[1] X. Zhang, H. Zhang, K. Yu, N. Li, Y. Liu, X. Liu, H. Zhang, B. Yang, W. Wu, J. Gao, J. Jiang, Rapid Monitoring Approach for Microplastics Using Portable Pyrolysis-Mass Spectrometry, Analytical Chemistry, 92 (2020) 4656-4662.
[2] S.M. Al-Salem, P. Lettieri, J. Baeyens, Recycling and recovery routes of plastic solid waste (PSW): A review, Waste Management, 29 (2009) 2625-2643.
[3] M. Wagner, M. Engwall, H. Hollert, Editorial: (Micro)Plastics and the environment, Environmental Sciences Europe, 26 (2014) 16.
[4] N. Beagan, K.E. O’Connor, I.J. Del Val, Model-based operational optimisation of a microbial bioprocess converting terephthalic acid to biomass, Biochemical Engineering Journal, 158 (2020) 107576.
[5] A.R. Kamali, J. Yang, Q. Sun, Molten salt conversion of polyethylene terephthalate waste into graphene nanostructures with high surface area and ultra-high electrical conductivity, Applied Surface Science, 476 (2019) 539-551.
[6] R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, Science Advances, 3 (2017) e1700782.
[7] J. Zhang, Q. Hu, Y. Qu, Y. Dai, Y. He, C.-H. Wang, Y.W. Tong, Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production, Applied Energy, 257 (2020) 113988.
[8] F. Gallo, C. Fossi, R. Weber, D. Santillo, J. Sousa, I. Ingram, A. Nadal, D. Romano, Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures, Environmental Sciences Europe, 30 (2018) 13.
[9] B. Zhang, T. Xu, D. Yin, S. Wei, The potential relationship between neurobehavioral toxicity and visual dysfunction of BDE-209 on zebrafish larvae: a pilot study, Environmental Sciences Europe, 32 (2020) 25.
[10] L. Xu, L.-y. Zhang, H. Song, Q. Dong, G.-h. Dong, X. Kong, Z. Fang, Catalytic fast pyrolysis of polyethylene terephthalate plastic for the selective production of terephthalonitrile under ammonia atmosphere, Waste Management, 92 (2019) 97-106.
[11] C.C. Farrell, A.I. Osman, R. Doherty, M. Saad, X. Zhang, A. Murphy, J. Harrison, A.S.M. Vennard, V. Kumaravel, A.H. Al-Muhtaseb, D.W. Rooney, Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules, Renewable and Sustainable Energy Reviews, 128 (2020) 109911.
[12] V. Sinha, M.R. Patel, J.V. Patel, Pet Waste Management by Chemical Recycling: A Review, Journal of Polymers and the Environment, 18 (2010) 8-25.
[13] X. Zhou, C. Wang, C. Fang, R. Yu, Y. Li, W. Lei, Structure and thermal properties of various alcoholysis products from waste poly(ethylene terephthalate), Waste Management, 85 (2019) 164-174.
[14] G. Lopez, M. Artetxe, M. Amutio, J. Bilbao, M. Olazar, Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review, Renewable and Sustainable Energy Reviews, 73 (2017) 346-368.
[15] M. Arabiourrutia, G. Lopez, M. Artetxe, J. Alvarez, J. Bilbao, M. Olazar, Waste tyre valorization by catalytic pyrolysis – A review, Renewable and Sustainable Energy Reviews, 129 (2020) 109932.
[16] F. Wang, N. Gao, C. Quan, G. López, Investigation of hot char catalytic role in the pyrolysis of waste tires in a two-step process, Journal of Analytical and Applied Pyrolysis, 146 (2020) 104770.
[17] M. Al-asadi, N. Miskolczi, Pyrolysis of polyethylene terephthalate containing real waste plastics using Ni loaded zeolite catalysts, IOP Conference Series: Earth and Environmental Science, 154 (2018) 012021.
[18] P. Das, P. Tiwari, Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative environments, Thermochimica Acta, 679 (2019) 178340.
[19] F. Awaja, D. Pavel, Recycling of PET, European Polymer Journal, 41 (2005) 1453-1477.
[20] A. Dhahak, C. Grimmer, A. Neumann, C. Rüger, M. Sklorz, T. Streibel, R. Zimmermann, G. Mauviel, V. Burkle-Vitzthum, Real time monitoring of slow pyrolysis of polyethylene terephthalate (PET) by different mass spectrometric techniques, Waste Management, 106 (2020) 226-239.
[21] D. Kawecki, P.R.W. Scheeder, B. Nowack, Probabilistic Material Flow Analysis of Seven Commodity Plastics in Europe, Environmental Science & Technology, 52 (2018) 9874-9888.
[22] J. Lee, T. Lee, Y.F. Tsang, J.-I. Oh, E.E. Kwon, Enhanced energy recovery from polyethylene terephthalate via pyrolysis in CO2 atmosphere while suppressing acidic chemical species, Energy Conversion and Management, 148 (2017) 456-460.
[23] A.M. Al-Sabagh, F.Z. Yehia, D.R.K. Harding, G. Eshaq, A.E. ElMetwally, Fe3O4-boosted MWCNT as an efficient sustainable catalyst for PET glycolysis, Green Chemistry, 18 (2016) 3997-4003.
[24] S.-Y. Oh, T.-C. Seo, Upgrading biochar via co-pyrolyzation of agricultural biomass and polyethylene terephthalate wastes, RSC Advances, 9 (2019) 28284-28290.
[25] D. Oh, H.W. Lee, Y.-M. Kim, Y.-K. Park, Catalytic pyrolysis of polystyrene and polyethylene terephthalate over Al-MSU-F, Energy Procedia, 144 (2018) 111-117.
[26] S.O. Ayodeji, T.O. Oni, Thermal pyrolysis production of liquid fuel from a mixture of polyethylene terephthalate and polystyrene, Heat Transfer-Asian Research, 48 (2019) 1648-1662.
[27] A. Brems, J. Baeyens, C. Vandecasteele, R. Dewil, Polymeric Cracking of Waste Polyethylene Terephthalate to Chemicals and Energy, Journal of the Air & Waste Management Association, 61 (2011) 721-731.
[28] G. Ganeshan, K.P. Shadangi, K. Mohanty, Degradation kinetic study of pyrolysis and co-pyrolysis of biomass with polyethylene terephthalate (PET) using Coats–Redfern method, Journal of Thermal Analysis and Calorimetry, 131 (2018) 1803-1816.
[29] R.K. Mishra, A. Sahoo, K. Mohanty, Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser, Bioresource Technology, 289 (2019) 121608.
[30] https://www.akts.com/akts-thermokinetics-tga-dsc-dta-tma-ftir-ms/akts-thermokinetics-discontinuous-help-e-learning.html, accessed 10-05-2020 at 11 am.
[31] S. Vyazovkin, K. Chrissafis, M.L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J.J. Suñol, ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations, Thermochimica Acta, 590 (2014) 1-23.
[32] A.I. Osman, A. Abdelkader, C.R. Johnston, K. Morgan, D.W. Rooney, Thermal Investigation and Kinetic Modeling of Lignocellulosic Biomass Combustion for Energy Production and Other Applications, Industrial & Engineering Chemistry Research, 56 (2017) 12119-12130.
[33] A. Dhahak, G. Hild, M. Rouaud, G. Mauviel, V. Burkle-Vitzthum, Slow pyrolysis of polyethylene terephthalate: Online monitoring of gas production and quantitative analysis of waxy products, Journal of Analytical and Applied Pyrolysis, 142 (2019) 104664.
[34] Y.-K. Park, J. Jung, S. Ryu, H.W. Lee, M.Z. Siddiqui, J. Jae, A. Watanabe, Y.-M. Kim, Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two stage calcium oxide-ZSM-5, Applied Energy, 250 (2019) 1706-1718.
[35] B. Saha, A.K. Ghoshal, Model-Fitting Methods for Evaluation of the Kinetics Triplet during Thermal Decomposition of Poly(ethylene terephthalate) (PET) Soft Drink Bottles, Industrial & Engineering Chemistry Research, 45 (2006) 7752-7759.
[36] Z. Yao, S. Yu, W. Su, W. Wu, J. Tang, W. Qi, Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods, Waste Management & Research, 38 (2020) 77-85.
[37] S.A. Jenekhe, J.W. Lin, B. Sun, Kinetics of the thermal degradation of polyethylene terephthalate, Thermochimica Acta, 61 (1983) 287-299.
[38] J.D. Cooney, M. Day, D.M. Wiles, Thermal degradation of poly(ethylene terephthalate): A kinetic analysis of thermogravimetric data, Journal of Applied Polymer Science, 28 (1983) 2887-2902.
[39] S.R. Horton, J. Woeckener, R. Mohr, Y. Zhang, F. Petrocelli, M.T. Klein, Molecular-Level Kinetic Modeling of the Gasification of Common Plastics, Energy & Fuels, 30 (2016) 1662-1674.
[40] H. Li, Y. Tan, M. Ditaranto, J. Yan, Z. Yu, Capturing CO2 from Biogas Plants, Energy Procedia, 114 (2017) 6030-6035.
[41] I. Martı́n-Gullón, M. Esperanza, R. Font, Kinetic model for the pyrolysis and combustion of poly-(ethylene terephthalate) (PET), Journal of Analytical and Applied Pyrolysis, 58-59 (2001) 635-650.
[42] S. Kumagai, R. Yamasaki, T. Kameda, Y. Saito, A. Watanabe, C. Watanabe, N. Teramae, T. Yoshioka, Tandem μ-reactor-GC/MS for online monitoring of aromatic hydrocarbon production via CaO-catalysed PET pyrolysis, Reaction Chemistry & Engineering, 2 (2017) 776-784.
[43] N. Sophonrat, L. Sandström, A.-C. Johansson, W. Yang, Co-pyrolysis of Mixed Plastics and Cellulose: An Interaction Study by Py-GC×GC/MS, Energy & Fuels, 31 (2017) 11078-11090.
[44] A.I. Osman, Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal, Renewable Energy, 146 (2020) 484-496.
[45] M. Artetxe, G. Lopez, M. Amutio, G. Elordi, M. Olazar, J. Bilbao, Operating Conditions for the Pyrolysis of Poly-(ethylene terephthalate) in a Conical Spouted-Bed Reactor, Industrial & Engineering Chemistry Research, 49 (2010) 2064-2069.
[46] M. Dziȩcioł, J. Trzeszczyński, Temperature and atmosphere influences on smoke composition during thermal degradation of poly(ethylene terephthalate), Journal of Applied Polymer Science, 81 (2001) 3064-3068.
[47] T. Yoshioka, G. Grause, C. Eger, W. Kaminsky, A. Okuwaki, Pyrolysis of poly(ethylene terephthalate) in a fluidised bed plant, Polymer Degradation and Stability, 86 (2004) 499-504.
[48] D. Garozzo, M. Giuffrida, G. Montaudo, R.W. Lenz, Mass spectrometric characterization of poly(ethylene terephthalate-co-p-oxybenzoate), Journal of Polymer Science Part A: Polymer Chemistry, 25 (1987) 271-284.