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Abstract There will be billions of gadgets emerging in
the future. A few years ago, experts predicted that the
Internet of Things (IoT) might soon be renamed the
Internet of Everything (IoE) due to the widespread use
of computing technologies in modern days. However,
what happens if security issues are not addressed in to-
day’s IoT devices? Because of cyber security breaches,
consumers and manufacturers of connected devices are
at risk. Consequently, the number of cyber-attacks has
skyrocketed across the networks. Machine learning-based
techniques, particularly deep learning, have shown con-
siderable promise in attack detection techniques. This
article proposes a 1D Convolution Neural Network (CNN)

based model to address anomaly detection in IoT envi-
ronment. We looked at the capabilities of CNN to iden-
tify and categorize abnormalities in IoT networks. The
ability of CNN to identify and categorize abnormali-
ties in IoT networks using multiclass and binary clas-
sification via transfer learning was also assessed. The
performance of the 1D CNN model is assessed using

the Netflow-based NF-ToNIoT, NF-BoTIoT, NF-CSE-
CICIDS2018, NF-UNSW-NB15, NF-UQ-NIDS, and CIC
flowmeter-based IoT DS2, IoT Network Intrusion, MQTT-
IoTIDS2020, CIC-ToNIoT datasets. The reason for se-
lecting transfer learning is to reduce classification and
run-time complexity. The training and testing times
needed for classification are significantly decreased us-
ing the transfer learning approach. The proposed model
successfully identifies 20 different attacks with an accu-
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racy of 93.75% on the NF-UQ NIDS dataset. Addition-
ally, we have verified our proposed model in real-time
on an edge device with limited resources.

Keywords Internet of Things, Intrusion Detection
System (IDS), Deep Learning (DL), Convolutional
Neural Network (CNN), Transfer Learning.

1 Introduction

Internet of Things (IoT) is a network of real-world ob-
jects, or ”things,” that are equipped with sensors, soft-
ware, and other technologies to communicate and share

data. Facilities using IoT technology are multiplying
quickly. Connecting everyday objects to the Internet via
embedded appliances, such as home appliances, ther-
mostats, industries, and healthcare systems, has made
continuous communication between people, procedures,
and things possible.

According to the morder intelligent report [1], the
IoT market is estimated to expand at a 10.53% Com-
pound Annual Growth Rate (CAGR) during the pro-
jection period (2022-2027). Similarly, as per the Globe
newswire report [3], the worldwide IoT market is calcu-
lated to reach USD 1,854.76 billion by 2028, extending
at a 25.4% CAGR over the forecast period, and ac-
cording to report [2], it is expected to rise from 478.36
billion dollars in 2022 to 2,465.26 billion dollars in 2029,
a 26.4% CAGR during the forecast period.

Growing IoT technology affects many application
areas. According to [20], applications may be catego-
rized based on network availability, coverage, scalabil-
ity, heterogeneity, repetition, user engagement, and ef-
fect. The Smart homes, cities, agriculture, transporta-
tion, wearable, and healthcare sectors are gaining pop-
ularity through IoT applications. There are multiple
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facets that IoT incorporates into the functioning of a

city: for instance, traffic control, pollution monitoring,

resource management, parking solutions, infrastructure

management, and disaster management.

Although smart cities simplify life and along with

helping us monitor and regulate many factors, they in-

crease complexity and interdependence. Connectivity

increases the vulnerability of smart cities against secu-

rity and privacy attacks [49]. In addition to the secu-

rity concerns encountered by the Internet, mobile net-

works, and base stations, the IoT has unique security

issues, such as privacy, authentication, administration,

and information storage issues. As a result of these flaws

and vulnerabilities, IoT apps provide a breeding ground

for several cyber threats. Globally deployed IoT apps

have been subject to a number of security and privacy
breaches. IoT gadgets, which are low-powered and less
secure, present an entry point for attackers to penetrate
household and business networks and gain easy access

to user data. Such gadgets may be targeted by adver-

saries to monitor the position of a specific person or

fabricate data.

Intrusion detection Systems (IDS) play an impor-

tant role in the detection of attacks. In order to effec-

tively counter threats like targeted attacks, and data

exfiltration, IDSs must evolve from basic correlation

to detection, according to Nisioti et al. [40]. They un-

cover existing intrusion detection systems (IDSs) flaws

and show how such systems need to improve. In ad-

dition to examining the works under discussion, they

have contrasted them, pointing out their strengths and

weaknesses. According to [22], security requirements

and existing protection options for IoT networks have

been investigated systematically. They also emphasized

the flaws in current security measures. They discussed

possible ML and DL-based IoT security research ap-

proaches.

Another article [11] explores many intrusion detec-

tion explanations for the IoT. Each solution aims to

boost detection effectiveness in numerous different ways

and decrease resource use by combining different archi-

tectures, detection algorithms, and particular threats

that have been identified. The sorts of architecture and
technology that can be identified are the key areas of
attention in this study. A survey [38] that focuses on

IoT risks sheds information on current research trends

and technology requirements from various angles. The

findings of this study offer a strong foundation for fur-

ther inquiry. More study is needed to understand IoT-

specific risks and their destructive effects fully.

1.1 Motivation

Several IDS techniques are available for detecting net-
work anomalies. The role of IDS has evolved as crucial
in safeguarding IoT networks by finding abnormalities
because malicious behaviors in IoT networks must be

instantly recognized and halted. Deep learning is at-
taining interest across multiple domains to address di-
verse problems. In this domain, CNN have proved to

be excellent in voice recognition and image recognition.

VGG16, VGG19, and ResNet50 are gaining popularity

as they are pre-trained on an extensive dataset. More-

over, researchers use these models as transfer learning

models for image classification and achieve better re-
sults.

Existing studies have assessed intrusion detection
methods using an outdated KDD intrusion detection

dataset. The KDD99 dataset does not consider many
recent cyberattacks, and the IoT network was not taken
into consideration while developing the KDD99 dataset.

Thus, we have presented a CNN-based deep neural network-

based IDS that is trained on the combination of the dif-

ferent datasets. The proposed system classifies 21 differ-

ent kinds of intrusion and efficiently distinguishes them
from normal network traffic using a CNN architecture
in the multiclass classifier. Furthermore, this trained
model is also used for transfer learning for the multi-

class and binary class attack classification to improve

efficiency. The novelty of this model is that proposed

model can detect many malicious cyber attacks in an

IoT network, and it can easily be deployed on an edge
device due to its lightweight and low complexity.

The following are the key contributions of this arti-

cle:

– We have proposed a lightweight CNN-based deep
neural network that is trained on a combination of
different intrusion-type datasets.

– We have also used a trained CNN model for transfer

learning to improve the detection rate and reduce

the model training complexity.

– We have also verified the proposed model in real

time by deploying the model on an edge device.

– The findings of our experiment demonstrate how
well our technology was able to classify 20 various

IoT networking assaults and the typical patterns of
networking data.

The rest of this paper is organized as follows: We

have illustrated background details in Section 2. In Sec-

tion 3, we have explained existing work on IDS. The

section 4 elaborates the proposed work. Section 5 de-

scribes the experimental setup and findings, as well as

the testbed. We have explained in Section 6, how the



A Transfer Learning based Intrusion detection system for Internet of Things 3

suggested IDS tackles the issue of intrusion detection.

Further, in the last Section 7, we summarize the article.

2 Background

2.1 Deep Convolution Neural Network (D-CNN)

CNN is an artificial neural network that uses deep feed-

forward learning. Image recognition and categorization

are two areas where it excels. Because of its enhanced

image processing capabilities, this research offers a model

based on CNN. In several domains, CNN gives appeal-
ing outcomes. Furthermore, convolutional neural net-
work advantages may be completely leveraged by trans-

lating intrusion detection difficulties into image recog-

nition challenges. CNN has an input layer, an output

layer, and numerous hidden layers. Convolution layers

and pooling layers are hidden layers in a CNN. Convo-

lutional layers carry out convolution operations. CNN

retrieves valuable data with little processing effort.

The main reason behind using CNN is its good per-
formance and less computational complexity. However,

converting the tabular networking data into images is

worthless because of real-time deployment. So we have

proposed one dimensional CNN model that can be used

for transfer learning without reshaping the original data

into an image. The process of normalization and polling

are discussed below:

2.1.1 Batch Normalization (BN)

Normalizing the inputs to a layer may be accomplished

using a generic strategy known as batch normalization

[24]. It employs a transformation that keeps the output

mean nearly zero while keeping the output standard

deviation as close as possible to one. This forwards the
data dispersed in standard normal distribution form for
the next layer. To compute the mean of the hidden ac-

tivation in batch input from layer L, we used Equation

1. Where n is the number of neurons in Layer L.

µ =
1

n

n
∑

i=1

Li (1)

The next step is to calculate the standard deviation

explained in Equation 2.

σ =

[

1

n

∑

(Li − µ)

]
1

2

(2)

By subtracting the mean from each input and di-

viding the result by the overall standard deviation and

the smoothing term (epsilon), these values will be used

to normalize the hidden activation.

Li(normalize) =
(Li − µ)

(σ + ϵ)
(3)

The last procedure consists of re-scaling and offset-

ting the input. γ and β are two BN algorithm compo-

nents. These parameters are used to re-scale (γ) and

shift (β) the vector storing the results of earlier opera-
tions.

Li = γLi(normalize) + β (4)

2.1.2 Average Pooling

The average value across the window given by pool size

is used to downsample the input representation. Strides

shift the window. When the ”valid” padding option is

used, the output that is generated has the form of:

output shape =
(input shape− pool size + 1)

strides
(5)

In the next section, we discuss the related work.

3 Related Work

3.1 IDS based on Machine Learning Techniques

Mighan et al. [35] presented a hybrid stacked autoen-

coder SVM solution. The experiment utilized the ISCX

dataset to test the model’s performance utilizing Apache

Spark and machine learning approaches. This research

[9] proposes a three-layer, inventive, and intelligent IDS

architecture. It serves three main purposes: Determine

the specific IoT item connected to the network and

profile it, identify wireless risks against connected IoT

appliances, and classify the attack type that can be

used. Similarly, Vishwakarma and Kesswani [53] estab-

lished the two-stage IDS model. After initially using

the naive Bayes classification technique, they employed

the k-means method in the second step. Li et al. [30]

researched a two-stage IDS that is based on software-
defined technologies. An IDS was recommended by Mu-
rali et al. [37] to defend against the Sybil attack. They

also described the Artificial Bee Colony (ABC) method
on the RPL network, which was bio-inspired. The ex-
periment was carried out using Contiki OS and the

Cooja simulator.

The CorrAUC feature selection measure, which em-

ploys a wrapper technique to choose correct attributes

for the ML algorithm selected using the AUC metric,
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was introduced in [47]. Additionally, they integrated

TOPSIS and Shannon Entropy with a bijective soft set

to assess attributes for malicious traffic labeling in IoT

networks. Similarly, this study [36] thoroughly exam-

ines a group of features. In order to recognize DDoS

assaults, this study [29] presented a distributed intru-

sion detection platform established on fog computing.

In the suggested work, features are chosen to utilize mu-
tual information. This significantly raises overall detec-
tion performance. Researchers studied TCP/IP models,

particularly the protocols MQTT, DNS, HTTP, and

their flow IDs, to build an effective NIDS for spotting

assaults that control IoT networks. Using DT, NB, and

ANN methodologies, an AdaBoost ensemble approach

was developed to improve overall performance. A hy-

brid classification model based on neural networks and

SVM was introduced by Choudhary and Kesswani in

their paper [14].

The real-time detection and prevention IDS pro-
posed by Baykara et al. [10], uses the honeypots ap-

proach. A useful software tool was created for the pro-

posed new system. Using a simulated campus network,

they tested the built system in real-time. A framework

was presented by Seth et al. [46] by merging several ma-

chine learning methods. The authors overcame the issue

of an unbalanced class by using SMOTE and undersam-

pling techniques. They used the CIC IDS 2018 dataset

to conduct their studies. Kesswani and Agrawal [26] of-
fer IDS-based SmartGuard, which has the ability to
identify harmful potential in the network. Choudhary
et al. [13] proposed the correlation and regression-based

IDS for smart homes. Louk et al. [33] provide a dual en-

semble strategy for identifying network anomalies that
combine two distinct approaches: bagging and GBDT

ensembles. To avoid overfitting, each GBDT ensemble
model has undergone hyperparameter adjustment.

3.2 IDS based on Deep Learning Techniques

The research [41] suggests a deep learning-based intru-

sion detection methodology for enhancing the openness

and robustness of IoT networks. They utilize the SHap-

ley Additive exPlanations (SHAP) method to explain

determinations caused by deep learning-based. In ar-

ticle [54], The authors initially suggest a drift detec-

tion strategy that uses the principal component anal-
ysis (PCA) technique to examine changes in the vari-
ance of the characteristics across attack detection data

streams to discover data and concept drifts. They also

discussed the online outlier identification method that

finds outliers deviating from historical and recent data

sets. They suggest an online deep neural network (DNN)

that uses the Hedge weighting method to dynamically

modify the sizes of the hidden layers in order to pre-

vent these drifts and allow the model to continuously
understand and adjust when new intrusion data arrives.

Shone et al. [48] introduces a deep autoencoder.

This is a suggestion to abandon the encoder-decoder
approach in favor of only employing the encoder phase.
This is because applying good knowledge decreases com-
putational and temporal overheads while preserving ac-

curacy and efficiency. A distributed approach for identi-

fying online intrusions from URLs was given by Tian et

al. [51]. This technique protects several online applica-

tions in a distributed Edge of Things domain. Launch-

ing and detecting adversarial attacks against NIDS con-

tinues to be a significant research problem. In order to

analyze the variations in adversarial learning against

deep neural networks in NIDS, this study [21] exam-

ines the most current research on NIDS, adversarial as-

saults, and network defenses.

3.3 IDS based on Transfer Learning

Wang et al. [55] suggested a methodology to avoid gra-

dient explosion or gradient disappearance based on a

deep residual CNN. They used transfer learning to alter

the residual CNN structure, which ensures the identi-

fication of unidentified assaults. They transformed the
1D ICS flow data into two-dimensional grayscale im-
ages. They used KDD Cup 99 dataset to assess the
model’s performance. ITL-IDS, a framework for IDS

presented in this study [34], can begin discovering in

a network with no past information. Without making

any inferences about the nature of the attacks, an in-

cremental clustering approach is utilized to determine
the number and shape of clusters. The outcomes are
appropriate for sharing with other ITL-IDS instances.

With each cycle, transfer learning increases the amount

of knowledge in the target settings. Using a transfer

learning strategy, Idrissi et al. [23] provided a method
for updating DL-IDS that enables to retrain and fine-

tuning of previously learned models on tiny datasets
with novel attack patterns. They constructed a CNN-
based IDS in their trials using the BoT-IoT dataset,

then updated it with little data from a labeled ToN-

IoT dataset.

Most of the existing models were evaluated on an
outdated dataset such as KDD 19 and NSLKDD. Our

literature research found that there is still room for im-
provement despite the outstanding detection accuracies
achieved. The shortcomings are caused by inconsisten-

cies and issues with the current datasets. It is still early

in the region’s growth. Most investigators focused on

ML techniques and combined several methods to pro-

vide a more effective and genuine solution for a complex
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dataset with few attackers. But still, they haven’t put

the suggested model to the test in actual situations.

They tried the Contiki Simulator, but the real world is

unlike the simulation. As a result, a model evaluated in

a simulation environment may behave differently in a

real-world setting. Because of this, we believe that the

model and work provided in this article will be capable

of producing accurate findings.

4 Proposed work

The proposed work is divided into two stages. In stage

1, we tested the work on benchmark datasets. More-

over, in stage 2, we tested the work in a real-time envi-

ronment developed for smart homes. Figure 1 presents

the system architecture for detecting malicious events

on a smart home IoT network. First, all devices are

connected to the local network to communicate with

each other and share information. All the data passes

through a router, and the Raspberry Pi module cap-

tures all the packets to analyze the packets transfer-

ring across the network. The features to be used in the

trained model are extracted from the captured packets.

Then the extracted features are passed to the proposed

IDS system, where the trained model will classify the

data into general or specific attack categories.

4.1 Proposed 1D CNN Model

In this study, we develop a 1D CNN for IoT network

anomaly detection. Figure 2 shows the proposed model’s

general structure, and Figure 3 shows the CNN block

with layer description. An input layer, three convolu-

tion layer blocks, a flatten layer, two dense layers that

are entirely connected, and an output layer are used

to build this model. Each block contains two convo-

lutional layers, a normalization layer, a pooling layer,

and a dropout layer. In addition, each block includes a

pooling layer. The reshaping approach may provide in-

puts to the input layer. The reshaping system converts

the data from the network into a format that CNN can

read.

Convolutional layer blocks are the primary constituents
that go into the construction of a CNN. The convolu-

tion layer is responsible for extracting attributes from
the input data and learning all information from these
attributes. All of the information is brought up to a

consistent standard by the normalization layer of the

neural network. The normalization layer is responsible

for standardizing the output of the convolution layer so

that the average pooling layer may use it. The pool-

ing layer improves information quality by concentrat-

Fig. 1 Proposed System Architecture

ing features into sub-maps that already have prominent

traits. The average pooling layer makes an estimate of

the total number of updates that have occurred across

the function map. This allows it to calculate the total

number of features present in each patch. Overfitting is

a risk when working with CNN; as a result, the param-

eters of the test dataset need to be adjusted with care.

A dropout layer can reduce the likelihood of an over-

fitting problem by skipping over some neurons during

training.

The first and second convolution layers employ 32
filters, kernel size 2, uniform kernel initializer, and the

”same” padding parameter. The ”same padding” refers

to feature map sizes identical to the input feature maps

(for stride 1). The normalization layer adjusts the acti-

vation of the previous layer for each sample in a batch

independently. By summarising attributes in a feature

map segment, the average pooling layer delivers a way

to downsample feature maps. Pool size two is utilized

in the average pooling layer. To regularise the training

data model and reduce overfitting, we used a dropout

layer with a dropout value of 0.05. Except for the fil-

ters, which are doubled in each consecutive block and

kernel size 1 in the second and third blocks, each of the
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three convolution blocks employs identical parameters.

The model is flattened by applying the flatten layer,

which transforms all the arrays from pooled character-

istic maps into a single successive linear vector. The

flattened layer is linked to a dense layer1 that is com-

pletely connected, and the dense layer2 is linked to the

output layer. The output layer has neurons depending

on the number of classes present in the dataset, whereas
dense layer1 has 256 neurons and dense layer2 has 512
neurons.

4.2 Hyper-parameters setting

4.2.1 Loss Function

To calculate the loss function, we used sparse categori-

cal cross-entropy [7]. When training, we want to mini-

mize the loss between the expected and actual outputs,

which is a function that compares the detected and

actual output values. In a case where the number of

classes is greater than two, we utilize categorical cross

entropy [58] loss function defined in Equation 6.

L = −

1

n

n
∑

i=1

c
∑

j=1

yij log pij (6)

Here, n is the number of samples we have passed, y rep-

resents the label [0,1,2..], c is the number of classes, and

p is the probability of that category. The probability

that the provided input fits into each pre-set category,

selecting the class with the highest probability as the

final result.

4.2.2 Optimizer

Deep learning strategies often use several intrinsic op-

timizers, some of which are Gradient Descent (GD),

Stochastic GD, AdaDelta, Adam, and others. In our

model, we have implemented the Adaptive Gradient
(Adagrad) optimizer [15] to minimize the loss function
by modifying the network weights. Equation 7 demon-

strates the calculation underpinning the Adagrad opti-

mizer, which is used to compute weights for neurons:

wt = wt−1 − ηt
′
×

∂L

∂wt

(7)

wt represents the weight of a neuron in the tth iter-

ation, whereas η′ represents the learning rate. ∂L is the

partial derivative of the Loss with respect to the ∂wt.

And the formula provided in Equation 8 is used to get

η′.

ηt
′ =

η

αt + ε
(8)

η represents the constant learning rate of 0.01 with
1e − 6 decay, and ε represents a tiny positive value.

Equation 9 is used to compute the value of αt.

αt =

t
∑

i=1

(
∂L

∂wi

)2 (9)

Here, αt is computed by adding all previous t it-
erations of partial derivative ∂L

∂wt

by the square root

operation. Therefore, when αt increases, η′t diminishes.

Furthermore, while η′t decreases, weights gradually de-

crease to meet the global minimum effectively.

We have tested several combinations of neuron lay-

ers. We precisely changed the size of the kernel, the
number of filters, and the blocks that make up the con-
volutional layer. The results show that the CNN model
functions more effectively. We chose Adagrad optimizer

and modify the weights using a sparse categorical cross-

entropy loss function. The learning rate determines the

size of a model’s steps during each iteration and is cru-

cial to deep learning algorithms. In a series of experi-
ments, we varied the Adagrad optimizer’s learning rate
(0.01, 0.001, 0.0001), and 0.01 was shown to be the opti-
mal learning rate with the most elevated detection rate.

We utilized an early halting strategy to prevent over-

fitting. The training operation will be terminated if the

validation loss has not decreased after a specific num-

ber of iterations. For the maximum possible network
output throughout the testing period, the number of
epochs must be adjusted until the precision vs. epochs

no extended rises. In our model, we used 20, 50, and

100 epochs. We consider 50 epochs the ideal number

since 1D CNN models converge in 50 epochs or less.

A deep learning algorithm’s activation function is

crucial. Both the dense layer and the convolution layer

use the ReLu activation function. The output layer uses

softmax activation. Another essential hyperparameter

for deep learning systems to modify is batch size. Ex-

panding the batch size may enhance computation par-

allelization. Model training might be greatly faster as a

consequence. Even though they result in equal training

downfalls to smaller batch sizes, bigger batch sizes have
been seen to generalize testing findings inadequately
[25]. The distinction between train and test errors is

referred to as the generalization gap. To determine the

ideal batch size, we conducted trials with various batch

sizes (16, 32, 64, 128, 256). The CNN model was trained

and tested using a batch size of 128; this size was deemed
to be ideal.
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Fig. 2 Proposed CNN Model

4.3 Transfer Learning (TL) Technique

TL is a learning method where a model designed for one

task is utilized as the foundation for another activity. As
illustrated in Figure 4, we have deployed a pre-trained
multiclass CNN model using transfer learning for mul-
ticlass and binary classification. We employed the NF-

UQ-NIDS dataset [44] to train the CNN model de-

scribed in the first phase. The NF-BoT-IoT, NF-CSE-

CIC-IDS2018, NF-ToN-IoT, and NF-UNSW NB15 datasets

were then classified using the same pre-trained model.

We applied transfer learning ideas in multiclass and bi-

nary classification for these datasets since they are sub-

sets of the NF-UQ-NIDS datasets.

The output layer of the pre-trained multiclass CNN

model is removed for transfer learning. A new output
layer with neurons depending on the attack categories

in the dataset is added to the model. The dense and out-
put layers are the only ones that remain active through-
out the training phase of the model. All other layers of
the pre-trained model are deactivated. Throughout the

process of developing the classification model, the con-
volution, normalization, dropout, pooling, and flatten
layers were all frozen, as seen in Figure 4. During the

training period, it was only possible for the Dense and

Output layers to acquire new knowledge.

5 Experiments and Results

We have tested the performance of our model on bench-

mark datasets and further on a real-time testbed.

5.1 Dataset

5.1.1 NF-BoT-IoT-Version-1 based Datasets

Due to the limited ability to practice ML-based Net-

work Intrusion Detection Systems, there is a gap be-

tween academic investigation and experimental imple-

mentations. This article [44] solves this restriction by

offering five NetFlow-based NIDS datasets with a stan-

dardized characteristic set as shown in Table 1. NF-

UNSWNB15, NF-ToN IoT, NF-BoT IoT, and NF-CSE
CICIDS2018 are the existing standard NIDS datasets
utilized to create this dataset. The researchers altered

the packet capture files from various datasets to the

NetFlow format with a consistent attribute set, elimi-

nating the problem of varying characteristics in sepa-

rate datasets. A comprehensive NF UQ NIDS dataset

that incorporates the data is shown in Figure 5. The re-

cently published dataset illustrates the benefits of the

standard characteristic of the dataset.

5.1.2 CICFlowmeter based Datasets

The CIC-Flowmeter is an open-source flow creation plat-

form that uses pcap data to build network features.

We have used CIC Flowmeter-based dataset [52], which

contains 80 distinct features. We have taken IoT-DS2,

MQTT-IoT-IDS, and IoT Network Intrusion Dataset
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Fig. 3 Proposed CNN model with the number of neurons at each layer

Fig. 4 Layers of the proposed model using transfer learning

Table 1 Netflow based Dataset Characterization

Datasets
Total

Dataset

Train

Dataset

Test

Dataset

No. of

classes
Features

NF-BoT-IoT 600100 480080 120020 5 L4 SRC PORT, L4 DST
PORT, PROTOCOL, TCP
FLAGS, L7 PROTO, IN
BYTES, OUT BYTES, IN
PKTS, OUT PKTS

NF-ToN-IoT 1379274 1103419 275855 10
NF-UNSW-NB15 1623118 1298494 324624 10
NF-CSE-CIC-IDS2018 8392401 6713920 1678481 15
NF-UQ-NIDS 11994893 9595914 2398979 21

Fig. 5 Data Concatenation

that are available on [4] and CIC-ToN-IoT dataset avail-
able on [45]. To pass the dataset into the proposed
model, we have selected the best nine features from the
83 features using the random forest’s feature impor-

tance [6] method. It calculates the importance of a fea-

ture using Gini importance. Table 3 shows the selected

features of the datasets and other related information

regarding the dataset.

5.2 Results on benchmark datasets

We evaluated our CNN-based model’s performance in

binary and multiclass classification. Our suggested model

was trained using a GPU and 12GB of RAM on Google

Colab. Table 4 and Table 5 display the outcomes of

the binary and multiclass classifications for the Netflow-

based dataset, respectively. Similar to this, Table 6 dis-
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Table 2 Experimental Setup Environment

Model Training Environment

System Configuration Model

Operating System Windows 11
Working Environment Python
RAM 8GB
Processor Intel(5) 10th Gen

Libraries

Numpy
Scikit-learn
TensorFlow
Keras

Model Testing Environment

Device Raspberry Pi 3
Operating System Raspbian
RAM 1GB

Libraries

Numpy
Scikit-learn
TensorFlow Lite
Pyshark

plays the outcomes of the multiclass classification using

the CICflow-based dataset.

5.3 Testbed for Real-time Intrusion Detection using

Proposed Model

We have tested our trained model by deploying it on

an edge device, i.e., Raspberry pi3. The benefit of edge

devices is that they usually have low power consump-

tion. Deep learning models need many resources; thus,

deployment on edge devices must be lightweight. Typ-

ically, inferences are formed on the edge device to do

away with the necessity for downloading and uploading

to a distant server. As a result, inference time is less.

So, after the training phase, we converted the trained

model into a lightweight model using the TensorFlow

Lite module. In the model optimization phase, we con-
verted data type from float64 to float32 or can be con-
verted into integer type that uses low memory. After
the optimized model, we have the model with the tflite

extension. Finally, the lightweight model is ready for

deployment on the edge device. Figure 6 shows the com-

plete workflow of model conversion from train model to

lightweight model for the deployment on constrained
devices.

Here, we have used Raspberry pi 3 to check the

performance of the proposed model. We have written

a script in python in which we capture packets. For

capturing the live packets, we have used pyshark [5]

open source python module. After capturing the pack-

ets, we extract those packets that we used to train

the model and detect the intrusions using the trained

model. Furthermore, we created an IoT-based fire alarm

system and smart room light system to verify the ma-

licious packets as a real-time testbed. Both devices use

Fig. 6 Deep TensorFlow model conversion into light weight
model workflow

an ESP8266 NodeMCU microcontroller. Data was sent

from the NodeMCU using a WiFi module to a nearby

Raspberry Pi 3 server, which uses the packet capture
method to continually sniff the network and collect pack-
ets in real-time. In order to evaluate the effectiveness

of the model in real time, we used the script and Et-

tercap (kali) on two separate computers. We attacked

the same network using a Denial of Service assault and

a MITM attack. Both attacks were carried out from

separate systems. The testbed architecture is shown in
Figure 7.

Fig. 7 Testbed Architecture

Moreover, we have also compared our proposed model

with the existing models as shown in Table 8, and a

comparison with the existing CNN model is shown in

Table 9. Additionally, we have verified our proposed

real-time model on an edge device with limited resources,

i.e., Raspberry pi3.

5.4 Results of Testbed

We have tested our proposed model on Raspberry pi3.

We write a python script that is continuously run and

sniffs the packets. The captured packets are transformed
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Table 3 CICflowmeter based Dataset Characterization

Datasets
Total

Dataset

Train

Dataset

Test

Dataset

No. of

Classes
Features

IoT DS2 1438157 1150525 287632 17 ’Bwd Pkt Len Std’, ’Bwd IAT Min’,
’Init Fwd Win Byts’, ’Bwd IAT Mean’,
’TotLen Bwd Pkts’, ’Bwd IAT Tot’,
’Subflow Fwd Byts’, ’Dst Port’, ’Src Port’

IoT Network
Intrusion

625783 500626 125157 5

MQTT-IoTIDS2020 3654006 2923204 730802 5
CIC-ToN-IoT 5351760 4281408 1070352 10

Table 4 Binary Class Classification of NetFlow based Datasets

Classification Models Measurements
Datasets

NF-ToN-IoT NF-BoT IoT
NF-UNSW
NB15

NF-CSE CIC
IDS2018

NF-UQ
NIDS

Sarhan et al. [44]

Accuracy 99.66% 93.82% 98.62% 95.33% 98.34%
Precision 99.67% 93.70% 90.70% 94.71% 95.66%
Recall – – – – –
F1-score 100% 97% 85% 83% 94%

Proposed

Accuracy 99.19% 98.79% 98.32% 98.99% 98.75%
Precision 99.20% 98.69% 98.24% 98.98% 98.75%
Recall 99.19% 98.79% 98.32% 98.99% 98.75%
F1-score 99.19% 98.67% 98.26% 98.98% 98.74%

Table 5 Multi Class Classification of Netflow based Datasets

Classification Models Measurements
Datasets

NF-ToN-IoT NF-BoT IoT
NF-UNSW
NB15

NF-CSE CIC
IDS 2018

NF-UQ
NIDS

Sarhan et al. [44]

Accuracy – – – – –
Precision 56.34% 73.58% 97.62% 71.92% 70.81%
Recall – – – – –
F1-score 60% 77% 98% 80% 79%

Proposed

Accuracy 70.54% 83.67% 97.21% 97.53% 93.74%
Precision 59.91% 87.13% 96.59% 96.62% 92.75%
Recall 70.54% 83.67% 97.21% 97.53% 93.74%
F1-score 62% 83% 96% 96% 92%

Table 6 Multi Class Classification of CICFlowmeter Based Datasets

Classification Models Measurements
Datasets

IoT DS2
IoT Network
Intrusion

MQTT-IoT-
IDS2020

CIC-ToN-IoT

Ullah et al. [52]

Accuracy 99.70% 86.28% 99.92% -
Precision 99.74% 88.84% 99.90% -
Recall 99.70% 86.28% 99.92% -
F1-score 99.74% 87.54% 99.91% -

Proposed

Accuracy 97.17% 96.20% 95.33% 86.96%
Precision 97.19% 96.13% 96.07% 83.49%
Recall 97.17% 96.20% 95.33% 86.96%
F1-score 96.56% 96.13% 95.23% 81.75%

through the proposed model, which classifies the incom-

ing packet belonging to benign or anomaly. To check the

performance, we applied intense scanning of the net-

work through the Zenmap [8] using the IP address of

the Raspberry pi3, and we successfully identified mali-

cious events on the network. We have taken 100 packets

to analyze the result, in which the model detected 19

times as an anomaly and 81 times benign. The confu-

sion matrix is shown below:

6 Discussion

This section compares the outcomes of CNN models

with other existing research investigations. Our sug-

gested models were noticeably better at spotting irreg-
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ularities in IoT environments. This paper looked at the

possible use of a CNN for the problem of anomaly iden-

tification in IoT networks. We examined the capability

of CNN to locate and classify anomalies. The ability of

CNN to identify and categorize anomalies in IoT net-

works utilizing binary and multiclass classification via

transfer learning was evaluated.

The pre-trained multiclass CNN paradigm takes ad-

vantage of transfer learning for multiclass and binary

classification. According to our best knowledge, the only

study [52] that has employed a transfer learning tech-

nique for abnormality detection, where a pre-trained

multiclass model is reused for binary and multi-class

anomaly detection. However, they were not tested their

model in real-time. The main reason why transfer learn-

ing is used is to reduce classification and run-time com-

plexity. In addition to this, transfer learning is an added

advantage of our proposed model. The training, vali-

dation, and testing times needed for classification are

significantly decreased using the transfer learning ap-

proach. Table 4 shows the results of our proposed work

in binary class classification. In which one class belongs

to the anomaly behavior of the network and another

one belongs to the normal behavior of the network.
Our proposed work is also compared with other existing
work and the result shows the Table 5 shows the preci-
sion of transfer learning is 87.13%, 59.91%, 96.62%, for

NetFlow-based NF-BoT IoT, NF-ToN-ToN, NF-CSE

CICIDS2018, is better than Sarhan et al. model which
is 73.58%, 56.34%, 71.92%, respectively. The compari-

son outcome demonstrates that our suggested model’s
performance is superior to the existing model.

Table 7 UNSWNB-15 and CSE-CICIDS2018 multiclass
classification comparison

ReferencesDatasets Accuracy

Proposed

1D

CNN

[57] UNSWNB-15 90.21%

97.21%
[42] UNSWNB-15 92.39%
[39] UNSWNB-15 74%
[59] UNSWNB-15 86.11%
[17] CSE CICIDS2018 90.25%

97.53%[18] CSE CICIDS2018 97.38%
[16] CSE CICIDS2018 96%

Table 8 UNSWNB-15 Binary classification comparison

ReferencesDatasets Accuracy

Proposed

1D

CNN

[43] UNSWNB-15 95.71%
98.32%

[50] UNSWNB-15 97%

Table 9 Multiclass Classification Comparison with CNN
model

Refernces Model AccuracyPrecisionRecall
F1-

score

[31] CNN 86.95% 89.56% 87.25% 88.41%
[28] CNN 98.02% 97.71% 98.39% 98.05%
[32] CNN 95.86% – – –
[56] CNN 97.34% – – –
[12] CNN 92.53% – – –
[27] CNN 94.32% 94.89% 94.32% 94.33%
[19] FNN 98.09% 98.88% 98.88% 98.88%
Proposed 1D CNN 97.53% 96.62% 97.53% 96%

7 Conclusion and Future Work

Deep learning techniques have proven to be effective in

classifying anomalies across a wide range of domains. In

order to identify and categorize binary and multiclass

abnormalities, this paper presents an anomaly detec-

tion system for IoT networks. We provide a method for

identifying unusual behavior in IoT networks using Net-

Flow and CICFlowmeter-based datasets derived from
an older dataset. Using 1D convolutional neural net-
work models, we categorize various abnormalities. The

model is trained on a large dataset along with transfer

learning to improve the dataset’s performance and re-

duce the model’s training complexity. The performance

of the model is also compared with the existing work.

The results show 97.21% and 97.53% accuracy with the
UNSWNB-15 and CSE CICIDS2018 datasets, which
is quite good in the results compared with the exist-

ing model. Similarly, the proposed CNN is compared

with the existing CNN model, and the results show the

model’s efficiency. The proposed model is also tested

on a real testbed by deploying a fire alarm and a smart

room light system. The Raspberry pi3 is an edge device
where both devices send their data. The proposed IDS
model was deployed on the Raspberry pi3 and moni-

tored all incoming and outgoing data.

In the future, we will also define rules for network

safety by analyzing the network packet behavior and
ensemble with an intelligent deep learning-based model

to improve the detection performance and reduce the
false positive rate.

Ethical Statemenet:The manuscript in part or in

full has not been submitted or published anywhere.
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