1. Fujimoto R, Uezono K, Ishikura S, Osabe K, Peacock WJ, Dennis ES. Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breeding science. 2018;68(2):145-58.
2. Kempe K, Rubtsova M, Gils M. Split-gene system for hybrid wheat seed production. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(25):9097-102.
3. Schnable PS, Springer NM. Progress toward understanding heterosis in crop plants. Annual review of plant biology. 2013;64:71-88.
4. Marianyela Petrizzelli DdV, Christine Dillmann∗. Decoupling the Variances of Heterosis and Inbreeding Effects Is Evidenced in Yeast's Life-History and Proteomic Traits. Genetics. 2018;211(2).
5. Lippman ZB, Zamir D. Heterosis: revisiting the magic. Trends in Genetics. 2007;23(2):60-6.
6. Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics. 2001;158(4):1755-71.
7. Liu J, Li M, Zhang Q, Wei X, Huang X. Exploring the molecular basis of heterosis for plant breeding. Journal of integrative plant biology. 2020;62(3):287-98.
8. Ma Q, Hedden P, Zhang Q. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. Plant physiology. 2011;156(4):1905-20.
9. Wang T, Sui Z, Liu X, Li Y, Li H, Xing J, et al. Ectopic expression of a maize hybrid up-regulated gene, ErbB-3 binding Protein 1 (ZmEBP1), increases organ size by promoting cell proliferation in Arabidopsis. Plant science : an international journal of experimental plant biology. 2016;243:23-34.
10. Liu D, Li S, Wang L, Li Q, Cui Y, Dai X, et al. Cloning and Expression Analysis of SiCDPK4, a Gene Related to Heterosis in Foxtail Millet [(Setaria italica (L.) P. Beauv.)]. Journal of Plant Growth Regulation. 2018;38(2):513-22.
11. Hushuai N. Cloning and functional analysis of genes related to maize heterosis Changchun: Jilin University; 2015.
12. Nguyen-Phan TC, Fry SC. Functional and chemical characterization of XAF: a heat-stable plant polymer that activates xyloglucan endotransglucosylase/hydrolase (XTH). Annals of botany. 2019;124(1):131-47.
13. Guo M, Rupe MA, Dieter JA, Zou JJ, Spielbauer D, Duncan KE, et al. Cell Number Regulator1 Affects Plant and Organ Size in Maize: Implications for Crop Yield Enhancement and Heterosis. Plant Cell. 2010;22(4):1057-73.
14. Birchler JA, Auger DL, Riddle NC. In search of the molecular basis of heterosis. Plant Cell. 2003;15(10):2236-9.
15. Marcon C, Schutzenmeister A, Schutz W, Madlung J, Piepho HP, Hochholdinger F. Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development. Journal of proteome research. 2010;9(12):6511-22.
16. Rockenbach MF, Correa CCG, Heringer AS, Freitas ILJ, Santa-Catarina C, do Amaral-Junior AT, et al. Differentially abundant proteins associated with heterosis in the primary roots of popcorn. PloS one. 2018;13(5):e0197114.
17. Vale EM, Reis RS, Santa-Catarina R, Pereira MG, Santa-Catarina C, Silveira V. Comparative proteomic analysis of the heterosis phenomenon in papaya roots. Sci Hortic-Amsterdam. 2016;209:178-86.
18. Klopfenstein TJ, Erickson GE, Berger LL. Maize is a critically important source of food, feed, energy and forage in the USA. Field Crops Research. 2013;153:5-11.
19. Charles W. Stuber SEL, David W. Wolff: Tim Helentjarisn, Eric S. Lander. Identification of Genetic Factors Contributing to Heterosis in a Hybrid From Two Elite Maize Inbred Lines Using Molecular Markers. Genetics. 1992;132(3).
20. Giraud H, Bauland C, Falque M, Madur D, Combes V, Jamin P, et al. Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize (Zea mays L.) Heterotic Groups. Genetics. 2017;207(3):1167-80.
21. Li H, Yang Q, Fan N, Zhang M, Zhai H, Ni Z, et al. Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid zhengdan 958 by design III. BMC genetics. 2017;18(1):36.
22. Jahnke S, Sarholz B, Thiemann A, Kuhr V, Gutierrez-Marcos JF, Geiger HH, et al. Heterosis in early seed development: a comparative study of F1 embryo and endosperm tissues 6 days after fertilization. TAG Theoretical and applied genetics Theoretische und angewandte Genetik. 2010;120(2):389-400.
23. Hu X, Wang H, Diao X, Liu Z, Li K, Wu Y, et al. Transcriptome profiling and comparison of maize ear heterosis during the spikelet and floret differentiation stages. BMC genomics. 2016;17(1):959.
24. Lin Feng GM, Zhou Ling, Zhao Han. Genome-Wide Identification of Glyco-hydro-16 Family in Maize and Differentiation Analysis. Scientia Agricultura Sinica. 2016;49(11).
25. Hoecker N, Lamkemeyer T, Sarholz B, Paschold A, Fladerer C, Madlung J, et al. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F(1)-hybrid compared to its parental inbred lines. Proteomics. 2008;8(18):3882-94.
26. Hu X, Wang H, Li K, Wu Y, Liu Z, Huang C. Genome-wide proteomic profiling reveals the role of dominance protein expression in heterosis in immature maize ears. Scientific reports. 2017;7(1):16130.
27. Chen Y, Zhou Q, Tian R, Ma Z, Zhao X, Tang J, et al. Proteomic analysis reveals that auxin homeostasis influences the eighth internode length heterosis in maize (Zea mays). Scientific reports. 2018;8(1):7159.
28. Meena RK, Pullaiahgari D, Gudipalli P. Proteomic analysis of heterotic seed germination in maize using F1 hybrid DHM 117 and its parental inbreds. Turkish journal of biology = Turk biyoloji dergisi. 2018;42(4):345-63.
29. Bai XL QH, Liu M, Zhang ZY. Study on the Relationship Between Drought Resistance and Physiological Index of Maize. Journal o fMaize Sciences. 2007;015(005):79-83.
30. Hou H-P, Ding Z-S, Ma W, Li C-F, Zhao M. Yield Performance Characteristics and Regulation Effects of Plant Density and Sub-Soiling Tillage System for High Yield Population of Summer Maize. Acta Agronomica Sinica. 2013;39(6):1069.
31. Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(18):6805-10.
32. Wang X, Yan B, Shi M, Zhou W, Zekria D, Wang H, et al. Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. Protoplasma. 2016;253(3):637-45.
33. Fei J, Wang YS, Zhou Q, Gu JD. Cloning and expression analysis of HSP70 gene from mangrove plant Kandelia obovata under cold stress. Ecotoxicology. 2015;24(7-8):1677-85.
34. Tang T, Yu A, Li P, Yang H, Liu G, Liu L. Sequence analysis of the Hsp70 family in moss and evaluation of their functions in abiotic stress responses. Scientific reports. 2016;6:33650.
35. Miller M, Song QX, Shi XL, Juenger TE, Chen ZJ. Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nat Commun. 2015;6.
36. Yang L, Li BS, Zheng XY, Li JG, Yang M, Dong XN, et al. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids (vol 6, 7309, 2015). Nat Commun. 2015;6.
37. Rohde P, Hincha DK, Heyer AG. Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. Plant J. 2004;38(5):790-9.
38. Pulido P, Llamas E, Llorente B, Ventura S, Wright LP, Rodriguez-Concepcion M. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis. PLoS genetics. 2016;12(1):e1005824.
39. Llamas E, Pulido P, Rodriguez-Concepcion M. Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis. PLoS genetics. 2017;13(9):e1007022.
40. Perello C, Llamas E, Burlat V, Ortiz-Alcaide M, Phillips MA, Pulido P, et al. Differential Subplastidial Localization and Turnover of Enzymes Involved in Isoprenoid Biosynthesis in Chloroplasts. PloS one. 2016;11(2):e0150539.
41. Grant GA. D-3-Phosphoglycerate Dehydrogenase. Frontiers in molecular biosciences. 2018;5:110.
42. Okamura E, Hirai MY. Novel regulatory mechanism of serine biosynthesis associated with 3-phosphoglycerate dehydrogenase in Arabidopsis thaliana. Scientific reports. 2017;7(1):3533.
43. Kito K, Tsutsumi K, Rai V, Theerawitaya C, Cha-Um S, Yamada-Kato N, et al. Isolation and functional characterization of 3-phosphoglycerate dehydrogenase involved in salt responses in sugar beet. Protoplasma. 2017;254(6):2305-13.
44. Goto S, Kawakatsu M, Izumi S, Urata Y, Kageyama K, Ihara Y, et al. Glutathione S-transferase pi localizes in mitochondria and protects against oxidative stress. Free radical biology & medicine. 2009;46(10):1392-403.
45. Chasseaud LF. The Role of Glutathione and Glutathione S-Transferases in the Metabolism of Chemical Carcinogens and Other Electrophilic Agents. 1979;29:175-274.
46. Shinde H, Dudhate A, Tsugama D, Gupta SK, Liu S, Takano T. Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. Plant physiology and biochemistry : PPB. 2019;135:546-53.
47. Yang XH, Xu ZH, Xue HW. Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell. 2005;17(1):116-31.
48. Song L, Shi QM, Yang XH, Xu ZH, Xue HW. Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Cell research. 2009;19(7):864-76.
49. Witzel K, Matros A, Moller ALB, Ramireddy E, Finnie C, Peukert M, et al. Plasma membrane proteome analysis identifies a role of barley membrane steroid binding protein in root architecture response to salinity. Plant, cell & environment. 2018;41(6):1311-30.
50. Wang D, Portis AR, Jr. A novel nucleus-encoded chloroplast protein, PIFI, is involved in NAD(P)H dehydrogenase complex-mediated chlororespiratory electron transport in Arabidopsis. Plant physiology. 2007;144(4):1742-52.
51. Silva J KY, Sukweenadhi J, Rahimi S, Kwon WS, Yang DC. Molecular characterization of 5 chlorophyll a-b-binding protein genes from Panax ginseng Meyer and their expression analysis during abiotic stresses. Photosynthetica. 2016;54(3).
52. Saeki N, Kawanabe T, Ying H, Shimizu M, Kojima M, Abe H, et al. Molecular and cellular characteristics of hybrid vigour in a commercial hybrid of Chinese cabbage. Bmc Plant Biol. 2016;16.
53. Zhu L, Wang D, Sun J, Mu Y, Pu W, Ma B, et al. Phenotypic and proteomic characteristics of sorghum (Sorghum bicolor) albino lethal mutant sbe6-a1. Plant physiology and biochemistry : PPB. 2019;139: 400-10.