Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221.
Charollais, J., Dreyfus, M., and Iost, I. (2004). CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res 32, 2751-2759.
Chen, S.S., Sperling, E., Silverman, J.M., Davis, J.H., and Williamson, J.R. (2012). Measuring the dynamics of E. coli ribosome biogenesis using pulse-labeling and quantitative mass spectrometry. Mol Biosyst 8, 3325-3334.
Davis, J.H., Tan, Y.Z., Carragher, B., Potter, C.S., Lyumkis, D., and Williamson, J.R. (2016). Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell 167, 1610-1622.e1615.
Diges, C.M., and Uhlenbeck, O.C. (2001). Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. EMBO J 20, 5503-5512.
Elles, L.M., and Uhlenbeck, O.C. (2008). Mutation of the arginine finger in the active site of Escherichia coli DbpA abolishes ATPase and helicase activity and confers a dominant slow growth phenotype. Nucleic Acids Res 36, 41-50.
Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501.
Fatkhullin, B.F., Gabdulkhakov, A.G., and Yusupov, M.M. (2022). Is RsfS a Hibernation Factor or a Ribosome Biogenesis Factor? Biochemistry (Mosc) 87, 500-510.
Gentry, R.C., Childs, J.J., Gevorkyan, J., Gerasimova, Y.V., and Koculi, E. (2016). Time course of large ribosomal subunit assembly in E. coli cells overexpressing a helicase inactive DbpA protein. RNA 22, 1055-1064.
Havelund, J.F., Giessing, A.M., Hansen, T., Rasmussen, A., Scott, L.G., and Kirpekar, F. (2011). Identification of 5-hydroxycytidine at position 2501 concludes characterization of modified nucleotides in E. coli 23S rRNA. J Mol Biol 411, 529-536.
Hsiao, C., Mohan, S., Kalahar, B.K., and Williams, L.D. (2009). Peeling the onion: ribosomes are ancient molecular fossils. Mol Biol Evol 26, 2415-2425.
Hussain, A., and Ray, M.K. (2022). DEAD box RNA helicases protect Antarctic Pseudomonas syringae Lz4W against oxidative stress. Infect Genet Evol 106, 105382.
Jiang, M., Datta, K., Walker, A., Strahler, J., Bagamasbad, P., Andrews, P.C., and Maddock, J.R. (2006). The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly. J Bacteriol 188, 6757-6770.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.
Kaczanowska, M., and Rydén-Aulin, M. (2007). Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 71, 477-494.
Khusainov, I., Fatkhullin, B., Pellegrino, S., Bikmullin, A., Liu, W.T., Gabdulkhakov, A., Shebel, A.A., Golubev, A., Zeyer, D., Trachtmann, N., et al. (2020). Mechanism of ribosome shutdown by RsfS in Staphylococcus aureus revealed by integrative structural biology approach. Nat Commun 11, 1656.
Koculi, E., and Cho, S.S. (2022). RNA Post-Transcriptional Modifications in Two Large Subunit Intermediates Populated in E. coli Cells Expressing Helicase Inactive R331A DbpA. Biochemistry 61, 833-842.
Kressler, D., Hurt, E., and Baßler, J. (2017). A Puzzle of Life: Crafting Ribosomal Subunits. Trends Biochem Sci 42, 640-654.
Leontis, N.B., Stombaugh, J., and Westhof, E. (2002). The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30, 3497-3531.
Moore, A.F., Gentry, R.C., and Koculi, E. (2017). DbpA is a region-specific RNA helicase. Biopolymers 107.
Ni, X., Davis, J.H., Jain, N., Razi, A., Benlekbir, S., McArthur, A.G., Rubinstein, J.L., Britton, R.A., Williamson, J.R., and Ortega, J. (2016). YphC and YsxC GTPases assist the maturation of the central protuberance, GTPase associated region and functional core of the 50S ribosomal subunit. Nucleic Acids Res 44, 8442-8455.
Nikolay, R., Hilal, T., Schmidt, S., Qin, B., Schwefel, D., Vieira-Vieira, C.H., Mielke, T., Bürger, J., Loerke, J., Amikura, K., et al. (2021). Snapshots of native pre-50S ribosomes reveal a biogenesis factor network and evolutionary specialization. Mol Cell 81, 1200-1215.e1209.
Ofengand, J., and Del Campo, M. (2004). Modified Nucleosides of Escherichia coli Ribosomal RNA. EcoSal Plus 1.
Peil, L., Virumae, K., and Remme, J. (2008). Ribosome assembly in Escherichia coli strains lacking the RNA helicase DeaD/CsdA or DbpA. FEBS J 275, 3772-3782.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and Ferrin, T.E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30, 70-82.
Putnam, A.A., and Jankowsky, E. (2013). DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochim Biophys Acta 1829, 884-893.
Qin, B., Lauer, S.M., Balke, A., Vieira-Vieira, C.H., Bürger, J., Mielke, T., Selbach, M., Scheerer, P., Spahn, C.M.T., and Nikolay, R. (2023). Cryo-EM captures early ribosome assembly in action. Nat Commun 14, 898.
Rabuck-Gibbons, J.N., Popova, A.M., Greene, E.M., Cervantes, C.F., Lyumkis, D., and Williamson, J.R. (2020). SrmB Rescues Trapped Ribosome Assembly Intermediates. J Mol Biol 432, 978-990.
Razi, A., Britton, R.A., and Ortega, J. (2017). The impact of recent improvements in cryo-electron microscopy technology on the understanding of bacterial ribosome assembly. Nucleic Acids Res 45, 1027-1040.
Rivas, M., and Fox, G.E. (2020). Further Characterization of the Pseudo-Symmetrical Ribosomal Region. Life (Basel) 10.
Rohou, A., and Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192, 216-221.
Seffouh, A., Jain, N., Jahagirdar, D., Basu, K., Razi, A., Ni, X., Guarne, A., Britton, R.A., and Ortega, J. (2019). Structural consequences of the interaction of RbgA with a 50S ribosomal subunit assembly intermediate. Nucleic Acids Res 47, 10414-10425.
Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S., and Yokoyama, S. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287-300.
Shajani, Z., Sykes, M.T., and Williamson, J.R. (2011). Assembly of bacterial ribosomes. Annu Rev Biochem 80, 501-526.
Sharpe Elles, L.M., Sykes, M.T., Williamson, J.R., and Uhlenbeck, O.C. (2009). A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit. Nucleic Acids Res 37, 6503-6514.
Tsu, C.A., Kossen, K., and Uhlenbeck, O.C. (2001). The Escherichia coli DEAD protein DbpA recognizes a small RNA hairpin in 23S rRNA. RNA 7, 702-709.
Tsu, C.A., and Uhlenbeck, O.C. (1998). Kinetic analysis of the RNA-dependent adenosinetriphosphatase activity of DbpA, an Escherichia coli DEAD protein specific for 23S ribosomal RNA. Biochemistry 37, 16989-16996.
Wang, W., Li, W., Ge, X., Yan, K., Mandava, C.S., Sanyal, S., and Gao, N. (2020). Loss of a single methylation in 23S rRNA delays 50S assembly at multiple late stages and impairs translation initiation and elongation. Proc Natl Acad Sci U S A 117, 15609-15619.
Wurm, J.P. (2022). Structural basis for RNA-duplex unwinding by the DEAD-box helicase DbpA. bioRxiv, 2022.2002.2023.481582.
Wurm, J.P., Glowacz, K.A., and Sprangers, R. (2021). Structural basis for the activation of the DEAD-box RNA helicase DbpA by the nascent ribosome. Proc Natl Acad Sci U S A 118.
Yu, T., Jiang, J., Yu, Q., Li, X., and Zeng, F. (2023). Structural Insights into the Distortion of the Ribosomal Small Subunit at Different Magnesium Concentrations. Biomolecules 13.
Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., and Agard, D.A. (2017). MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331-332.
Zhong, E.D., Bepler, T., Berger, B., and Davis, J.H. (2021). CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat Methods 18, 176-185.
Zivanov, J., Nakane, T., Forsberg, B.O., Kimanius, D., Hagen, W.J., Lindahl, E., and Scheres, S.H. (2018). New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7.