1. Kheir, R. B., Girard, M. C., Shaban, A., Khawlie, M., FAOUR, G., & Darwich, T. (2001). Apport de la télédétection pour la modélisation de l’érosion hydrique des sols dans la région côtière du Liban. Télédétection, 2(2), 79-90.
2. Remini, B., Kechad, R., & Achour, B. (2014). The collecting of groundwater by the qanats: a millennium technique decaying. LARHYSS Journal P-ISSN 1112-3680/E-ISSN 2521-9782, (20).
3. Toumi, S., Meddi, M., Mahé, G., & Brou, Y. T. (2013). Cartographie de l’érosion dans le bassin versant de l’Oued Mina en Algérie par télédétection et SIG. Hydrological sciences journal, 58(7), 1542-1558. https://doi.org/10.1080/02626667.2013.824088
4. Ahmad, I., Dar, M. A., Teka, A. H., Gebre, T., Gadissa, E., & Tolosa, A. T. (2019). Application of hydrological indices for erosion hazard mapping using Spatial Analyst tool. Environmental monitoring and assessment, 191(8), 482. https://doi.org/10.1007/s10661-019-7614-x
5. Bannari, A., El-Battay, A., Hameid, N., & Tashtoush, F. (2017). Salt-affected soil mapping in an arid environment using semi-empirical model and Landsat-OLI data. Advances in Remote Sensing, 6(4), 260-291. https://doi: 10.4236/ars.2017.64019
6. Florinsky, I. V. (2012). The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication). Eurasian soil science, 45, 445-451. https://doi.org/10.1134/S1064229312040047
7. Martin, Y., & Church, M. (2004). Numerical modelling of landscape evolution: geomorphological perspectives. Progress in Physical Geography, 28(3), 317-339. https://doi.org/10.1191/0309133304pp412ra
8. Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes, 5(1), 3-30. https://doi.org/10.1002/hyp.3360050103
9. Dymond, J. R., & Harmsworth, G. R. (1994). Towards automated land resource mapping using digital. ITC journal, 2.
10. Koussa, M., & Bouziane, M. (2018). Apport du SIG a la cartographie des zones à risque d’érosion hydrique dans la région de Djelfa, Algérie. Lebanese Science Journal, 19(1), 31-46. http://dx.doi.org/10.22453/LSJ-019.1.031-046
11. Chang, K. T., & Tsai, B. W. (1991). The effect of DEM resolution on slope and aspect mapping. Cartography and geographic information systems, 18(1), 69-77. https://doi.org/10.1559/152304091783805626
12. Lehmann, J. G. (1816). Anleitung zum vortheilhaften und zweckmäßigen Gebrauche des Meßtisches: aus einer Reihe praktischer Erfahrungen hergeleitet und entworfen. in der Arnoldischen Buch-und Kunsthandlung.
13. Ni, S., Peng, J., Wang, J., Zhu, L., Wang, D., & Cai, C. (2023). Impacts of slope morphological evolution on subsequent erosion for a coarse-textured soil. Geoderma, 430, 116320. https://doi.org/10.1016/j.geoderma.2022.116320
14. King, C., Baghdadi, N., Lecomte, V., & Cerdan, O. (2005). The application of remote-sensing data to monitoring and modelling of soil erosion. Catena, 62(2-3), 79-93. https://Doi: 10.1016/j. catena.2005.05.007
15. Buitrago, J. Y., & Martínez, L. J. (2016). Digital elevation models (DEM) used to assess soil erosion risks: a case study in Boyaca, Colombia. Agronomía Colombiana, 34(2), 239-249. https://Doi: 10.15446/agron.colomb.v34n2.56145
16. Wilson, J. P., & Gallant, J. C. (Eds.). (2000). Terrain analysis: principles and applications. John Wiley & Sons.
17. Neteler, M., & Mitasova, H. (2013). Open source GIS: a GRASS GIS approach (Vol. 689). Springer Science & Business Media.
18. Kennelly, P. J. (2008). Terrain maps displaying hill-shading with curvature. Geomorphology, 102(3-4), 567-577. https://Doi: 10.1016/j. geomorph.2008.05.046
19. Quinn, P. F. B. J., Beven, K., Chevallier, P., & Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological processes, 5(1), 59-79. https://Doi: 10.1002/hyp.3360050106
20. Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., ... & Yamazaki, D. (2019). Hillslope hydrology in global change research and earth system modeling. Water Resources Research, 55(2), 1737-1772.https://doi.org/10.1029/2018WR023903
21. Sörensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10(1), 101-112. https://doi.org/10.5194/hess-10
22. Daly, E., & Porporato, A. (2005). A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environmental engineering science, 22(1), 9-24.https://doi.org/10.3390/ land11112018
23. Li, P., Zhang, K., Wang, J., & Meng, H. (2020). Nondimensional sediment transport capacity of sand soils and its response to parameter in the Loess Plateau of China. Hydrological Processes, 34(3), 823-835. https://doi.org/10.1002/hyp.13634
24. Guanghui, Z. (2018). Several understandings for sediment transport capacity by overland flow. 水科学进展, 29(2), 151-158.
25. Różycka, M., Migoń, P., & Michniewicz, A. (2017). Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland. Zeitschrift für geomorphologie, Supplementary issues, 61(2), 61-80. https://doi: 10.1127/zfg_suppl/2016/0328
26. Daniel, A., & Getachew, W. (2019). Quantitative analysis of mor-phometry on Ribb and Gumara watersheds: implications forsoil and water conservation. International Soil and Water Conservation Research, (7), 150–157. https://doi.org/10.1016/j.iswcr.2019.02.003
27. Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am, Bull 56, 275–370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
28. Montgomery, D. R., & Dietrich, W. E. (1992). Channel initiation and the problem of landscape scale. Science, 255(5046), 826-830. https://www.science.org/doi/10.1126/science.255.5046.826
29. Dietrich, W. E., Wilson, C. J., Montgomery, D. R., & McKean, J. (1993). Analysis of erosion thresholds, channel networks, and landscape morphology using a digital terrain model. The Journal of Geology, 101(2), 259-278.https://www.jstor.org/stable/30081151
30. Prabu, P., & Baskaran, R. (2013). Drainage morphometry of upper Vaigai river sub-basin, Western Ghats, South India using remote sensing and GIS. Journal of the Geological Society of India, 82, 519-528.https://doi.org/10.1007/s12594-013-0183-7
31. Wilcock, P. R. (1997). Entrainment, displacement and transport of tracer gravels. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 22(12), 1125-1138. https://doi.org/10.1002/(SICI)1096-9837(199712)22:12<1125::AID-ESP811>3.0.CO;2-V.
32. Williams, R. D., Brasington, J., Vericat, D., & Hicks, D. M. (2014). Hyperscale terrain modelling of braided rivers: fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surface Processes and Landforms, 39(2), 167-183. https://doi.org/10.1002/esp.3437
33. Kennelly, P. J. (2008). Terrain maps displaying hill-shading with curvature. Geomorphology, 102(3-4), 567-577. https://Doi: 10.1016/j. geomorph.2008.05.046
34. Smith, M. J., Goodchild, M. F., & Longley, P. A. (2012). Geospatial analysis: a comprehensive guide, Electronic book. https://arxiv.org/ftp/arxiv/papers/1902/1902.06672.pdf