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Abstract

Purpose: A balance between preserving urinary continence and achievement of negative margins is of
clinical relevance while implementary difficulty. Preoperatively accurate detection of prostate cancer
(PCa) extracapsular extension (ECE) is thus crucial for determining appropriate treatment options. We
aimed to develop and clinically validate an artificial intelligence (Al)-assisted tool for the detection of ECE
in patients with PCa using multiparametric MRI.

Methods: 849 patients with localized PCa underwent multiparametric MRI before radical prostatectomy
were retrospectively included from two medical centers. The Al tool was built on a ResNeXt network
embedded with a spatial attention map of experts’ prior knowledges (PAGNet) from 596 training data
sets. The tool was validated in 150 internal and 103 external data sets, respectively; and its clinical
applicability was compared with expert-based interpretation and Al-expert interaction.

Results: An index PAGNet model using a single-slice image yielded the highest areas under the receiver
operating characteristic curve (AUC) of 0.857 (95% confidence interval [Cl], 0.827-0.884), 0.807 (95% ClI,
0.735-0.867) and 0.728 (95% Cl, 0.631-0.811) in the training, internal test and external test cohorts,
compared to the conventional ResNeXt networks. For experts, the inter-reader agreement was observed in
only 437/849 (51.5%) patients with a Kappa value 0.343. And the performance of two experts (AUC,
0.632 to 0.741 vs 0.715 to 0.857) was lower (paired comparison, all p values < 0.05) than that of Al
assessment. When expert’ interpretations were adjusted by the Al assessments, the performance of both
two experts was improved.

Conclusion: Our Al tool, showing improved accuracy, offers a promising alternative to human experts for
imaging staging of PCa ECE using multiparametric MRI.

Introduction

Preoperative staging of prostate cancer (PCa) is critical for guiding the treatment selection of patients
and preventing both under and over treatment[1]. The presence of extracapsular extension (ECE), that is,
T3a stage, accounting for one-third of all PCa patients primarily diagnosed[2, 3], is associated with higher
rates of positive surgical margins and early biochemical recurrence after radical prostatectomy[4].
Resection of the neurovascular bundle (NVB) is recommended in these diseases with the aim of
decreasing positive surgical margins, which may substantially affect urinary continence and sexual
potencyl5, 6]. To date, the balance between preserving urinary continence and the achievement of
negative margins for radical prostatectomy remains a challenge, preoperatively accurate detection of ECE
would thus have a significant impact on treatment planning and prediction of outcomes in patients with
PCa.

Historically, digital rectal examination (DRE) has been the principal approach for clinical T-staging of
PCa[7]. Clinical staging and risk stratification models combining the prostate specific antigen (PSA) and
Gleason score of the prostate biopsy with DRE-derived clinical T-stage have been designed to obtain more
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accurate predictions of PCa aggressiveness, disease mortality, and biochemical recurrence[8-10].
However, DRE is generally believed to be a rather subjective test with potential inter-observer variability
and is at risk of underestimating the extent of anteriorly located tumors[11]. In the last few decades,
multiparametric magnetic resonance imaging (mpMRI) has been widely used to characterize PCa
preoperatively and determine the clinical stage. While, the use of MRl instead of DRE leads to a
significant upstaging of clinical T-stage and risk grouping[12-15]. In addition, despite considerable efforts
such as alternative high-resolution imaging and new grading approaches, the diagnostic accuracy of MRI
for T3a-staging revealed a poor and heterogeneous sensitivity of 30%—70%[16-19]. The heterogeneity of
MRI in PCa T3a-staging may be caused by the fact that there are no standard criteria for evaluation[20]. ,
the high level of expertise required for radiologists with the aim of accurate interpretation and
interobserver variability limit its consistency and availability[21].

Recently, artificial intelligence (Al), particularly deep learning (DL), has been proposed as a promising
solution to many medical imaging tasks involving organ segmentation, lesion detection, and disease
classification[22-25]. Al does not rely on predefined representations of low-level visual features within
images that were required in early machine learning approaches. Instead, DL can learn to discover task-
specific features such as anatomic localization, tumor contacting, neurovascular bundles, or direct
evidence of abnormalities in periprostatic adipose tissue, which are the footstones for the imaging
detection and staging of PCa. With a sufficient supply of expertly labeled examples, an appropriately
designed model can learn to emulate the judgments of expert clinicians who provide the labels.

Therefore, in this study, we hypothesized that an Al-assisted tool trained from a large dataset of high-
quality labels would produce automated ECE-staging capable of emulating the diagnostic acumen of a
team of experienced radiologists. We further hypothesized that when the assessment of the model is
provided to radiologists, their performance in ECE staging of PCa with mpMRI would be improved. We
verified our hypothesis by building a ResNeXt-based deep classification and detection model embedded
with a spatial attention map of the prior knowledge of the radiologists for an imaging interpretation of
ECE in patients with PCa[26]. We then validated the model by comparing it with expert interpretation on
two independent cohorts from two tertiary care medical centers with detailed outcome information.

Material And Methods

Patients

This was a retrospective study involving routine care at two tertiary care medical centers. Ethics
committee approval was granted by the local institutional ethics review board (protocol 2016-SRFA-093),
with a waiver of written informed consent. All procedures conducted in the studies involving human
participants were in accord with the 1964 Helsinki Declaration and its later amendments.

The two primary cohorts comprised an evaluation of the local database for the medical records to
identify patients with pathologically confirmed PCa. The inclusion criteria were as follows: i) PCa with

radical prostatectomy and ii) standard prostatic mpMRI exam within 4 weeks prior to surgical
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intervention. Patients without radical prostatectomy or with histories of previous surgeries or adjuvant
therapies for PCa (interventions for benign prostatic hyperplasia or bladder outflow obstruction were
deemed acceptable) were excluded. Finally, a total of 746 consecutive patients between January 2015
and June 2019 from Center 1 and 103 PCa patients between January 2017 and December 2019 from
Center 2 who underwent standard prostate mp-MRI and radical prostatectomy were enrolled. The patient
enrollment procedures are summarized in the supplementary data (Fig. S1).

Clinical variables included the age, PSA level, PSA density, biopsy Gleason score, number of positive
cores and perineural invasion. Histopathological outcomes such as surgical Gleason score, positive
surgical margin, presence of histological ECE, and presence of histological seminal vesicle invasion were
also determined. All biopsies and surgical specimens were prepared and examined by two pathologists
who had 10-yr experience in urologic pathology according to the ISUP 2005 recommendations.
Histopathological ECE, referring to the tumor breaking through the prostatic capsule into periprostatic fat,
was the primary clinical endpoint of this study.

Patients included in the Center 1 dataset were randomly split into training (n = 596) and test (n = 150)
groups for model development and internal validation, respectively. A cohort of 103 patients from Center
2 dataset was used for external validation.

Image Acquisition and Analysis

Patients in two academic institutions underwent a pelvic phased-array prostatic mpMRI examination on a
same type of 3.0 T MR scanner (Skyra; Siemens Healthcare, Erlangen, Germany). The scanning protocols
are a combination of transverse T1-weighted, transverse, coronal, and sagittal T,-weighted imaging
(T,WI) and transverse DWI sequences. The apparent diffusion coefficient (ADC) was measured using DWI
with a mono-exponential fitting model. The scanner types and imaging parameters are summarized in
Supplementary Materials (Table S1).

All images were retrospectively interpreted based on the guidelines of ESUR by two genitourinary
radiologists at two institutions (reader 1, 15 years of experience with prostate MRI; reader 2, 10 years of
experience with prostatic MRI) who were blinded to the pathological results and all clinical information.
Staging assessment with mpMRI was performed using the ECE grading system introduced by
Mehralivand et al.[17]. Imaging diagnosis of ECE is based on a three-tier grading approach using capsular
contact length (CCL) of 15 mm or greater, capsular irregularity or bulge, and frank breach of the capsule:
i) grade 0, no suspicion of pathological ECE, ii) grade 1, either CCL of 15 mm or greater or capsular
irregularity or bulge, iii) grade 2, both CCL of 15 mm or greater and capsular irregularity or bulge, and iv)
grade 3, frank ECE visible at mpMRI.

Construction of Deep Learning Networks

Image annotation and preprocess: Segmentation of prostate and PCa was performed with an in-house
software (Oncology Imaging Analysis version 2; Shanghai Key Laboratory of MR, ECNU, Shanghai, China)
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by two experienced genitourinay radiologists. A prior attention was generated according to the attention
of the prostate and PCa. Diffusion related sequences were aligned onto T2WI and all images were
resampled to an inner-resolution of 0.5 x 0.5 mm2. Then the patch with a size of 200 x 200 were cropped
and normalized by Z-score to make the scale similar before importing into the model .. The detail of
image annotation and preprocess were described in Supplementary Section 1-2.

Architecture of Network: A two-denominational ResNeXt, which was proved to be an effective CNN model,
with a convolutional block attention module (CBAM) was used to analyze the mpMRI images with labels
provided by the concatenated use of high-resolution T2WI, high-b value (1500 s2/mm) DWI, and ADC[26].
The output of the model was the prediction of the ECE. In each training dataset, a single leading slice
image with the largest cross-section of the tumor was used for model development. To guide the ResNeXt
network to emulate the judgments of experts who provided the labels of the targeted lesion, we
introduced a prior-attention guide (PAGNet) unit by inputting the attention map into CBAM[27]. The
attention map was generated based on the annotations of the whole prostate and tumor lesion, and a
high computational value in the attention map denoted a deserved-focusing region. Ensemble learning
with 5-fold cross validation was used during the training stage, and in the inference stage, the average
prediction of five independent models was treated as the final prediction of ECE risk. Details of attention
map generation, network architecture, and analysis are described in Supplementary Sections 3—-6 and
Fig. 1.

Postprocess: Considering that, for each patient, the tumor can involve several imaging slices while the
ECE may involve only parts of the involved imaging slices, we thus proposed two analysis approaches to
postprocess the predicted outputs. One is a single-slice (SS) based prediction that is derived from a
preset leading-slice image. The other is multi-slice (MS) based prediction, which is derived from images
with entire tumoral coverage, among which the highest predicted result was used as the final MS
prediction.

Integration of PAGNet and Clinical Identifications

Finally, we evaluated the integrative effects of clinical factors on DL networks to improve the diagnostic
performance. The PSA, age, biopsy Gleason score, percentage of positive cores, and biopsy perineural
invasion were added to the PAGNet model, namely, PAGNet+C, in which clinical information was directly
added to the penultimate layer of the fully connected (FC) layer of PAGNet by increasing the number of
neurons.

Performance of Deep Diagnostic Model

To evaluate the performance and clinical applicability of the deep diagnostic model, all data
assessments were conducted independently based on Al, human experts, and expert-Al interaction. For
expert-Al interaction, the expert score is upgraded when a positive assessment by the Al was determined,
whereas the highest score of 3 remained unchanged even with a positive assessment by the Al.
Conversely, the expert score is downgraded if a negative assessment is determined by the Al, and the
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lowest score of 0 remains unchanged with negative findings by the Al. To assess the effect of
pathological variants on the performance, the assessments were conducted specifically in groups
stratified by lesion size, D’Amico risk group[9], and PI-RADS score[28].

Statistical Analysis

Inter-reader variability was evaluated using inter-reader agreement and Cohen’s kappa. Model
performance was typically evaluated against a “ground truth” with histopathological manifestations
using a receiver operating characteristic (ROC) analysis. An inter-method comparison between expert, Al
and expert-Al interaction was applied using a summary ROC (SROC) curve through a Bayesian meta-
analysis, which allows an assessment of the independent and pooled performance of all methods. For
each comparison, contingency tables were used to present the results and calculate the diagnostic
accuracy. The unit of assessment for the contingency table for the assessment of accuracy was one
patient. Performance characteristics such as the area under the ROC curve (AUC), sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), and overall accuracy were also reported.

Second, the clinical usefulness and net benefits of the models were assessed using a decision curve
analysis (DCA). The DCA estimates the net benefit of a model based on the difference between the
numbers of true positives and false positives, weighted by the odds of the selected threshold probability
of risk. SROC was estimated using Stata 15, DCA was estimated using R, and other statistical values
were estimated using Python with scipy (v1.4.1) and the scikit-learn package (v.0.22). The reported
statistical significance levels were all two-sided, with statistical significance set at 0.05.

Results

Baseline characteristics

Of all patients included, histopathological ECE was diagnosed in the explanted tissue of 151/596
patients (25.3%) in the training group, 40/150 (26.7%) in the internal validation group, and 33/103
(32.0%) in the external validation group. The details of the baseline characteristics are summarized in
Table 1. Preoperative PSA, percentage of positive cores, biopsy Gleason Score, and perineural invasion
differed significantly between the groups with and without ECE (all p-values < 0.001). Age was not
significantly different between the two groups (p = 0.964).

Comparison of Deep Network Models

To determine the impacts of the two post-processing approaches on the prediction, the performance of
SS-based versus MS-based assessments is shown in Fig. 2a. In the training group, all SS-based
assessments were superior to the corresponding MS-based assessments (all p values < 0.028). In the
internal validation group, SS-PAGNet and SS-PAGNet+C were superior to the corresponding MS-based
networks (all p values < 0.019), whereas MS-ResNeXt was superior to SS-ResNeXt (p = 0.017). In the
external validation group, SS-ResNeXt and SS-PAGNet were superior to the corresponding MS networks
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(all pvalues < 0.046), and MS-PAGNet+C was superior to the corresponding SS network (p = 0.012). In
internal and external validation, the SS-PAGNet, requiring minimal post-processing, advanced with the
attention-gated units and achieved a better performance than any other SS or MS-based networks and
was therefore selected as the index model for clinical application.

To illustrate the robustness of the index PAGNet model, deep generative features from the last
penultimate layer of each network were extracted and plotted based on a t-distributed stochastic neighbor
embedding (t-SNE) analysis (Fig. 2b). The features of index PAGNet showed better intraclass aggregation
and interclass separation than those of the ResNeXt networks. To illustrate the interpretability, the model
was visualized by a Gradient-weighted Class Activation Mapping (Grad-CAM), which provided an
activation map at the end of block 4. The high activation region of the visual Grad-CAM map was the
major contributor to the prediction. To highlight the advancement of interpretable PAGNet, two
representative clinical cases are shown in Fig. 2c.

Performance and clinical application of deep learning models

The performances of ECE prediction between Al, expert, and expert-Al interaction are summarized in a
confusion matrix, as shown in Fig. 3, in which the true positives (TPs), false positives (FPs), true
negatives (TNs), and false negatives (FNs) of each diagnostic approach are compared. Regarding the
expert-based approach for ECE interpretation, the inter-reader agreement for ECE staging was observed in
437/849 (51.5%) observations, with a Kappa value of 0.343. And the performance of both two experts
(AUC, 0.632 t0 0.741 vs 0.715 to 0.857) is significantly (paired comparison of ROC, all p-value < 0.05)
lower than that of any of the Al assessments in the three cohorts. When expert-Al interaction was
performed, by which the expert’s interpretation was modified by Al assessment, the performance of the
two experts was significantly improved. To provide a more complete picture to illustrate the assistant role
of Al to experts, the independent and integrated effects of the experts, Al, and expert-Al interaction were
evaluated using SROC curves and forest plots with a Bayesian meta-analysis (Fig. 4).

Clinical implications of Deep Network Models

The benefit derived from applying the index PAGNet model in clinical practice, according to the decision
curve method, is depicted in Fig. S2. The PAGNet-derived probability demonstrated an improved clinical
risk prediction against threshold probabilities of ECE < 60%. The graph demonstrated better clinical risk
prediction when using the PAGNet or expert-Al interaction approach as compared to expert-based grading.

Additionally, we evaluated the clinical application of PAGNet for ECE staging in different clinicopathologic
manifestations such as the tumor size, D’Amico risk group, and PI-RADS score, a pretreatment
stratification of which might have a significant impact on the clinical decision making. Compared to
experts and other DL models, the index PAGNet model showed a higher NPV in terms of tumor size < 1.5
cm low D’Amico risk, and PI-RADS 3 lesions, and showed a higher PPV in terms of tumor size =1.5 cm,
intermediate/high D’Amico risk, and PI-RADS 4-5 lesions (Fig. 5).
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Discussion

Tailoring the most suitable surgical approach for patients with PCa in terms of nerve sparing, urologists
are required to balance the risk of ECE versus benefits from NVB preservation before the RP is delivered.
Expert-based assessment of the ECE stage using DRE and MRI is highly heterogeneous[16]. Recently, Al-
assisted diagnosis of prostate diseases using mpMRI has attracted increasing attention and has shown
promising prospects[24, 29]. In this study, we developed and validated an Al-assisted tool to
preoperatively assessing ECE stage of localized PCa using mpMRI. Our study contributes important
methodology accompanied with model interpretability to address a critical question for clinical tumor
staging of PCa. Our results on a cohort of 849 patients with RP from two tertiary care medical centers
show promises of deep diagnostic model for ECE staging and potential utilities of this tool for improving
performance and reducing inter-reader variability.

Our study has several innovations compared with previous relevant researches. First, to our knowledge,
this is the first study to apply an automatic Al tool in ECE staging in patients with PCa. The view was
expressed that imaging detection of ECE remains a challenge for that we are unable to detect
microscopic ECE at histopathology and DL algorithm can provide potential improvement through training
high-throughput-derived imaging features[30]. Our results revealed that our Al tool is capable of
discriminating ECE in a quantitative and objective manner, and performs better than binary mpMRI
interpretation or objective scoring scheme[31-33]. Second, in our approach, the proposed model generated
a prior-attention probability map by gating the networks to learn potentially useful features across the
boundaries between the prostate and tumor, thus making our model more robust and interpretable
compared to the traditional black-box learning approaches. Third, from the perspective of Grad-CAM, our
tool can not only make the diagnosis of the ECE stage, but also provide a predicted region that is highly
suspicious of ECE. This is a significant advancement compared to traditional predictive nomograms that
only provide binary classification or prediction [2, 3, 34]. This approach might be more applicable to
radiologists in real-world clinical scenarios.

Our results have several clinical implications. First, from a clinical perspective, ECE most likely occurs in
the pericapsular regions of the leading imaging slice, the accuracy of which needs to be carefully
clarified. Taking this into account, two analysis strategies, i.e., SS versus MS, were proposed to optimize
the predictions of our networks. The results revealed that the SS-based analysis performed better than the
corresponding MS-based approach. This implies that, to a certain extent, an overprediction occurs based
on the MS analysis, which leads to a false-positive prediction in non-leading imaging slices. This finding
is partly consistent with our primary assumption that the pericapsular region on the leading imaging slice
is the most suspicious location for the occurrence of ECE. Focusing the attention learning on the leading
slice can provide a more effective assessment of ECE staging. Second, the results of previous studies
have revealed the critical roles of clinical characteristics such as PSA, PSAD, and biopsy findings for ECE
prediction. Unfortunately, adding these factors did not contribute significantly to the improvement in the
model performance. This is contrary to most other studies, supposing that an improved diagnostic
accuracy of combining MRI with clinical indications [35, 36]. This may be caused by the fact that the
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hidden FC features of our networks are significantly larger than embedded clinical factors, and data in a
training cohort are relative smaller than the deep layer features. Therefore, it is difficult for deep networks
to extract critical information from these limited sparse clinical features, that is, the curse of
dimensionality. Third, although the expert-based ECE grading system used in our study has potential
advances against the traditional non-standardized reporting method [19], we did observe large inter-
observer variances in ECE grade interpretation. The intrareader agreement is fair in our two cohorts, which
varies significantly from that of Park et al.[19]. The positive rates in each interpreted ECE grade in our
cohorts are comparable to that of Mehralivand et al.[17] but markedly lower than that of Park et al[19]. In
addition, we conduct a head-to-head comparison of performance between Al, expert, and expert-Al
interaction. We did demonstrate that an Al-based assessment has a higher accuracy compared to expert-
based ECE grading, and results from expert-Al interaction show that our Al could be of great assistance to
radiologists in improving the diagnostic performance. Fourth, we further elaborated a subgroup analysis
of PAGNet, the results of which support the idea that our Al achieved higher PPVs in tumor with larger
size, higher D’Amico risk score, and higher PI-RADS score. Therefore, personalized surgical treatment of
patients with PCa is feasible when MRI-derived ECE risk and other risk-based approaches are combined.

Although encouraging results were obtained in our preliminary work, several limitations warrant mention.
First, the DL model was trained on single-center data, and although the test data originated from two
medical centers, the cohort size was still limited for our data-driven approach. In addition, in the external
test cohort, the diagnostic performance of any Al-based method decreased markedly compared with that
in the training and internal test cohorts. Currently, the wish of multi-center application of Al-based
approaches may be challenged by the sample size, study cohorts, and distribution differences. This may
be overcome by increasing the data samples from external sites, which is one of our ongoing works.
Second, a prospective multicenter controlled experiment is needed to validate the model in clinical
scenarios before it can be made routinely available.

In conclusion, we proposed an Al-assisted tool embedded with a spatial attention map of the experts’
prior-knowledge for ECE staging using mpMRI. The tool performed better than expert-based interpretation
and provided assistant role to radiologists. The interpretability of our Al-based approach is particularly
imperative towards building trustable auto classification and detection tool for clinical application and
facilitating a streamlined patients management process.
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Table 1: The baseline characteristics of the patients in the training, internal and external validation

sets

Variable

Age (y)
PSA (ng/mL)

D’Amico risk group

Low risk

Intermediate risk

High risk
Tumor diameter
PI-RADS score
1-2
3
4
5

MRI-based ECE
grade

Reader 1 | reader 2

0

Biopsy Gleason
Score

GS 3+3
GS 3+4
GS 4+3
GS = 4+4

Training
(n = 596)
69.2+7.1 (42-86)

28.2+47.4[10.7-676.0[

77/596 (12.9%)

227/596 (38.1%)
292/596 (49.0%)
1.841.1 (0.4-6.3)

40/596 (6.7%)
89/596 (14.9%)
191/596 (32.0%)
276/596 (46.3%)

196/596 (32.9%) |
215/596 (36.1%
179/596 (30.0%

130/596 (21.8%) |

150/596 525.2%; |
103/596 517.3%;
( )

120/596 (20.1%) |
99/596 (16.6%)

151/596 (25.3%)
128/596 (21.5%)
149/596 (25.0%)
168/596 (28.2%)

Internal validation
(n=150)
69.246.9 (48-83)

30.7+36.5 (0.8-214.4)

17/150 (11.3%)
57/150 (38.0%)
76/150 (50.7%)
1.8+1.1 (0.5-5.4)

12/150 (8.0%)

24/150 (16.0%)
47/150 (31.3%)
67/150 (44.7%)

50/15
48/15

33.3%) |
32.0%

31/15
50/15

20.7%) |
33.3%
34/150 (22.7%) |
23/150 (15.3%

35/15
29/15

23.3%) |
19.3%

oo oo [e» N a) oo

41/150 (27.3%)
34/150 (22.7%)
43/150 (28.7%)
32/150 (21.3%)
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External validation
(n=103)

70.2+6.8 (52-87)
31.4+35.5 (3.0-201.4)

6/103 (5.8%)
33/103 (32.0%)
64/103 (62.1%)
2.241.0 (0.5-5.4)

12/103 (11.7%)
8/103 (7.8%)

14/103 (13.6%)
69/103 (67.0%)

28/103 (27.2%) |
25/103 (24.3%

29/103 (28.2%) |
31/103 (30.1%

|
26/103 (25.2%

20/103 (19.4%) |

26/103 Ezs.z%
21/103 §20.4%

12/103 (11.7%)
19/103 (18.4%)
26/103 (25.2%)
46/103 (44.7%)




Percentage of
positive cores

Perineural invasion

present
absent

Surgical Gleason
Score

GS 3+3

GS 3+4

GS 4+3

GS = 4+4

Pathological ECE
present
absent

Pathological SVI
present
absent

Pathological SM
present

absent

Note: Unless indicated otherwise, data are number of tumors, with percentages in parentheses. PSA =
prostate serum antigen. PI-RADS= Prostate Imaging and Reporting and Data System version 2.1; ECE

0.4%0.3 (0.1-1.0)

92/596 (15.4%)
504/596 (84.6%)

85/596 (14.3%)

167/596 (28.0%)
180/596 (30.2%)
164/596 (27.5%)

151/596 (25.3)
445/596 (74.7)

101/596 (16.9%)
495/596 (83.1%)

265/596 (44.5%)
331/596 (55.5%)

0.440.3 (0.1-1.0)

17/150 (11.3%)
133/150 (88.7%)

20/150 (13.3%)
41/150 (27.3%)
48/150 (32.0%)
41/150 (27.3%)

40/150 (26.7%)
110/150 (73.3%)

26/150 (17.3%)
124/150 (82.7%)

66/150 (44.0%)
84/150 (56.0%)

0.5+0.3 (0.1-1.0)

9/103 (8.7%)
94/103 (91.3%)

6/103 (5.8%)

21/103 (20.4%)
34/103 (33.0%)
42/103 (40.7%)

33/103 (32.0%)
70/103 (68.0%)

15/103 (14.6%)
88/103 (85.4%)

30/103 (29.1%)
73/103 (70.9%)

= extracapsular extension. SVI = seminal vesicle invasion. GS= Gleason Score. RP=radical
prostatectomy. SM=surgical margin.
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Figure 1

Overview of the model development. (a) Training stage: single leading-slice image, determined with the
largest area of the tumor on T2WI, DWI, and ADC, respectively, formed as the input sets of deep networks.
A prior-attention map, indicating the boundary features of the prostate and tumor with expert-provided
labels, formed as the principle components of CBAM. (b) Modified CBAM: self-learned attention of the
CBAM and the prior-attention map, serving as additional attention-gated factor, are implemented into the
deep layers of backbone networks. (c) Inference Stage: Innovatively, for each patient, our deep network
model outputs a single-slice prediction and multi-slice predictions. The output of a single-slice prediction
is derived from the preset leading-slice image, and the final output of multi-slice predictions is derived by
computing the highest probability of all tumor-involved images. ROI, region of interest; CBAM,
convolutional block attention module; Al, artificial intelligence; ECE, extracapsular extension
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Training Data Internal Validation Data External Validation Data
Variable AUC SE 95% Cis P Variable AuC SE 95% Cls P Variable Auc SE 95% Cls P
ResNeXtOneslce 0818 0020 077910085 ResheXtOnesice 0746 0045 0658100833 . RestleXtOnesice 0723 0.05 0618100828
ResNeXt-Multislice  0.799 0020 076000839 Resext-Mulislice B8 0044 0676100849 ResNeXt-MultiSlice 0677  0.060  05591007%
Variable AUC SE 95% Cis P Variable AuC SE 95% Cls P Variable AuC SE 95% Cls P
PAGNet-OneSice 0857 0017 0823100891 PAGNet-Onesice 0807 0038  073t00882 PAGNetOneSlice 0728 0.052 0626100830
PAGNet-MultiSlice 0829 0019  0793to0.865 PAGNet-MultiSlice  0.805 0038 0731100878 PAGNet-Multislice ~ 0.703  0.060 0586100820
Variable AUC SE 95% Cls P Variable AUC SE 95% Cls P Variable AUC SE 95% Cls P
PAGNetsCOTeSice 0853 0018 0819100387 PAGNet:COneslice 0794 0040 0715100872 | | PAGNesCOneSice 0715 0.053 0613100818
PAGNet:+C-MultiSlice 0846 0018  0811t00.880 PAGNetsC-Multislice 0775 0041 0694100855 PAGNetsC-Multislice B8l 0.055 0519100836
d.
m ResNeXt (train) o ECE- 40 ResNeXt (intemal validation) o g, 40 | ResNeXt (external validation) ¢ ECE-
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Figure 2

Graphs show (a) the diagnostic performance of SS and MS ResNeXt, PAGNet, and PAGNet+C, (b) t-SNE of
the features from the penultimate layer of ResNeXt and PAGNet, and (c) the Grad-CAM of ResNeXt and
PAGNet. (a) SS-PAGNet achieved a better performance than any other SS or MS network; the yellow and
green colors highlight the best performance of the dedicated methods. (b) The features of PAGNet
showed better intra-class aggregation and inter-class separation than that of ResNeXt. (c) The highly
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activated region (dotted lines) on the Grad-CAM map represents the attention-focused region. For the ECE-
present case (left), PAGNet gates the learning on the right peripheral zone of the prostate, which is the
region that undergoes histopathological ECE, whereas ResNeXt focuses on the entire-gland regions. For
the ECE-absent case (right), PAGNet gates attention learning on the anterior peri-capsular region, which is
the most suspicious region for ECE, whereas ResNeXt gates attention to the region outside the prostate.
To some extent, this proves the effectiveness of the expert-gated attention units on the maturity of the
model. ECE, extracapsular extension; SS, single slice; MS, multi slice; AUC, area under the curve; SE,
standard error; Cl, Confidence interval; t-SNE, t-distributed stochastic neighbor embedding; Grad-CAM,
gradient-weighted class activation mapping.

Diagnosis Ul
Cut-off AUC TP FP TN FN
ResMNeXt 0.835 0.818 (0.779-0.856) 112/199 (56.3%) 87/199 (43.7%) 358/397 (90.2%) 39/397 (9.8%)
PAGNet 0.8 0.857 (0.823-0.891) 108/163 (66.3%) 55/163 (33.7%) 390/433(90.1%) 43/433 (9.9%)
PAGNet+C 0.504 0.853 (0.819-0.887) 126/223 (56.5%) 97/223 (43.5%) 348/373(93.3%) 25/373 (6.7%)
Reader 1 >=2 0.741(0.697-0.786) 104/250 (41.6%) 146/250 (58.4%) 299/346 (86.4%) 47/346 (13.6%)
Reader 2 >=2 0.674(0.625-0.722) 82/202 (40.6%) 120/202 (59.4%) 325/394 (82.5%) 69/394 (17.5%)
PAGMNet+Reader 1 >=2 0.809 (0.768-0.850) 108/187 (57.8%) 79/187 (42.2%) 366/409 (89.5%) 43/409 (10.5%)
PAGMNet+Reader2 >=1 0.795(0.754-0.836) 123/262 (16.9%) 139/262 (53.1%) 306/334 (91.6%) 28/331 (8.4%)
. . Internal Validation
Diagnosis Cut-off AUC P Fp N FN
ResNeXt 0.835 0.746 (0.658-0.833) 24/54 (44.4%) 30/54 (55.6%) 80/96 (83.3%) 16/96 (16.7%)
PAGNet 0.8 0807 (0.732-0.882) 30/53 (56.6%) 23/53 (43.4%) 87/97 (89.7%) 10/97 (10.3%)
PAGNet+C 0.504 0.794 (0.715-0.872) 30/62 (48.4%) 32/62 (51.6%) 78/88 (88.6%) 10/88 (11.4%)
Reader 1 >=2 0.725(0.638-0.811) 28/69 (40.6%)  41/69 (59.4%)  69/81 (85.2%) 12/81 (14.8%)
Reader 2 ==2 0.632(0541-0723) 17/52(32.7%) 35/52 (67.3%) 75/98 (76.5%)  23/98 (23.5%)
PAGNet+Reader 1 >=2 0798 (0.719-0.877) 31/58 (53.4%) 27/58 (46.6%) 83/92 (90.2%) 9/92 (9.8%)
PAGNMNet+Reader2 >=1 0.733 (0.645-0.822) 31/74 (41.9%)  43/74 (58.1%) 67/76 (88.2%)  9/76 (11.8%)
Diagnosis External Validation
Cut-off AUC TP FP TN FN
ResMNeXt 0.835 0.723 (0.618-0.828) 2/3 (66.7%) 1/3 (33.3%) 69/100 (69.0%) 31/100 (31.0%)
PAGNet 0.8 0728 (0.626-0.830) 9/17 (52.9%) 8/17 (47.1%)  62/86 (72.1%)  24/86 (27.9%)
PAGNet+C 0.504 0.715(0.613-0.818) 17/30 (56.7%) 13/30 (43.3%) 57/73 (78.1%) 16/73 (21.9%)
Reader 1 >=2 0.694 (0.588-0.799) 22/46 (47.8%)  24/46 (52.2%)  46/57 (80.7%) 11/57 (19.3%)
Reader 2 >=2 0712 (0.610-0.815) 23/47 (4B.9%)  24/47 (51.1%)  46/56 (82.1%)  10/56 (17.9%)
PAGNet+Reader 1 >=2 0.688 (0.581-0.795) 15/27 (55.6%)  12/27 (44.4%)  58/76 (76.3%)  18/76 (23.7%)
PAGMNet+Reader 2 >=1 0.702 (0.597-0.807) 24/51 (47.1%) 27/51 (52.9%) 43/52 (82.7%) 9/52 (17.3%)
Figure 3

Diagnostic performance of different methods for ECE staging in the training, internal, and external
validation cohorts. Yellow color highlights the best performance of the dedicated methods. AUC, area
under the curve; TP, true predictive; FP, false positive; TN, true negative; FN, false negative. Optimal cutoffs
were selected using the Youden J-index.
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Figure 4

The sensitivity, specificity and summary receiver operating characteristic (SROC) curves of the Al, experts,
and expert-Al interaction for ECE staging in the training, internal and external validation cohorts. Plots are
individual and combined sensitivity, specificity and area under SROC curves of the diagnostic methods
using a Meta regression analysis, by which the integrated effects of Al and experts are evaluated and
visualized.
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Figure 5

Positive predictive value and negative predictive value of Al, expert and expert-Al interaction for ECE
staging for patients with different tumor size, D’Amico risk grade, and PI-RADS score in combined internal
and external validation cohort. PPV, positive predictive value; NPV, negative predictive value.
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