 𝑗}| where I indicates the GLCM image value and (𝑟, 𝑠), (𝑡, 𝑣) and (𝑑𝑥, 𝑑𝑦) is the 

cardinality set. Let 𝑄 (𝑢, 𝑣, 𝑑, 0) is a (normalized) occurrence of rate of grey level pair (𝑢, 𝑣) at space c and viewpoint θ 
and 𝑁𝑔 be the quantity of gray levels. 

                                                     𝐴𝑆𝑀 = ∑ ∑ 𝑃(𝑖, 𝑗)2𝑁𝑅
𝑗=1

𝑁𝑅
𝑖=1                                                      (15) 

                                                𝑆𝑀 = ∑ ∑ 𝑃(𝑖 − 𝑗)2𝑃(𝑖, 𝑗)𝑁𝑅
𝑗=1

𝑁𝑅
𝑖=1                                             (16) 

                                    𝑆𝑀 = ∑ ∑ (𝑖 − 𝜇𝑥)(𝑗 − 𝜇𝑦)(𝑃(𝑖, 𝑗))𝜎𝑥𝜎𝑦
𝑁𝑅
𝑗=1

𝑁𝑅
𝑖=1                                   (17) 

Where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦 are the variances and the mean of the rows and columns sums correspondingly, they are 

defined as follows: 

                                                         𝜇𝑥 = ∑ ∑ 𝑖 𝑃(𝑖, 𝑗)2𝑁𝑅
𝑗=1

𝑁𝑅
𝑖=1                                                (18) 

                                                         𝜇𝑦 = ∑ ∑ 𝑗𝑃(𝑖, 𝑗)2𝑁𝑅
𝑗=1

𝑁𝑅
𝑖=1                                                  (19) 



 

 

                                                𝜎𝑥 = √∑ ∑(𝑖 − 𝜇𝑥)2𝑃(𝑖, 𝑗)2𝑁𝑅
𝑗=1

𝑁𝑅
𝑖=1                                       (20) 

                                                𝜎𝑦 = √∑ ∑(𝑖 −  𝜇𝑦)2𝑃(𝑖, 𝑗)2𝑁𝑅
𝑗=1

𝑁𝑅
𝑖=1                                       (21 

For the symmetric matrix 𝜇𝑥= 𝜇𝑦and the de-nominator for the Equation. (2.18) decreases to the variance (sigma 

squared) are as stated in Equation (2.20). Inequality is utilized to calculate the disparity in the two gray levels of i and j. 

Entropy is the second calculation at an angle to the minute. This informal journalist has little value in a series of 

irregular events. 

According to Brynolfsson et al., [60] the analysis of the medical imaging plot in studies to diagnose, classify 

and evaluate cancer is very popular. Despite many requests for oncology and medical imaging in general, there is no 

agreement on the workbench of the plots or on the generation of reports of defined parameters to replicate the results. 

2.6.3. Autoencoder 

Autoencoder is a kind of artificial neural network (ANN) that is used to learn to encode data efficiently. Au-

toencoder picks up to compress the input phrase data into a function code, which is then compressed to get some-

thing that exactly matches the basic data. This allows the car to reduce size by learning, for example, to ignore noise. 

We start by evoking the outmoded autoencoder model, for instance the one castoff in (Bengio & Lecun, 2007) to make 

profound systems. An autoencoder takes in an effort trajectory 𝑖 = [0,1], 𝑑 and first plots it to an unseen picture 𝑗 =[0,1], 𝑑 over a regulate plotting   𝑗 = 𝑓0(𝑥) = 𝑘(𝑤𝑥 + 𝑏), parameter by 0 = {𝑤, 𝑏}. W is a 𝑑 × 𝑑 bulk matrix and b is 

a prejudice vector. The resultant dormant symbol y is then plotted support to a reconstructed vector a   [𝑣, 𝑑]in input 

space 𝑎 = 𝑔0(𝑦) = 𝑠(𝑤𝑦 + 𝑏)   with the 0 = (𝑤𝑏).    

The Weight matrix w of the opposite plotting might predictably be forced by  𝑤 = (𝑤𝑡), in which event the au-

toencoder is supposed to consume secured weights. Each exercise 𝑥𝑖  is thus plotted to an equivalent 𝑦𝑖  and a re-

building 𝑧𝑖. The parameters of this prototype are enhanced. To abate the standard rebuilding error: 

                                                 𝜃∗, 𝜃′∗ = 𝑎𝑟𝑔𝜃,𝜃′ 1𝑛 ∑ 𝐿𝑛
𝑖=0 (𝑥(𝑖), 𝑧(𝑖))              (22) 

                                                                                              𝑎𝑟𝑔𝜃,𝜃 1𝑛 ∑ 𝐿𝑛
𝑖=0 (𝑥(𝑖), 𝑔𝜃 (𝑓𝜃(𝑥(𝑖))))                 (23) 

Where 0l is a cost function for instance the basis formed error L (x, z) =||x − ||2, 𝐿 = (𝑥, 𝑧) = ||𝑥 − 2|| another 

defeat, recommended by the explanation of z and 𝑥 as moreover bit routes or vectors of spot likelihoods (Bernoulli’s) 
is the makeover cross-entropy: 

𝐿𝐻(𝑥, 𝑧) = 𝐻(𝐵𝑥  || 𝐵𝑧) =  − ∑ 𝑥𝑑
𝑘=1 (𝑥𝑘𝑙𝑜𝑔𝑧𝑘 + (1 − 𝑥𝑘)Log (1 − 𝑧𝑘)) (24) 

Record that if 𝑥is a binary vector, (𝑥,𝑧) is a negative log-likelihood. For the example 𝑥, set the Bernoulli 

parameters z. Equation can be written as:                          𝜃∗, 𝜃′∗ = 𝑎𝑟𝑔𝜃,𝜃′𝐸𝑞𝑜(𝑥) [𝐿𝐻 (𝑋, 𝑔𝜃(𝑓𝜃(𝑋)))]       (25) 

Where 𝑞0 = (𝑥) symbolizes the empirical delivery related to n working out effort. This optimization will 

classically be approved out by stochastic rise origin. We will use the automatic encoder in this survey. An automatic 



 

 

encoder is a type of artificial neural network that can be used to learn how to effectively encode data unattended. The 

purpose of the automatic encoder is to represent (encode) a data set to learn how to generally reduce dimensionality 

and to train the network to ignore the "noise" of the signal.  

Hybrid features 

Hybrid features in machine learning refer to the combination of multiple features or feature sets in order to 

improve the performance of a machine learning model [61]. This can be done by combining features from different 

sources, such as text, images, or audio, or by combining different types of features, such as low-level and high-level 

features [62]. 

There are several ways to generate hybrid features as detailed in [63,64]. We utilized the hybrid features by 

concatenating different extracted features. Hybrid features can often improve the performance of a machine learning 

model by providing additional information or context that can help the model make more accurate predictions. 

However, it's important to note that the use of hybrid features may also increase the complexity of the model and re-

quire more computational resources.  

A good feature extraction technique and feature descriptor should be capable of extracting the required features 

for lung cancer nodule recognition[65]. We had a bag of features available to represent an image. The basic primitive 

features are based on Haralick, GLCM, and Autoencoder. Any one of these features is not sufficient to get high per-

formance results [66]. Few studies [61-64] have been conducted on Hybrid features systems to solve problems and got 

significant performance.  In this paper, hybrid features are introduced with the combination of Haralick + GLCM, 

GLCM + Autoencoder, and Autoencoder + Haralick. 

The Individual features are combined by concatenating single features to make a hybrid feature vector as utilized 

by [68,69] with following procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

a) Single Features 

GLCM (22) Haralick (14) Autoencoder (50) 

Autocorrelation 

Contrast 

Correlation1 

Correlation2 

Cluster Prominance 

Cluster shade 

Dissimilarity 

Energy 

Entropy 

Homogenity1 

Homogenity2 

Max. Probability 

Sum of Sqr. Var. 

Sum avg 

Sum Var. 

Sum entropy 

Diff. Var. 

Diff. Ent. 

Inf. measure of Corr1 

Info. measure of Corr2 

Inverse Diff. 

Inverse Diff. Normalized 

Inverse Diff. Movement 

normalized 

Contrast 

Correlation 

Variance 

Inverse Diff. Move-

ment 

Sum Avg. 

Sum Var. 

Sum Ent. 

Entropy 

Diff. Var. 

Diff. Entropy 

Inf. measure of Corr1 

Info. measure of Corr2 

Maximal Correlation 

Coefficient 

 

Latent variables: 

Encoder features: 

Decoder features: 

Bottleneck features: 

Reconstruction features: 

Other features including 

edges, textures, shapes, 

or colors 

b) Hybrid Features 

 

GLCM + Haralick 

(36) 

GLCM + Autoencoder 

(72) 

Haralick + Autoencoder 

(64) 

(1-22) + (23-36) (1-22) + (23-72) (1-14) +(15-64) 

 

GLCM + Haralick 

1. Load images and apply any necessary preprocessing steps 

2. For each preprocessed image 

2.1. Compute the gray-level co-occurrence matrix (GLCM) with specified parameters 

2.2. Compute Haralick texture features from the GLCM 

3. Combine the Haralick features into a feature vector for each image 

4. Train a machine learning model on the feature vector 

GLCM + Autoencoder 

1. Load images and apply any necessary preprocessing steps 

2. For each preprocessed image 

2.1. Compute the gray-level co-occurrence matrix (GLCM) with specified parameters. 



 

 

2.2. Flatten the image and use the encoder part of a pre-trained autoencoder to extract features. 

3. Combine the autoencoder features with the GLCM features into a feature vector for each image. 

4. Train a machine learning model on the feature vector 

Haralick + Autoencoder 

1. Load images and apply any necessary preprocessing steps 

2. For each preprocessed image 

2.1. Compute Haralick texture features using the GLCM with specified parameters. 

2.2. Flatten the image and use the encoder part of a pre-trained autoencoder to extract features. 

3. Combine the autoencoder features with the Haralick features into a feature vector for each image. 

4. Train a machine learning model on the feature vectors 

2.7.Classification  

The final phase of the proposed method is classification, in which three classifiers comprised of SVM, NB and 

DT were utilized. The classification is a type of supervised learning method [70–73]. Recently, there are many 

applications of machine learning classification algorithms detailed in [69–75]. It is a categorization method that 

distinguishes, predicts, and understands objects and ideas. Using this model, the accuracy and many other parameters 

of the performance assessment are calculated based on extracted features. The identified test sample label matches the 

model's classified results. Training, testing, and validation were used for 10-fold cross-validation.  

2.7.Area under the receiver operating characterstics (ROC) curve (AUC-ROC) 

 

The AUC-ROC is a measure of the performance of a binary classification model [81]. It is a way to evaluate how 

well a model is able to distinguish between two classes, such as positive and negative, by plotting TPR against the at 

various threshold settings. The AUC-ROC is then calculated as the area under this curve. A value of 1.0 represents a 

perfect model, and a value of 0.5 represents a model that is no better than random guessing. The AUC-ROC is a useful 

metric because it is independent of the threshold settings, and it can be used to compare the performance of different 

models [82]. It can also be used when the dataset is imbalanced, as it does not rely on a predefined threshold for 

classifying instances.  

3. Results and Discussions 

In this study, we extracted different features such as GLCM, autoencoder, and Haralick features from NSCLC 

and SCLC subjects and employed machine learning techniques and evaluated performance using standard perfor-

mance metrics such as sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), false 

positive rate (FPR), accuracy and area under the curve (AUC). We applied single and hybrid feature extracting ap-

proach. The aim of this study was to employ the hybrid features for improving the detection performance.  

Table 1 presents the lung cancer detection results using single feature extracting strategy by computing 

Haralick, GLCM and SIFT features. The Haralick texture features yielded they highest accuracy (99.89%), sensitivity 

(100%), specificity (99.72%), PPV (99.82%), NPV (100%), FPR (0.002809) and AUC (0.9984) using SVM polynomial fol-

lowed by SVM RBF with accuracy (99.24%), SVM Gaussian with accuracy (98.91%), Decision tree with accuracy 

(97.78%) and Naïve Bayes with accuracy (93.47%). By extracting the GLCM features, the SVM polynomial yielded the 

highest performance with accuracy (98.69%) followed by SVM RBF with accuracy (96.84%) and so on. The SIFT fea-

tures yielded highest accuracy (98.31%) using SVM Gaussian followed by Naïve Bayes with accuracy (96.58%). 

Table 1: Detection performance with single features based extracting strategy and employing robust machine 

learning techniques to distinguish NSCLC from SCLC  



 

 

Method Sensitivity Specificity PPV NPV Accuracy FPR AUC 

Haralick 

Naïve Bayes 0.9485 0.9129 0.9451 0.9181 0.9347 0.08708 0.9837 

Decision Tree 0.9858 0.9916 0.9946 0.9778 0.988 0.008427 0.9837 

SVM Gaussian 0.9964 0.9775 0.9859 0.9943 0.9891 0.02247 0.9999 

SVM RBF 0.9982 0.9831 0.9894 0.9972 0.9924 0.01685 0.9999 

SVM poly. 1 0.9972 0.9982 1 0.9989 0.002809 0.9984 

GLCM  

Naïve Bayes 0.7869 0.8567 0.8968 0.7176 0.8139 0.1433 0.8524 

Decision Tree 0.9574 0.9579 0.9729 0.9342 0.9576 0.04213 0.9224 

SVM Gaussian 0.9929 0.9129 0.9475 0.9878 0.9619 0.08708 0.9928 

SVM RBF 0.9964 0.9242 0.9541 0.994 0.9684 0.07584 0.9948 

SVM poly. 0.9982 0.9691 0.9808 0.9971 0.9869 0.0309 0.9989 

Scale Invariant Feature transform (SIFT) 

Naïve Bayes 0.9658 0.9672 0.9658 0.9637 0.9658 0.00481 0.9797 

Decision Tree 0.9474 0.9415 0.9413 0.9451 0.9475 0.0621 0.9631 

SVM Gaussian 0.983 0.9816 0.983 0.9816 0.9831 0.01842 0.995 

SVM RBF 0.9605 0.9619 0.9605 0.9675 0.9605 0.00812 0.9691 

SVM poly. 0.9405 0.9419 0.9405 0.9475 0.9405 0.00112 0.9697 
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b) 

Fig. 2 Area under the receiver operating curve to distinguish NSCLC from SCLC by extracting hybrid feature a) 

GLCM b) Haralick texture features. 

 

Figure 2 shows the area under the receiver operating characteristic curve (AUC) with single feature extracting 

approach by computing a) GLCM and b) Haralick texture features. Based on GLCM features, the highest separation 

was obtained using SVM polynomial with AUC (0.9989) followed SVM RBF with AUC (0.9948), SVM Gaussian with 

AUC (0.9928), Decision tree with AUC (0.9837) and Naïve Bayes with AUC (0.8524). Based on Haralick texture 

features, the highest separation was obtained using SVM Gaussian and RBF with AUC (0.9999) followed SVM 

polynomial with AUC (0.9984), Naïve Bayes and Decision tree with AUC (0.9837)  

Table 2: Detection performance with Hybrid GLCM + Haralick Featuers and employing robust machine learning 

techniques to distinguish NSCLC from SCLC 

 

Methods Sensitivity Specificity PPV NPV Accuracy FPR AUC 

Naïve Bayes 0.9449 0.9326 0.9568 0.9146 0.9402 0.06742 0.9895 

Decision Tree 0.9858 0.9775 0.9858 0.9775 0.9826 0.02247 0.9895 

SVM Gaussian 1 0.9888 0.9929 1 0.9956 0.01124 1 

SVM RBF 1 0.9831 0.9895 1 0.9935 0.01685 1 

SVM Polynomial 0.9982 0.9972 0.9982 0.9972 0.9978 0.002809 0.9995 

 

Table 2 presents the detection results with Hybrid (GLCM + Haralick) features and employing machine learning 

techniques. The highest detection performance was obtained utilizing SVM with polynomial kernel produced 

specificity (99.72%), sensitivity (99.82%), NPV (99.72%), PPV (99.82%), accuracy (99.78%), FPR (0.00280) and AUC 

(0.9995) followed by SVM Gaussian with sensitivity (100%), specificity (9888%), PPV (99.29%), NPV (100%), accuracy 

(99.56%), FPR (0.01124) and AUC (1.00).  The SVM RBF yields accuracy (99.35%), AUC (1.00), decision tree yields 

accuracy (98.26%), AUC (0.9895) and Naïve Bayes provided accuracy (94.02%) and AUC (0.9895). 

 



 

 

Table 3: Detection performance with Hybrid GLCM + Autoencoder featuers and employing robust machine learning 

techniques to distinguish NSCLC from SCLC 

Methods Sensitivity Specificity PPV NPV Accuracy FPR AUC 

Naïve Bayes 0.9627 0.8736 0.9233 0.9367 0.9282 0.12640 0.9358 

Decision Tree 0.9929 0.9803 0.9876 0.9887 0.9820 0.01966 0.9358 

SVM Gaussian 1 1 1 1 1 0 1 

SVM RBF 1 1 1 1 1 0 1 

SVM Polynomial 1 0.9972 0.9982 1 0.9989 0.002809 0.9999 

 

  Table 3 depicts the detection performance of hybrid (GLCM + Autoencoder) features extracting methodology 

and employing the robust machine learning techniques. The highest detection performance was obtained by employ-

ing SVM Gaussian and RBF kernels yielded 100% all performance metrics followed by SVM polynomial kernel with 

sensitivity (100%), specificity (99.72%), PPV (99.82%), NPV (100%), accuracy (99.89%), FPR (0.00280) and AUC (0.9999). 

The Decision Tree and Naïve Bayes classifiers yield accuracy (98.80%) and AUC (0.9358).  

 

Table 4: Detection performance with Hybrid Haralick + Autoencoder featuers and employing robust machine learning 

techniques to distinguish NSCLC from SCLC 

 

Methods Sensitivity Specificity PPV NPV Accuracy FPR AUC 

Naïve Bayes 0.9556 0.8567 0.9134 0.9242 0.9173 0.14330 0.9276 

Decision Tree 0.9929 0.9888 0.9929 0.9888 0.9913 0.01124 0.9276 

SVM Gaussian 1 1 1 1 1 0 1 

SVM RBF 1 1 1 1 1 0 1 

SVM Polynomial 1 0.9972 0.9982 1 0.9989 0.002809 1 

 

 

 Table 4 depicts the detection performance of hybrid (Haralick + Autoencoder) features extracting methodology and 

employing the robust machine learning techniques. The highest detection performance was obtained using SVM 

Gaussian and RBF with 100% performance followed by SVM polynomial with sensitivity and NPV (100%), specificity 

(99.72%), PPV (99.82%) and AUC (1.00), Decision tree with accuracy (99.13%), AUC (0.9276) and Naïve Bayes yields 

accuracy (91.73%) and AUC (0.9276).  
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(c) 

Fig. 3 Area under the receiver operating curve to distinguish NSCLC from SCLC by extracting hybrid feature a) 

Haralick + Autoencoder, b) Haralick + GLCM, c) Autoencoder + GLCM 

 

  Figure 3 (a-c) reflects AUC-ROC to distinguish the NSCLC from SCLC subjects by extracting hybrid features 

and employing robust machine learning techniques. The highest Separation was obtained to distinguish NSCLC from 

SCLC by extracting hybrid features Haralick + autoencoder with AUC (1.00) using SVM Gaussian, RBF and polyno-

mial followed by Naïve Bayes and Decision tree with AUC (0.9276) as reflected in Figure 4 (a). The highest separation 

to distinguish NSCLC from SCLC by extracting hybrid Haralick + GLCM features was obtained with AUC (1.00) us-

ing SVM Gaussian and RBF followed by SVM polynomial with AUC (0.9995), Naïve Bayes and Decision tree with 

AUC (0.9895) as reflected in Figure 4 (b). To distinguish the NSCLC from SCLC, the highest separation by extracting 

hybrid GLCM + Autoencoder features was obtained using SVM Gaussian and RBF with AUC (1.00) followed by SVM 

polynomial with AUC (0.9999), Naïve Bayes and Decision tree with AUC (0.9358) as depicted in Figure 4 (c). The Ta-

ble 4 reflects the main findings and comparison of results with previous studies. 
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Linear:  y = 0.07126*x + 0.9515

            R
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            Norm of residuals = 1.118
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Linear:  y = 0.07044*x + 0.952
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2
 = 0.1829
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Linear:  y = 0.5332*x + 0.6442

            R
2
 = 0.3466

            Norm of residuals = 7.364
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e) 

Fig. 4 Area under the receiver operating curve to distinguish NSCLC from SCLC by extracting hybrid Haralick + 

GLCM features by fitting linear curve on AUC and computing mean and standard deviation a) Naïve Bayes, b) Deci-

sion tree, c) SVM Gaussian, d) SVM RBF, e) SVM Polynomial 

Figure 4 presents the AUC separation by extracting hybrid GLCM + Haralick features to distinguish the SCLC from 

NSCLC and computing the mean values and standard deviations of x-values (FPR) and y-values (TPR) and fitting 

linear curves. The Naïve Bayes and decision tree yielded the mean FPR (0.4652) and TPR (0.9848) and std FPR (0.3021) 

and TPR (0.049). The SVM Gaussian yielded mean FPR (0.3085) and TPR (0.8087) and std FPR (0.3329) and TPR 

(0.3015). The SVM RBF produced mean FPR (0.3085) and TPR (0.8089) and std FPR (0.3329) and TPR (0.3016). Similar-

ly the SVM polynomial yielded mean FPR (0.3088) and TPR (0.8070) and std FPR (0.3328) and TPR (0.3016). The cor-

responding linear fits in Figure 4 (a-e) are reflected accordingly.  

 

Table 5: Comparison of findings with previous studies 

Author Features Used Performance 

Guo et al. [83] 
1. Texture 

2. Shape 
Sensitivity = 94%, 

Sousa et al. [84] 

1. Gradient 

2. Histogram 

3. Spatial 

Sensitivity = 84%, 

Specificity = 96% 

Accuracy=95% 

Orozco et al. [85] 1. Texture Sensitivity = 84%, 

Messay et al. [86] 

1. Gradient 

2. Shape 

3. Intensity 

Sensitivity = 82%, 
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Retico et al. [87] 
1. Morphology 

2. Texture 
Sensitivity = 72%, 

Teramoto et al. [88] 
1. Shape 

2. Intensity 
Sensitivity = 83%, 

Hussain et al. [23] 

Lung cancer detection based on Multimodal 

features such as texture, morphological, and 

EFDs 

 

i) Texture features using MFE with standard 

deviation,  

ii) Morphological features using RCMFE with 

mean 

iii) EFDs features using MFE  

i) P-value (1.95E-50) 

ii) P-value (3.01E-14) 

P-value (1.04E-13) 

Hussain et al. [89] RICA features and SVM Accuracy = 99.77% 

Dandil et al. [90] 

1. GLCM 

2. Shape 

3. Statistical 

4. Energy 

Sensitivity = 97%, 

Specificity = 94% 

Accuracy =95% 

This study 

Single features 

 

a) Haralick using SVM polynomial 

b) GLCM using SVM polynomial 

c) SIFT using SVM Gaussian 

 

Hybrid features approach 

 

 (GLCM + autoencoder, GLCM + Haralick, 

Haralick + Autoencoder) features 

Single Features 

a) Accuracy= 99.89% 

b) Accuracy= 98.69% 

c) Accuracy = 98.39% 

 

 

Hybrid features approach 

 

Sensitivity = 100%, 

Specificity = 100% 

AUC = 1.00 

Accuracy = 100% 

 

Table 5 presents the findings of the current study and compared the results with previous studies. This study 

was trifold to improve the lung cancer detection performance i.e. i) improving the preprocessing steps, ii) improving 

the feature extracting strategy, iii) and optimizing the hyperparameters of machine learning algorithms. Image 

preprocessing is the process of preparing an image for further analysis and processing. It involves a series of steps 

that are applied to an image to enhance its quality, remove any noise or artifacts, and ensure that the image is in the 

proper format for further analysis. Image feature extraction is an important step in many machine learning 

applications that deal with image data. The goal of feature extraction is to extract meaningful and relevant 

information from an image and represent it in a compact and numerical form that can be used for further analysis and 

processing.: Images often have a large number of pixels, which results in a high-dimensional feature space. Feature 

extraction helps to reduce the dimensionality of the data, making it easier to process and analyze. By extracting 

relevant features, the machine learning model can focus on the most important information in the image and make 



 

 

predictions with higher accuracy. Moreover, by focusing on the most important features, the model is able to 

generalize better to new, unseen data. Grid search is a commonly used technique for optimizing the hyperparameters 

of a machine learning model. The idea behind grid search is to specify a range of possible values for each 

hyperparameter and exhaustively search through all possible combinations of these values to find the best set of 

hyperparameters for a given machine learning problem. The first step is to define the hyperparameters that need to be 

optimized. For example, the hyperparameters of a support vector machine (SVM) could include the regularization 

parameter and the kernel type. For each hyperparameter, a range of possible values is specified. This could be a 

discrete set of values or a continuous range. Extracting the most relevant feature is a tedious task on which the 

machine learning algorithms are to be trained. Previously, researchers computed few traditional features extracting 

methods which are not much helpful in extracting the most relevant information. Guo et al. [83] extracted texture and 

shape based features and obtained a sensitivity of 94.0%. Sousa et al. [84] computed different features such as gradient, 

histogram and spatial and obtained an accuracy of 95.0%. Messay et al. [86] extracted gradient, shape and intensity 

features and yielded a sensitivity of 82.0%. Moreover, Dandil et al. [90] extracted different features such as GLCM, 

shape, statistical and energy and obtained accuracy of 95.0%, sensitivity of 97.0% and specificity of 94.0%. In this 

study, we first extracted different features such as GLCM, Haralick, autoencoder, and SIFT features. The single feature 

extracting strategy using Haralick yielded highest accuracy of 99.89% with SVM polynomial, GLCM yielded the 

highest accuracy of 98.69% using SVM polynomial and SIFT features yielded highest accuracy of 98.31% using SVM 

Gaussian. With hybrid feature extracting approach (i.e. GLCM + Autoencoder, GLCM + Haralick, Haralick + 

Autoencoder) yielded the accuracy of 100%, AUC of 1.00. The current approach improved the lung cancer detection 

which can be utilized as a better tool for improving healthcare systems. 

 

4. Conclusion and Future Directions 

In the recent study, we improved the lung cancer detection by applying and optimizing the pre-processing steps 

and optimizing the feature extraction strategies along with hyper-parameters optimization of machine learning 

algorithms. Based on signel features extraction approach, the a highest accuracy of 99.89% was obtained with Haralick 

features using SVM polynomial, an accuracy of 98.89% with GLCM features using SVM polynomial. The SVM RBF 

with hybrid features GLCM + Autoencoder and Haralick + Autoencoder yielded the highest detection performance 

out of all methods yielded a 100% sensitivity, specificity, PPV, NPV, accuracy and AUC.  SVM polynomial and 

GLCM + Haralick using SVM Gaussian yielded the second highest detection accuracy of 99.56%. The hybrid features 

extraction methods. By utilizing the hybrid features can capture more comprehensive and diverse information about 

the patient, which may help the model to better distinguish between cancerous and non-cancerous cases. Hybrid 

feature extraction can also help to reduce noise in the data by filtering out irrelevant or redundant features. This can 

improve the performance of the machine learning model and make it more robust to variations in the input data. 

hybrid feature extraction is a promising approach for detecting lung cancer that offers several potential advantages 

over using either type of data alone. Based on these results, the proposed methodology can be very helpful in the 

early detection and treatment of lung cancer, with the potential to decrease mortality rate and increase survival rate. 

The dataset utilized in this study was small and unbalanced. We utilized k-fold cross validation and data 

augmentation techniques to avoid overfitting. Though many recent artificial intelligence-based methods were utilized. 

However, we further improved the prediction performance by improving the preprocessing and feature extraction 

methods. There is still a room for further methodological improvement utilizing hybrid deep learning methods and 

optimizing the parameters with different methods. We will also compute the performance with other metrics and 

visualization methods. We will also test these methodologies on larger datasets with more diverse lung cancer types. 

Moreover, clinical information was not available, we will improve the future prediction by incorporating the clinical 



 

 

information along with the imaging features for better diagnostic and improving the disease recurrence, survival and 

severity.  
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