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Abstract
ADHD, a neurological condition that onset in childhood is now an important part of the disease burden in
the global population. ADHD is usually diagnosed at school age, and there are no authoritative research
to articulate whether ADHD in adult shares a common pathogenic mechanism with ADHD in children.
Previous studies have elucidated metabolic pro�les as functional mediators, and the present study is the
�rst to combine metabolomics and Mendelian randomization(MR) to elucidate the causal relationship
between serum metabolites and ADHD diagnosed in children. A metabolomic study of childhood-
diagnosed ADHD and normal children in a prospective cohort of preschoolers. Metabolomic results of
preschool children enrolled in the cohort study identi�ed 112 differential metabolites, with 69 metabolites
upregulated and 43 metabolites downregulated. For MR studies, single nucleotide polymorphisms
associated with childhood-diagnosed ADHD were identi�ed from metabolite-wide association studies for
IVW analysis. MR results revealed that the IVW approach revealed a total of 15 signi�cant pathogenic
association pro�les from 486 metabolites, including 10 known metabolites and 5 unknown metabolites.
Combining the results of MR analyses from metabolomic studies and cohort studies, arginine and α-
tocopherol were two important metabolites affecting the diagnosis of ADHD in childhood. The metabolic
pathways of primary bile acid biosynthesis and arginine/proline metabolism were the overlapping
metabolic pathways in both studies.

Introduction
Attention de�cit hyperactivity disorder (ADHD) is a neurological disorder that emerges in childhood and is
characterized by age-appropriate motor hyperactivity and impulsivity, dyspraxia, and inattention, a
condition that often leads to persistent-diagnosed ADHD(1). According to studies, such psychiatric
disorders affect about 5-6% of school-age children and about 3% of adults(2, 3). The rapid
transformation of global economic, demographic, and epidemiological conditions has made psychiatric
disorders a major contributor to overall morbidity and disability in recent decades(4, 5). ADHD is usually
diagnosed during school age and can also be diagnosed in adulthood. There are no authoritative
research to articulate whether adult-diagnosed ADHD shares common pathogenic mechanisms with
childhood ADHD, or whether there are distinct pathogenic causes that lead to delayed diagnosis or even
adult-diagnosed ADHD (6). Identifying the characteristics of ADHD in childhood can help play a crucial
role in intervening in the progression of the disease.

Currently, the diagnosis of ADHD relies on behavioral analysis, especially in children who need to rely on
their guardians. Objective laboratory biomarkers for the diagnosis of ADHD must be investigated (7).
Previous studies have elucidated metabolic features as regulatory mediators to elucidate the in�uence of
genetic factors on psychiatric disorders (8-10). Metabolites, as products of the exchange of substances
between the organism and the environment, are important products for the maintenance of body
functions. (11). The calibration of serum metabolites can re�ect human health and provide fresh
perspectives on the effects of diet, environment and disease. Recent work identi�ed multiple potential
serum biomarkers, such as mono/polyunsaturated fatty acid pathways, in patients with ADHD,
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suggesting a potential link between metabolic pro�les and the pathophysiology of ADHD.(12-15).
However, observational studies mostly hinder causal inference and comprehensive and novel analyses
are needed to determine the causal relationship between genetic variants and metabolite interactions and
ADHD.

Mendelian randomization (MR) is a causal research method that strengthens causal inferences about
exposure-outcome associations by using genetic variation as an instrumental variable for exposure. By
using a genetic variation, such as single nucleotide polymorphisms (SNPs), as modi�able disease risk
factors or instrumental variables (IVs) for exposure, MR designs can strengthen causal inferences about
exposure-outcome associations. According to Mendelian laws of inheritance, genetic variants are less
susceptible to confounding factors because they are randomly assigned during gamete formation(16,
17). In addition, confounding factors and reverse causality can be minimized because genotypes cannot
be altered by disease progression. 

In this project, we intended to elucidate whether metabolites are relevant to childhood-diagnosed ADHD,
which involved a multi-stage prospective cohort study. In addition, we conducted a 2-sample MR study to
explore whether metabolites are causally associated with ADHD diagnosed in children.

Methods

Cohort
All participants 39–78 months of age were enrolled voluntarily through the school. Authorized consent
was acquired from the legally authorized representative of each child. Each child's legally authorized
representative completed the SNAP-IV Attention De�cit Hyperactivity Disorder Rating Scale for inclusion
in ADHD (18). An experienced child psychiatrist performed a neurocognitive assessment and physical
examination to exclude any neurological disorder other than ADHD. The �rst 220 preschoolers were
recruited for this study, and 21 children with assessed ADHD and 10 healthy preschoolers were selected
for the study. The study was approved by the Ethics Committee of Jiangsu Provincial Center for Disease
Prevention and Control (JSJK202l-B009-01).

Blood sample collection and pre-processing
Participants were urged to fast for 8 hours prior to blood collection to prevent direct effects of diet on
metabolic status. Venous blood was extracted into non-heparinized tubes, rested at room temperature for
30 minutes, and centrifuged at 1800×g for 10 minutes. Serum samples were stored in a -80°C refrigerator.
Serum samples were prepared according to the procedure described in a previous study(19, 20).

LC-MS Metabolomic Analyses
The procedure for setting up and using the LC/MS instrument is described in the previous article(21).
Brie�y, the sample was eluted in positive and negative mode using a Hypesil Gold column with a �ow rate
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of 0.2 mL/min. The eluent gradient was controlled and the elution procedure lasted for 36.6 min.
QExactive

Data Processing
CompoundDiscoverer 3.1 is used to manipulate raw metabolite data and perform peak processing and
quanti�cation(21). After normalization, it is matched against the corresponding database to obtain
metabolite names and relative quanti�cation results.

Characterization and metabolite identi�cation
KEGG, HMDB databases were used to interpret the corresponding metabolite attribution and metabolic
pathways. Principal component analysis (PCA) was used to distinguish differences between data groups,
and partial least squares discriminant analysis (PLS-DA) was applied for effective separation of data.
(22). Metabolites were considered differential if their VIP score exceeded 1, their P-value was less than
0.05, and their fold change was equal to or greater than 2, or less than or equal to 0.5. The R language
was used to visualize and cluster the differential metabolites using the ggplot2/Pheatmap package and
to plot the corresponding images. A P-value less than 0.05 is considered statistically signi�cant.

MR study design and data sources
The procedure of this MR study is demonstrated in Fig. 1. The instrumental variables used in MR analysis
must satisfy three assumptions: (1) IV must be related to exposure (serum metabolomics); (2) IV must
only be related to the outcome (childhood-diagnosed ADHD) through exposure (serum metabolomics); (3)
IV must be independent of any confounding factors(17). The study utilized the most extensive report of
genetic loci for human metabolism up to date, which encompassed 7,824 adult individuals from two
population studies in Europe. (23). After strict quality control, a total of 486 metabolites were used for
genetic analysis, including 309 known metabolites and 177 unknown metabolites. The summary
statistics of GWAS can be accessed by the public through the following resource:
http://metabolomics.helmholtz-muenchen.de/gwas/'s metabolomics GWAS server.

Selection of Instrumental Variables for the 486 Metabolites
For each metabolite, we calibrated SNPs with an association of P < 3×10 − 6. The clumping procedure
was performed using the R language for the calibrated snps, speci�cally with an r2 < 0.5, 5000kb setting.
This study screens whether IVs are representative of metabolite levels based on explained variance (R2)
and F-statistical parameters. We calibrated instrumental variables with F > 10 to be eligible for this study.

GWAS of childhood-diagnosed ADHD
Conducted a GWAS meta-analysis using the latest available data from Psychiatric Genomics Consortium
(PGC) website(https://ipsych.dk/en/research/downloads) to identify genetic variants associated with
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childhood-diagnosed ADHD. Our study included children diagnosed with ADHD (n = 14,878) and 45,398
controls.

Metabolic pathway analysis
Metabolites that were identi�ed as signi�cant by IVW analysis (PIVW< 0.05) were selected for metabolic
pathway analysis.

MR analyses
"TwoSampleMR" packages using R4.21 for MR analysis.MR Egger, Weighted median, Inverse variance
weighted (IVW), Simple mode, Weighted mode A total of �ve methods are used to infer causality between
Serum metabolomics and childhood-diagnosed ADHD. In addition, we used the MR-Egger method to
assess MR pleiotropy (24).MR-PRESSO is used to detect heterogeneity in IVW analysis. Cochrane's Q test
was used to detect heterogeneity among the selected SNPs (P < 0.05). In cases of signi�cant
heterogeneity, a random-effects IVW test was used to provide more conservative and robust
estimates(25). We also assessed and corrected for the in�uence of directional pleiotropy using the
intercept obtained from the MR-Egger regression model. In addition, we conducted sensitivity analyses by
systematically removing individual SNPs to assess the robustness of the results. The �ndings were
visualized using a forest plot.

Result

Characteristics of the Cohort Study Participants
The �rst 220 preschoolers were recruited for the cohort study and 21 children evaluated for ADHD and 10
healthy preschoolers were selected for the metabolomics study. The clinical information of the recruited
subjects showed no signi�cant difference in height, weight, age, male, and waist circumference (P > 0.05)
(Table 1).

Table 1
Baseline characteristics of children

  ADHD CONTROL P

Height (cm) 105.2 ± 4.07 107.1 ± 4.41 0.293

Age (months) 46.9 ± 4.04 46.7 ± 3.65 0.885

Male (%) 50 40 0.243

Waist circumference(cm) 44.50 ± 5.96 38.57 ± 4.40 0.688

Body weight(kg) 17.4 ± 2.45 18.0 ± 3.05 0.606

Multivariate Data Analysis of Serum Metabolites
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This study uses the supervised statistical method of pattern recognition, OPLS-DA, to reduce information
unrelated to classi�cation and improve the effectiveness of the model. The OPLS-DA model and OPLS-
DA permutation test showed signi�cant separation of metabolic spectra between the ADHD group and
the Control group, with R2Y values of 0.96 and 0.95, respectively, indicating that the model has good
discrimination between samples and high aggregation of samples within the same group (Fig. 2a–d).
The VIP and P values were used to reveal the importance of metabolites. Differential metabolites were
screened based on the standard with VIP > 1 and P < 0.05. Through differential metabolism analysis, 112
differential metabolites were found, 69 metabolites showed up-regulation, and 43 metabolites showed
down-regulation (Appendix S1: Table S1). The volcano plot and clustering heat map shows the overall
distribution of differential metabolites (Fig. 2e-f,3a-b). Differential metabolite correlation analysis
elucidated synergistic or mutually exclusive relationships between different metabolites (Fig. 3c-d).

Metabolic Pathway Analysis
Metabolic pathway enrichment analysis was performed using the KEGG database. We found that 20
metabolic pathways were affected. The major Steroid hormone biosynthesis, Vitamin digestion and
absorption, and Serotonergic synapse pathways were detected to be affected in positive ion mode, while
the metabolic pathways observed in negative ion mode included Pyrimidine metabolism and Bile
secretion pathways (Fig. 4a-b).

Strength of the instrumental variables
Two-sample Mendelian randomization study to determine the causal effect of genetically determined
metabolites in blood on childhood-diagnosed ADHD. 486 metabolites had VIs ranging from 1 to 113, and
these generated IVs could explain 0.3058- 46.20% (Appendix S2: Table S2). In addition, the minimum F-
statistic for these IVs was 21.75, indicating that all IVs were su�ciently valid for MR analysis of the 486
metabolites (F-statistic > 10) with no weak instrumental variables.

Genetically determined metabolite causation of ADHD
From the 486 metabolites, the IVW approach revealed the identi�cation of a total of 15 signi�cant
pathogenic association features, including 10 known metabolites and 5 unknown metabolites (Fig. 5). P-
values from the Cochran Q test indicated no detectable heterogeneity. In addition, the MR-Egger intercept
term indicated no horizontal pleiotropy for any of them (Table 2). Therefore, these metabolites were
identi�ed as potential candidate metabolites involved in the pathogenesis of childhood-diagnosed ADHD
for the next analysis.
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Table 2
Heterogeneity and horizontal pleiotropy of genetically determined

metabolites
Metabolites Heterogeneity test Pleiotropy test

Threonate 0.27 -

Inosine 0.40 -

X-10506 0.85 0.70

Androsterone sulfate 0.37 0.28

Decanoylcarnitine 0.44 0.37

X-12217 0.13 0.89

Arginine 0.88 0.89

Cis-4-decenoyl carnitine 0.93 0.65

X-06226 0.84 0.93

Alpha-tocopherol 0.72 0.52

Deoxycholate 0.73 0.71

Propionylcarnitine 0.44 0.59

X-01911 0.79 0.42

X-12039 0.66 0.52

Succinylcarnitine 0.91 0.57

Metabolite co-analysis
Combining the results of metabolomic studies and MR analysis from the cohort study identi�ed Arginine
and Alpha-tocopherol as two important metabolites affecting childhood-diagnosed ADHD (Fig. 6). The
metabolic pathways of primary bile acid biosynthesis and arginine and proline were the overlapping
metabolic pathways of the two studies.

Discussion
This study used blood metabolomics and MR of preschool enrolled in cohort studies to assess the
association between serum metabolites and childhood-diagnosed ADHD. A total of 112 differentiated
metabolites were identi�ed in the metabolomics results of the cohort study, with 69 metabolites showing
upregulation and 43 metabolites showing downregulation. Fifteen genetically determined metabolites
were found to be causally associated with childhood-diagnosed ADHD using more rigorous MR analysis
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criteria, with arginine and α-tocopherols overlapping with metabolomic differential metabolites in cohort
studies. In addition, pathway enrichment analysis identi�ed two important metabolic pathways, the
"Biliary secretion" pathway and the "metabolic pathways of arginine and proline" pathway.

According to previous �ndings, this is the �rst study of childhood-diagnosed ADHD that combines cohort
studies, MR studies, and metabolomics. Here, the results identi�ed a cluster of metabolites in serum
associated with childhood-diagnosed ADHD, with Alpha-tocopherol having a potent effect on childhood-
diagnosed ADHD. In a recent study, it was elucidated that alpha-tocopherol has a positive effect as a non-
enzymatic antioxidant against depression and anxiety (26–28). Several studies have shown that alpha-
tocopherol antioxidant supplementation therapy can effectively enhance the oxidative defense function
of the body (29–31). Also, a case-control study suggested that mild oxidative stress and immune
disorders may affect ADHD (32). Thus α-tocopherol may play an important role in the neurodevelopment
of childhood-diagnosed ADHD.

This joint conjoint analysis also identi�ed arginine (Arg) as an important genetically determined essential
metabolite both inside and outside the RI. Arginine is a semi-essential amino acid and the Arg pathway is
associated with cardiovascular, renal, neurological, and immune system disorders (33, 34). the Arg
pathway is signi�cantly different in pediatric patients with congenital metabolic disorders, type I diabetes,
or ADHD matched to healthy age (35–39), and it is worth mentioning that our results are in agreement
with the above results, emphasizing the importance of arginine in the progression of mental disorders.

In this study, metabolic pathway analysis showed that the "primary bile acid biosynthesis" and "Arginine
and proline metabolism" pathways were primarily associated with childhood-diagnosed ADHD. The study
found that primary bile acids are not associated with ADHD. It was found that primary bile acid
metabolites/pathways are involved in metabolic functions related to brain health and play an important
role in several psychiatric disorders: depression and anxiety disorders, and these results are consistent
with those of the present study (40–43). Similarly, the arginine and proline metabolic pathways are
involved in the progression of diseases such as irritable bowel syndrome and amyotrophic lateral
sclerosis (44, 45). In conclusion, it is likely that these two important metabolic pathways play an
important role in childhood-diagnosed ADHD.

Of course, our study has some limitations. The small sample size of our cohort study is to be followed up
by continued sample collection and enrollment for validation of a large sample. Of course, we are already
working on the inclusion of cohort members in a large sample and are also focusing on whether changes
in the participants' gut �ora metabolites are related to serum metabolites. In addition, the questionnaires
for ADHD in this cohort were sourced from their guardians, and the presence of information bias cannot
be excluded. Also, the accuracy of the MR analysis depends on the interpretation of the instrumental
variables of exposure. Further expanded sample sizes and multiple pedigree studies that are not limited
to individuals of European ancestry may more accurately assess genetic effects on metabolites.

Conclusion
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In conclusion, the results of the joint analysis showed a causal association between genetically predicted
serum metabolites and childhood-diagnosed ADHD. Arginine and α-tocopherols were important
overlapping metabolites in both studies. In addition, genetic susceptibility to ADHD is inversely correlated
with levels of serum arginine and α-tocopherol. Arginine and α-tocopherols can be core metabolites that
can be further studied by mechanistic.
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Figures

Figure 1

Cohort study and MR design diagram
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Figure 2

OPLS-DA model and Volcano plots. (A) positive ion mode OPLS-DA score (B) negative ion mode OPLS-DA
score (C) positive ion mode OPLS-DA permutation test(D) negative ion mode OPLS-DA permutation
test(E) positive ion mode volcanic plots of serum metabolic pro�ling (F) negative ion mode volcanic plots
of serum metabolic pro�ling
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Figure 3

Heat map and correlation analysis of differential metabolites. (A) positive ion mode Cluster heat map of
differential metabolites (B) negative ion mode Cluster heat map of differential metabolites (C) positive
ion mode correlation analysis of differential metabolites (D) negative ion mode correlation analysis of
differential metabolites
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Figure 4

Pathways obtained by metabolic pathway enrichment analysis. (A)metabolic pathways obtained by
enrichment analysis in the positive ion mode (B)metabolic pathways obtained by enrichment analysis in
negative ion mode
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Figure 5

Mendelian randomization associations between serum metabolites and childhood-diagnosed ADHD
based on inverse-variance weighted (IVW) method.

Figure 6
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Genetic associations of arginine and α-tocopherol with childhood-diagnosed ADHD. (A) Genetic effect of
arginine on childhood-diagnosed ADHD. (B) Genetic effect of α-tocopherol on childhood-diagnosed
ADHD. Each of the single nucleotide polymorphisms (SNPs) associated with metabolite are represented
by a black dot with the error bar depicting the SE of its association with metabolite (horizontal) and
childhood-diagnosed ADHD (vertical). The slopes of each line represent the causal association for each
method.
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