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Abstract
Introduction

Bladder cancer is a common malignancy affecting the urinary tract and effective biomarkers and for which
monitoring therapeutic interventions have yet to be identi�ed.

Objectives

Major aim of this work was to perform metabolomic pro�ling of human bladder cancer and normal tissue and
to evaluate cancer biomarkers

Methods

This study utilized nuclear magnetic resonance (NMR) and high-resolution nanoparticle-based laser
desorption/ionization mass spectrometry (LDI-MS) methods to investigate polar metabolite pro�les in tissue
samples from 99 bladder cancer patients.

Results

Through NMR spectroscopy, six tissue metabolites were identi�ed and quanti�ed as potential indicators of
bladder cancer, while LDI-MS allowed detection of 34 compounds which distinguished cancer tissue samples
from normal tissue. Thirteen characteristic tissue metabolites were also found to differentiate bladder cancer
tumor grades and thirteen metabolites were correlated with tumor stages. Receiver-Operating Characteristics
analysis showed high predictive power for all three types of metabolomics data, with area under the curve
(AUC) values greater than 0.853.

Conclusion

To date, this is the �rst study in which human normal tissues adjacent to cancerous tissues are analyzed.
These �ndings suggest that the metabolite markers identi�ed in this study may be useful for the detection and
monitoring of bladder cancer stages and grades.

1. Introduction
Bladder cancer (BC), also known as urological or urinary bladder cancer, is the tenth most common and
thirteenth most deadly cancer globally (sixth in men and seventeenth in women). According to the most recent
GLOBOCAN data, BC accounts for approximately 3% of all cancer cases worldwide. Its prevalence is increasing,
particularly in industrialized nations, with around 550,000 new cases diagnosed yearly (Sung et al. 2021). The
incidence of bladder cancer rises with age, and the vast majority of cases (80%) occurs in those over 65.
Moreover, males are four times more likely to be diagnosed with this disease than women. Environmental and
occupational factors are responsible for most cases of bladder cancer, with the most signi�cant risk being
associated with tobacco smoke and being responsible for nearly 50% of bladder tumors; smokers are at a 2.5-
fold higher risk than nonsmokers. Hereditary genetic predisposition causes 7% of cases of bladder cancer
(Wong et al. 2018).
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The bladder comprises urothelial cells, specialized transitional epithelial cells that collect urine, and smooth
muscle that moves and excretes urine via the urethra to the outside. About 90% of BC arises from urothelial
cells, mainly in the bladder, but in rare cases, also in the urinary tract (Saginala et al. 2020). This is due to their
greater exposure to environmental, potentially mutagenic agents �ltered into urine by the kidneys. These tumors
have a relatively good prognosis (Mushtaq et al. 2019). The remaining 10% of BC are associated with a much
worse prognosis and involve squamous cell carcinoma that affect smooth muscle cells. The World Health
Organization classi�es super�cial bladder tumors as a heterogeneous category that includes urothelial
papilloma (a benign lesion), papillary urothelial neoplasm of low malignant potential (PUNLMP), and low- and
high-grade papillary malignancy. Around 75% of patients have non-muscle-invasive bladder cancer (NMIBC)
with disease restricted to the mucosa (pTa, Tis) or lamina propria (pT1). The other 25% of newly diagnosed
bladder tumors penetrate the muscularis propria bladder wall (pT2), called muscle-invasive bladder cancer
(MIBC).

One of the �rst signs of urothelial malignancy is hematuria. It is often detected with a cystoscopy, telescopic
endoscopy of the bladder, transabdominal ultrasonography, and/or computer tomography (CT) urography.
Individuals with NMIBC are treated by transurethral resection of the bladder tumor (TURBT) and, for high-grade
disease, with Bacillus Calmette-Guérin-based intravesical treatment (BCG, modi�ed mycobacterium) (Sahu et
al. 2017). While BCG helps delay or prevent the advancement of illness in a subset of individuals, a substantial
number of patients ultimately acquire the invasive disease. Additionally, given the current global scarcity of
BCG, this group needs alternate, sensitive therapy. Patients with muscle-invasive bladder cancer (MIBC)
undergo radical cystectomy and bilateral, regional lymph node dissection, with or without preoperative
chemotherapy or chemoradiation. The latest statistics from the American Cancer Society reveal in 2021 that
the overall 5-year survival rate for bladder cancer in the United States is roughly 77%. Still, this �gure varies
signi�cantly depending on the cancer stage at diagnosis (Siegel et al. 2022). If the cancer is localized and has
not spread beyond the bladder, the 5-year survival rate is approximately 95%. On the other hand, if the bladder
cancer has metastasized and spread to other parts of the body, the 5-year survival rate drops to about 5%. Early
detection of cancer enables its resection and improved survival rates.

Despite signi�cant efforts, no clinically viable biomarkers for early detection, diagnosis, or prognosis of BC are
currently available. Analyzing the metabolic pro�les of tissues and bio�uids is a potential strategy for
establishing robust small molecule indicators of BC, which would improve our ability to predict cancer
progression and to evaluate the e�cacy of cancer treatment.

Metabolomics is a modern and powerful technology, making it possible to detect compounds and determine
previously unknown mechanisms related to disease progression (Zhang et al. 2020). By examining metabolites
in biological samples such as urine (Jin et al. 2014), serum (Bansal et al. 2013), and tissue (Y. Cheng et al.
2015a), metabolomics tracks the metabolic response of living systems to disease or drug toxicity. The
information obtained through metabolomic pro�ling studies on BC can potentially identify valuable biomarkers
for diagnostic purposes and as indicators of cancer recurrence (Di Meo et al. 2022).

Over the last two decades, two analytical platforms have been used primarily for metabolomic analysis of
diverse kidney cancer samples: mass spectrometry (MS)(Zeki et al. 2020) and nuclear magnetic resonance
(NMR) (Emwas et al. 2019). To our knowledge, very few reports are available in the literature regarding human
bladder tissue analysis. The �rst metabolomic pro�ling of bladder tissues was performed in 2011 by Putluri et
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al. using LC-MS (Putluri et al. 2011). Analysis of 58 tissues revealed signi�cantly changed levels of 35 mass
spectral features within bladder tissues. Further research was carried out in 2013 by Tripathi et al. using the
high-resolution magic angle spinning (MAS) NMR method. The �ndings revealed 22 distinct metabolites in
different stages of BC. These results were cross-validated using targeted GC-MS analysis but did not include
analysis of normal, unaffected tissues as controls (Tripathi et al. 2013). In a study published in 2017,
Piyarathna et al. examined 165 tissues derived from the bladder, including 126 bladder cancer tissues and 39
benign or normal adjacent tissues. Based on UHPLC-HRMS analysis, they found 570 lipids associated with the
survival and different clinical stages of BC (Piyarathna et al. 2018)

The present study employed two analytical platforms: NMR and LDI-MS, to investigate the metabolic changes
in 198 human tissue samples of 99 BC cancer cases. This work aimed to characterize the most differentiating
metabolites between cancer and normal tissues and also enabling the differentiation of cancer stages and
grades. The discovery of signi�cant metabolites provides clues at previously poorly understood or unknown
metabolic changes that are associated with BC.

2. Materials and methods

2.1. Materials and equipment
All solvents were of ‘LC-MS’ grade and purchased from Sigma Aldrich (St. Louis, MO, USA). Deuterium oxide
(D2O) and DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) were purchased from Sigma Inc. (Boston, MA, USA).

2.2. Collection of human tissue samples
After comprehensive clinical questioning at John Paul II Hospital in Kolbuszowa, tissue samples were gathered
from 99 patients with bladder cancer (20 females, 79 males, average age 72) receiving surgical therapy
(Poland). The research was approved by the University of Rzeszow's local Bioethics Committee (Poland,
permission number 2018/04/10) and followed all applicable rules and regulations. All the patients in this study
were of the Caucasian race. Specimens and clinical data from patients involved in the study were collected with
informed consent. All laboratory test results (complete blood count, bleeding pro�le, kidney function tests, CRP)
were within normal ranges. Tissues for the metabolomic study were collected during a transurethral resection
of a bladder tumor. For metabolomic study, we collected roughly cubic fragments of 2–4 mm size of the
cancerous tumor and a fragment of normal bladder mucosa. Both of these fragments were cut in half, one part
was taken for examination and the other was sent for histopathological examination to verify the diagnosis.
Samples were immediately frozen and stored at − 60°C until further use. The pathological and clinical
characteristics of the patients are presented in the supplementary material table (Table S1).

2.3. Preparation of tissue metabolite extracts
As a result of the extraction of tissue samples, two fractions (phases) were obtained, the upper one containing
medium-to-high polarity metabolites and the lower one containing low-polar metabolites. Detailed sample
preparation protocols have been described in the Supplementary materials (Section S1) and our recent
publication (Nizioł et al. 2021).

2.4. Analysis of tissue samples
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Tissue extracts were analyzed using high-resolution 1H NMR (upper phase) and silver-109 nanoparticle-based
laser desorption/ionization mass spectrometry (109AgNPs-LDI-MS, upper and lower phase, analyzed
separately). Silver-109 nanoparticles (109AgNPs) were generated with pulsed �ber laser (PFL) 2D galvoscanner
(2D GS) laser synthesis in solution/suspension (LASiS) as described in our previous publication (Płaza et al.
2021). Supplementary data detail the acquisition and processing of NMR and MS spectra (S2-S4).

2.5. Multivariate statistical analysis
MetaboAnalyst version 5.0 online software was used to analyze all metabolite datasets (Pang et al. 2021). The
multivariate statistical analysis used here is similar to the one described in our recent publications (Nizioł et al.
2021, 2022; Ossoliński et al. 2022). Brie�y, the metabolite data obtained from each analytical technique was
log-transformed, auto-scaled, and normalized on the weight of the fresh tissue. The resulting metabolite pro�les
were then subjected to unsupervised Principal Component Analysis (PCA) and Orthogonal Partial Least
Squares Discriminant Analysis (OPLS-DA). Metabolites which Variable Importance in Projection (VIP) values,
associated with the OPLS-DA modeling, were greater than 1.0 were considered potentially signi�cant
discriminators of BC patients from normal controls (NCs). Permutation tests using 2000 steps were used to
validate and assess the accuracy of the OPLS-DA models. Paired parametric t-test with Mann-Whitney and
Bonferroni correction and fold change (FC) analysis were employed to evaluate the statistical signi�cance of
tissue metabolite level differences. Metabolites with P-values and false discovery rates (FDR) less than 0.05
and FC > 2 or < 0.5 were considered statistically signi�cant (Benjamini et al. 2001). Furthermore, receiver
operating characteristic curve (ROC) analyses were performed with random forest modeling to validate the
OPLS-DA models and assess the metabolites' diagnostic value. Mass features identi�ed by NMR and MS,
respectively. Metabolite variables with an AUC (area under the curve) greater than 0.75 were deemed relevant to
the discrimination of BC versus AN tissue metabolome. Training and validation metabolite datasets were
subjected to independent multivariate statistical analyses. Compounds that separated tumors from control
urine samples were chosen for external validation, which employed two independent datasets (here referred to
as the training and validation datasets) to evaluate the performance of the OPLS-DA models (Ho et al. 2020).
The established statistical criteria were applied to both training and validation datasets. A metabolic pathway
impact analysis was performed using MetaboAnalyst 5.0(Pang et al. 2021) and the Kyoto Encyclopedia of
Genes and Genomes(Okuda et al. 2008) to identify metabolic pathways that are, in all likelihood, impacted by
bladder cancer. To determine whether there were signi�cant disparities in the average math test scores between
different stages and grades of BC, we carried out a one-way analysis of variance (ANOVA) with Tukey's post-
hoc testing.

3. Results
To uncover possible discriminant biomarkers of bladder cancer, 198 metabolite extracts from frozen bladder
tissue samples (99 BC and 99 AN – ‘adjacent normal’) were examined using high-resolution 1D 1H NMR and
silver-109 nanoparticle-based laser desorption/ionization mass spectrometry (109AgNPs-LDI-MS).

3.1. Distinguishing between bladder cancer and normal tissues
by 1H NMR metabolomics
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In total, 43 metabolites were identi�ed and quanti�ed in each tissue sample using 1H NMR spectroscopy
following published protocols (Nizioł et al. 2021). Figure 1 depicts an overlay of NMR spectra of cancer and
normal tissue samples. Detailed spectra analysis revealed signi�cant differences in metabolite levels between
BC and AN tissues.

>>> Fig. 1 <<<

NMR datasets were randomly divided into two subsets: a training data set to train a model (n = 69 BC and n = 
69 AN) and a validation data set to assess the validity and robustness of the learned model (n = 30 BC and n = 
30 AN). Metabolite concentrations from both groups were statistically analyzed to assess whether differences
in metabolite levels between cancer and normal tissue were signi�cant. Findings from this analysis are reported
in supplementary data Tables S2 and S3. Unsupervised score plots using PCA were generated for both subsets,
revealing a poor distinction between BC and AN tissue. The most distinct separation between groups was
identi�ed using the �rst and second principal components, PC1 and PC2, which accounted for 48.8% and 10.0%
of the variation in the training set, as shown in Fig. 2a. Similarly, in the validation set, a noticeable separation
was observed between cancer and normal tissue samples along the �rst and second components, which
accounted for 52.3% and 11.9%, respectively.

>>> Fig. 2 <<<

Subsequently, a supervised multivariate analysis was performed to investigate the metabolic distinctions
between the BC and AN groups in both the training and validation sets, using OPLS-DA analysis. As depicted in
Fig. 2b for the training set, and Fig. S1bin the supplementary data for the validation set, a distinct separation
was observed between the two groups in the score plot. To con�rm the reliability of the OPLS-DA model, two
thousand permutation tests were conducted, and the statistical robustness of the model was veri�ed, as shown
in Table S4 in supplementary data. In the training set, there was good discrimination between the two groups
(Q2 = 0.536, R2Y = 0.682, P-value < 5E-04 (0/2000)), revealing substantial differences in the metabolic pro�les of
BC vs AN tissues sample. The permutation test supported the group separations found with OPLS-DA in the
validation set (Q2 = 0.287, R2Y = 0.466, P-value < 5E-04 (0/2000)).

To evaluate the diagnostic performance of the OPLS-DA models and to identify potential tissue polar
metabolite biomarkers of bladder cancer, ROC analysis was conducted on both the training and validation
datasets, along with the examination of VIP plots resulting from the OPLS-DA modeling. The paired parametric
t-test with Mann-Whitney and Bonferroni correction was employed to investigate the statistical signi�cance of
metabolite level differences. A combined analysis of VIP scores (> 1.0), t-tests (FDR corrected P-values < 0.05),
fold Change (FC > 2.0 or < 0.5), and AUC (> 0.75) of training and validation set metabolite data identi�ed six
tissue metabolites as signi�cant discriminators of BC versus AN tissue, as presented in Table 1. These included
lactate, glutamine, glutamate, hypoxanthine, serine, and threonine.
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Table 1
Results of targeted quantitative study of potential BC biomarkers derived from 1H NMR data of tissue samples

(P-value 0.05; VIP > 1.0; FC > 2.0 or < 0.5)
Metabolite   VIPa P-valueb FDRb FCc AUC Spec.

[%]d
Sens.
[%]d

Lactate Cancer

vs.

Normal

2.02 2.81E-
10

1.21E-
08

3.832 0.889 82 85

Glutamine 1.59 3.62E-
08

2.59E-
07

2.296 0.800 72 71

Glutamate 1.23 7.96E-
08

4.28E-
07

2.132 0.780 65 75

Hypoxanthine 1.39 7.87E-
09

1.13E-
07

2.109 0.754 65 78

Serine 1.31 1.30E-
08

1.20E-
07

2.625 0.753 59 84

Threonine   1.29 1.40E-
08

1.20E-
07

3.246 0.751 57 82

Lactate HG BC vs. HG
AN

2.45 5.16E-
05

2.22E-
03

3.780 0.864 88 77

Ethanolamine 1.54 3.64E-
04

5.21E-
03

2.285 0.714 69 73

Lactate LG BC

vs. LG AN

1.75 6.34E-
09

9.09E-
08

4.341 0.922 88 91

Alanine 1.44 1.17E-
06

6.28E-
06

2.553 0.801 67 79

Choline 1.43 6.35E-
05

1.37E-
04

2.014 0.779 77 72

Glutamine 1.49 1.35E-
07

8.29E-
07

2.807 0.870 79 77

Hypoxanthine 1.31 4.94E-
09

9.09E-
08

2.309 0.816 74 77

Leucine 1.18 1.62E-
06

7.75E-
06

2.594 0.759 65 86

Methionine 1.42 2.26E-
09

9.09E-
08

4.348 0.812 72 84

Phenylalanine 1.22 2.30E-
08

2.47E-
07

3.647 0.764 63 79

aVIP scores derived from OPLS-DA model; bP-value and FDR determined from Student’s t-test, cfold change
between cancer and control urine calculated from the concentration mean values for each group – cancer-
to-normal ratio; dROC curve analysis for individual biomarkers. AN: adjacent normal; AUC: area under the
curve; BC: bladder cancer; FC: fold change; FDR: false discovery rate; HG – high-grade; LG – low-grade; pT1
and pTa – high risk non-muscle invasive bladder cancer; pT2 – muscle invasive bladder cancer VIP:
variable importance in projection scores.
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Metabolite   VIPa P-valueb FDRb FCc AUC Spec.
[%]d

Sens.
[%]d

Serine 1.44 1.00E-
07

7.95E-
07

2.725 0.817 74 77

Threonine 1.40 1.11E-
07

7.95E-
07

2.888 0.789 60 91

Tyrosine 1.25 3.57E-
06

1.53E-
05

2.791 0.759 74 77

Lactate pTa BC

vs.

pTa AN

1.84 2.57E-
10

3.69E-
09

4.560 0.928 88 86

Glutamine 1.68 1.77E-
09

1.52E-
08

2.747 0.884 80 80

Serine 1.28 2.89E-
09

2.07E-
08

2.753 0.814 69 90

Hypoxanthine 1.32 1.43E-
10

3.07E-
09

2.334 0.809 65 88

Alanine 1.40 5.23E-
08

2.81E-
07

2.498 0.805 69 80

Methionine 1.35 8.76E-
11

3.07E-
09

4.140 0.804 71 86

Threonine 1.32 1.18E-
09

1.27E-
08

2.758 0.798 63 88

Choline 1.52 5.46E-
06

1.24E-
05

2.021 0.793 74 76

Aspartate 1.12 2.34E-
06

6.69E-
06

2.824 0.786 67 82

Ethanolamine 1.15 8.35E-
07

2.76E-
06

2.238 0.770 71 76

Phenylalanine 1.03 4.65E-
09

2.86E-
08

3.621 0.761 61 90

Tyrosine 1.13 7.30E-
07

2.62E-
06

2.599 0.755 71 82

Trimethylamine pT1 BC vs.

pT1 AN

2.09 9.65E-
04

2.08E-
02

0.429 0.832 84 58

Lactate 2.40 7.25E-
05

3.12E-
03

3.760 0.859 74 68

aVIP scores derived from OPLS-DA model; bP-value and FDR determined from Student’s t-test, cfold change
between cancer and control urine calculated from the concentration mean values for each group – cancer-
to-normal ratio; dROC curve analysis for individual biomarkers. AN: adjacent normal; AUC: area under the
curve; BC: bladder cancer; FC: fold change; FDR: false discovery rate; HG – high-grade; LG – low-grade; pT1
and pTa – high risk non-muscle invasive bladder cancer; pT2 – muscle invasive bladder cancer VIP:
variable importance in projection scores.
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>>> Table 1 <<<

ROC studies and random forest modeling were performed to determine the diagnostic value of the six identi�ed
metabolites. The classi�cation ROC model (as shown in Fig. 2c and Supplementary Fig. S1c) demonstrated
that the combination of the differential levels of these six metabolites was a reliable discriminator in both data
sets, with an AUC of over 0.853. The validity of the ROC model was con�rmed by a permutation test with 1000
permutation steps resulting in a p-value below 0.001. The highest signi�cance in the training set, with an AUC
of over 0.80, was achieved for two metabolites: lactate (AUC = 0.889, speci�city = 82%, and sensitivity = 85%),
and glutamine (AUC = 0.800, speci�city = 72%, and sensitivity = 71%). Box and whisker plots for selected
metabolites are presented in Fig.s 2d-h. Table 1 summarizes the most important statistical parameters for
these �ve metabolites identi�ed by 1H NMR as potential biomarkers of BC. These �ndings suggest that these
six metabolites may have enhanced diagnostic potential and could be valuable indicators of malignant versus
normal tissues of patients with bladder cancer when evaluated together.

3.2. Distinguishing between grades of bladder cancer and normal tissues based on 1 H NMR metabolite
pro�ling analysis

To assess the potential of 1H NMR metabolite pro�les of tissue extracts to differentiate between different
grades of BC and AN tissue, we performed PCA, OPLS-DA, and one-way ANOVA analysis on training and
validation data sets. The analysis included 94 tissue samples from patients with high-grade (HG) and low-
grade (LG) cancer, with three samples from a papillary urothelial neoplasm of low malignant potential
(PUNLMP) patients excluded. The training data set (n = 26 HG BC and HG AN and n = 43 LG BC and AN) was
used to train the PCA model. The validation data set (n = 11 HG BC and AN and n = 15 LG BC and AN) was used
to verify the validity and robustness of the separate group clustering observed in the PCA model. In both the
training and validation sets, PCA and OPLS-DA scores plots showed good separation between HG BC and HG
AN tissue (Fig. 3a, b, S2 a, b in supplementary material).

>>> Fig. 3 <<<

In the HG BC vs. HG AN tissue OPLS-DA model, two metabolites, including lactate and ethanolamine, were
considered signi�cant (VIP > 1, P-value, FDR < 0.05, FC < 0.5 or > 2.0, AUC > 0.70) in both the training and
validation sets (Table 1). The ROC model for classi�cation (Fig. 3C) indicated that the collective concentrations
of these two metabolites were a dependable differentiator with an AUC of 0.851. These compounds were found
in signi�cantly higher concentrations in the cancer tissue compared to the adjacent normal tissue. Analysis of
LG BC vs. LG AN in the training and validation sets of the OPLS-DA model showed that eleven commonly
identi�ed compounds were important in separating the two groups (Table 1). PCA and OPLS-DA scores plots
resulting from this analysis illustrate the extent of the separation of LG BC, from AN BC based on differential
tissue metabolite pro�les in the training and validation datasets (Fig. 3a-b and S3 a, b in supplementary data).
Based on the results of univariate ROC curve analyses, we determined that these models have satisfactory
diagnostic performance with AUC = 0.911 (Fig. 3c). Although PCA analysis was unable to separate the groups
based on distinct tumor grades (data not shown), the cancer groups separated clearly from the AN group.

3.3. Distinguishing between stages of bladder cancer and
normal tissues based on 1H-NMR metabolite pro�ling
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A 1H NMR metabolomics study of tissue samples was also employed to evaluate whether unique metabolite
patterns can help distinguish between stages of BC. We performed PCA, OPLS-DA, and non-parametric one-way
ANOVA analyses on a total of 198 tissue extracts from 70 patients with pTa BC, 19 patients with pTa BC, and
12 patients with pT2 BC. Due to insu�cient patients with pT1 and pT2 malignancy, validation on a separate
dataset was performed only for samples from patients with pTa BC. A training data set was created with n = 49
pTa BC and n = 49 AN tissue extracts. A validation data set with n = 21 pTa BC, and n = 21 AB tissue extracts.

The PCA and OPLS-DA score plots demonstrated a small but distinctive separation between normal and cancer
tissue samples from patients with pTa stages of BC (Fig. 4a, b). The performance of this model was then
evaluated using ROC analysis. The AUC value of 0.921 in the training set indicated very good classi�cation and
suggested that the model has a high probability of correctly classifying the samples with pTa BC and can be
considered an effective classi�cation tool. (Fig. 4c).

>>> Fig. 4 <<<

The score plots generated by PCA and OPLS-DA indicated a noticeable distinction between the cancerous and
non-cancerous tissue samples obtained from patients diagnosed with pT1 stage BC (Fig. 4d, e). From the ROC
plot (Fig. 4f), it can be seen that this model also provided a very high classi�cation ability with an AUC value of
0.946). Based on the cut-off criteria (FC > 2 or < 0.5, VIP > 1; AUC > 0.75, P-value and FDR < 0.05), �nally, 12, and
2 metabolites appeared to be most relevant for sample distinction between pTa BC vs. AN, and pT1 BC vs. AN,
respectively (Table 1). Unfortunately, in the case of tissue extracts from patients with stage pT2, obtaining a
signi�cant separation of cancer and regular groups was impossible. Also, comparing the three cancer stage
groups (pT1 versus pTa versus pT2) revealed no statistically signi�cant differences (data not shown).

3.4. Untargeted metabolic pro�ling of tissue using PFL-2D GS
LASiS 109AgNPs LDI-MS
Pulsed �ber laser ablation synthesis was employed to generate silver-109 nanoparticles in solution (PFL-2D GS
LASiS 109AgNPs). These nanoparticles were then utilized for laser mass spectrometry-based pro�ling of BC and
AD extracts. We analyzed the bladder tissue's polar and non-polar metabolite extracts separately and randomly
divided the data into two subsets for statistical analysis. The training dataset included 69 bladder cancer (BC)
and 69 normal (AN) tissue samples, while the validation dataset included 30 BC and 30 AN tissue samples. 355
and 299 common features were detected in the polar and non-polar extracts of tissue samples, respectively.

2D-PCA and OPLS-DA scores plots were generated from multivariate statistical analysis of the PFL-2D GS
LASiS 109AgNPs LDI-MS mass spectral features obtained from polar tissue extracts. These plots clearly
distinguished the cancerous tissue from the normal tissue as a result of their distinct metabolite pro�les, as
shown in the Supplementary data. (Fig. S4). For the training dataset, the validation of the OPLS-DA model
using 2000 permutations resulted in R2Y and Q2 values of 0.872 (P-value < 5E04) and 0.964 (P-value < 5E04)
(Table S4, supplementary data), while R2Y and Q2 values of 0.807 (P-value < 5E04) and 0.983 (P-value < 5E04),
respectively, were measured when analyzing the MS metabolomics data present in the validation dataset. This
analysis was followed by univariate and multivariate ROC analysis for both training and validation datasets
(Fig. S4, supplementary data). Supplementary data Fig. S4 provides a summary of all ROC curves generated
from the analysis of the training and validation datasets, with a range of feature counts (i.e., 5, 10, 15, 25, 50
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and 100), along with corresponding AUC values and con�dence intervals. Notably, the 50-feature panel of
model 5 in the training set and the 25-feature panel of model 4 in the validation set exhibited excellent
discrimination power for BC diagnosis (AUC > 0.971), as illustrated in supplementary Fig. S4. Based on the cut-
off criteria (FC > 2 or < 0.5, VIP > 1; AUC > 0.75, P-value and FDR < 0.05), �nally, 97 m/z values appeared to be
most relevant for sample distinction between cancer and normal tissue in both training and the validation
datasets.

The mass spectral features obtained from non-polar tissue extracts generated from untargeted PFL-2D GS
LASiS 109AgNPs LDI-MS experiments were also analyzed using PCA and OPLS-DA to identify the mass spectral
features that most differentiated control from normal tissue extracts from patients with BC, using both training
and validation datasets (Fig. S5, supplementary data). The results of both PCA and OPLS-DA scores plots
indicate a clear separation between cancer and normal groups in both the training and validation data subsets.
This suggests that PFL-2D GS LASiS 109AgNPs LDI-MS-based metabolite pro�ling of non-polar tissue extracts
is an effective method for identifying characteristic metabolic differences that distinguish bladder cancer from
control groups. The OPLS-DA model was validated using 2000 random permutation steps, which resulted in
R2Y and Q2 values of 0.773 (P-value < 5 E04) and 0.898 (P-value < 5E04), respectively, for the training dataset.
Similarly, for the validation dataset, R2Y and Q2 values of 0.730 (P-value < 5E04) and 0.971 (P-value < 5E04)
were obtained (see Supplementary data, Table S4). Following the completion of the analysis, both univariate
and multivariate ROC analyses were performed. Supplementary Fig. S5 summarizes all the ROC curves
generated from the training and validation datasets, with a range of feature counts (i.e., �ve, ten, �fteen, twenty-
�ve, �fty, and one hundred), along with corresponding AUC values and con�dence intervals for each curve. The
15-feature panel of model 3 in the training dataset demonstrated the highest accuracy, while the 10-feature
panel of model 2 in the validation dataset exhibited the highest accuracy. In both the training and validation
sets, a total of 36 spectral features were identi�ed in non-polar tissue extracts with VIP scores > 1.0, FDR-
corrected P-value < 0.05, FC < 0.5 or > 2.0, and AUC > 0.75.

Subsequently, selected mass spectral features observed in the PFL-2D GS LASiS 109AgNPs LDI-MS spectra of
polar and non-polar tissue extracts were subjected to putative compound identi�cation. This was accomplished
by searching against various metabolite databases, including the Human Metabolome Database (HMDB)
(Wishart et al. 2007), the MetaCyc Metabolic Pathway Database (Caspi et al. 2018) and the LIPID MAPS®
Lipidomics Gateway (Sud et al. 2007). By comparing the spectral features observed in PFL-2D GS LASiS
109AgNPs LDI-MS mass spectra with those of compounds present in the aforementioned databases, a total of
30 and 4 mass spectral features from polar and non-polar tissue extracts respectively were assigned putative
metabolite IDs. Detailed information on these identi�ed features is provided in Supplementary data Table S5.

Discussion
In this study, we performed targeted and untargeted metabolic pro�ling of tissues obtained from patients
diagnosed with BC. Our objective was to generate distinctive metabolic signatures that could aid in early and
accurate detection of BC using NMR and 109AgNPs LDI-MS techniques. We performed targeted 1H NMR
analysis of normal and neoplastic tissues to identify a panel of 43 metabolites. Thirty-four of these compounds
were present in higher concentrations and nine at lower concentrations in the cancer tissue compared to
adjacent normal one (see Tables S2,3 in Supplementary data). The elevated levels of these 34 metabolites may
indicate an increased synthesis of tumor-related metabolites that are secreted by cancer cells or changes in the
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composition of non-cancerous tissues caused by tumor in�ltration through the epithelial barrier. In addition, the
presence of tumors may trigger in�ammatory responses that contribute to the elevation of certain metabolites.
The metabolomics data obtained through 1H NMR analysis showed that six compounds exhibited higher
concentrations in cancerous tissue than in normal tissue, and these compounds effectively differentiated
between the two groups with signi�cant discriminating power (Table 1). These included lactate, glutamine,
glutamate, hypoxanthine, serine, and threonine.

Among the metabolites that effectively discriminated between cancerous and normal tissue samples, lactate
emerged as a particularly signi�cant biomolecule with a high VIP value. As the anion of a hydroxy carboxylic
acid, lactate plays a key role in human metabolism and serves as a crucial energy reservoir (Rosenstein et al.
2018). By enabling the maintenance of ATP production and mitigating acidosis caused by ATP hydrolysis,
lactate plays a vital function in cellular metabolism (Rosenstein et al. 2018). Furthermore, lactate has been
identi�ed as a signi�cant contributor to acidosis in the tumor microenvironment (TME), which is associated
with an acid-resistant phenotype that enables cancer cells to promote their own survival (Afonso et al. 2020).
To sustain the uncontrolled growth and proliferation of cancer cells, including urothelial carcinoma cells,
glycolysis is the primary source of energy. Consequently, a high glycolytic �ux is dependent on the
overexpression of genes related to glycolysis, which leads to the overproduction of pyruvate, alanine, and
lactate (Massari et al. 2016). Research suggests that elevated lactate levels and acidi�cation resulting from
cancer cells and glycolytic metabolism can promote carcinogenesis by causing matrix degradation and cancer
cell invasiveness (Gatenby et al. 2006). Furthermore, lactate has been implicated in metastasis and resistance
to chemo-radiotherapy (Fischer et al. 2007). Due to its involvement in various metabolic pathways, lactate
holds promise as a potential biomarker for cancer diagnosis and prognosis (Liu et al. 2016; Massari et al.
2016). Our study found that levels of lactate were signi�cantly higher in cancer tissues compared to normal
tissues in patients with BC. This aligns with previous �ndings from the analysis of urine and serum samples
from BC patients using both NMR and LC-MS (Bansal et al. 2013; Wittmann et al. 2014). Additionally, Tripathi et
al reported higher levels of lactate in tumor samples compared to benign disease in their studies of BC tissues
also using NMR (Tripathi et al. 2013). These consistent results across different studies suggest that lactate
could be a potential biomarker for BC diagnosis and monitoring.

The second most differentiating cancer group and the normal metabolite with the highest VIP value was
glutamine. This compound is among the most abundant free amino acids in the body and plays a crucial role
in the transport of nitrogen and maintaining acid-base balance (Hall et al. 1996). It is a primary energy source
for rapidly dividing cells and is involved in excreting nitrogen compounds (Labow and Souba 2000).
Furthermore, glutamine is metabolized to fuel the tricarboxylic acid (TCA) cycle, a vital process for obtaining
energy (Deberardinis et al. 2007). Cancer cells heavily rely on glutamine as an energy substrate and use it to
synthesize nucleotides and other amino acids (Wu et al. 2020). Studies on bladder cancer suggest that
glutamine may promote tumor metabolism and increase the aggressiveness of cancer cells. However, the
mechanisms and effects of glutamine metabolism in cancer are still being actively researched (Sun et al.
2019). More recently, further studies have provided knowledge of the potential use of glutamine as a biomarker
for bladder cancer (Alba Loras et al. 2019a). Our �ndings, which demonstrate elevated levels of glutamine in
tumor tissue, are in line with numerous prior studies that have revealed a signi�cant increase in glutamine
levels in serum and urine samples from bladder cancer patients in comparison to controls (Bansal et al. 2013;
Wittmann et al. 2014). Furthermore, a previous NMR-based study of bladder cancer tissue also reported higher
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glutamine levels in tumor tissue relative to benign disease (Tripathi et al. 2013). Furthermore, in time series
metabolomics analyses of urine and serum samples obtained from bladder cancer patients pre- and post-
resection, glutamine demonstrated signi�cant potential in differentiating neoplastic samples from healthy ones
(Gupta et al. 2020; Jacyna et al. 2022).

Another potentially important marker of BC is the glutamate, which is a fundamental metabolite in the human
body derived from alpha-amino acid anions and is the conjugate base of glutamic acid. It contains anionic
carboxyl groups and a cationic amino group and plays a crucial role in both normal and abnormal brain
functioning, as well as in peripheral organs (Danbolt 2001). Cancer cells alter metabolic pathways, shifting
glucose conversion towards pathways required for cell proliferation and leading to increased synthesis of
proteins, including glutamine (Guin et al. 2014). This feature is consistent with the increased level of glutamate
observed in the samples of diseased individuals, indicating that glutamate could be a useful biomarker for BC
with high diagnostic value and the ability to report on disease recurrence (Y. Cheng et al. 2015b). This
conclusion was also con�rmed by our analysis, which found that the tissue level of glutamate is higher in
cancer tissue than normal tissue. Similarly, Wittmann et al. found that urinary levels of glutamate were
signi�cantly elevated in patients with bladder cancer compared to healthy controls, indicating their potential as
diagnostic biomarkers for the disease (Wittmann et al. 2014).

Hypoxanthine is a natural purine base that is produced during purine degradation and can be converted to
xanthine and uric acid while generating reactive oxygen species through the action of the xanthine oxidase
enzyme (Lawal and Adeloju 2012). Due to its diminutive and polar structure, hypoxanthine can easily
accumulate in biological �uids and tissues, making it a potential indicator for medical diagnosis (Garg et al.
2022). Speci�cally, hypoxanthine is a signi�cant product that is generated during the breakdown of nucleotides
and can serve as a precursor of uric acid and is an intermediate in the breakdown of purines (Pasikanti et al.
2010). As such, its quanti�cation is highly valuable for relevant clinical diagnoses (Dervisevic et al. 2016).
Furthermore, increased levels of hypoxanthine are associated with decreased levels of uric acid, adenosine, and
inosinic acid. In cancer cells, this pathway is often disrupted, leading to the accumulation of hypoxanthine.
Therefore, the measurement of hypoxanthine levels can not only serve as a potential biomarker for medical
diagnosis, but may also provide important information about the underlying metabolic changes in cancer cells
(Rodrigues et al. 2016). In our studies, hypoxanthine levels were higher in cancer tissue compared to normal.
This compound has also been previously detected in higher amounts in the urine and serum of BC patients and
suggested to be a potential bladder cancer biomarker (Alberice et al. 2013; Gao et al. 2012; Hu et al. 2021; A.
Loras et al. 2018; Tan et al. 2017; Wittmann et al. 2014).

Serine and threonine are amino acids that were also found to be in high concentrations in BC tissue compared
to normal in our study. Serine is an endogenous amino acid that plays a signi�cant role in various biosynthetic
pathways in the human body, such as pyrimidine, purine, creatine, and porphyrin biosynthesis. Cancer cells
utilize serine as the primary source of one-carbon units, which are necessary for the production of cellular
components and proliferation (Newman and Maddocks 2017). Additionally, serine protease is involved in tumor
invasion and metastasis in oncogenesis (Sanguedolce et al. 2015). On the other hand, threonine is an essential
amino acid that is crucial for the formation of various building blocks of proteins, including tooth enamel,
collagen, and elastin. It also plays an essential role in the nervous system and several metabolic pathways.
Both serine and threonine are critical elements of a serine/threonine-protein kinase, which has been identi�ed
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as a potential biomarker for bladder cancer (Hentschel et al. 2021). The increased levels of both serine and
threonine in our study were also observed by other researchers in blood serum (Amara et al. 2019; Vantaku et
al. 2019) and also in urine (Kim et al. 2010).

Utilizing modi�ed silver-109 targets in LDI-MS experiments enabled to measure the amount of polar and non-
polar metabolites in tissue extracts. By employing this approach, analysis of tissue metabolites using MS
allowed for the identi�cation of 31 compounds that exhibited lower abundance in cancer tissue in comparison
to normal while one compound was found to be present in higher concentrations. Most of these compounds
were putatively identi�ed as peptides and lipids. Among the lipids found to be elevated in the normal tissue of
BC patients, �ve belonged to the fatty acyl class, while the remaining three were classi�ed as diradylglycerols,
and one as a glycerophosphocholine.

The level of lipids in cancerous tissues can be in�uenced by various factors, including altered metabolism,
changes in lipid transport and uptake, and increased utilization of lipids for energy production (C. Cheng et al.
2018). Cancer cells tend to exhibit increased aerobic glycolysis, also known as the Warburg effect, which can
result in a reduction of lipid biosynthesis and accumulation in the cells (Broad�eld et al. 2021). Additionally,
cancer cells may rely on increased uptake of lipids from the extracellular environment to support their growth
and proliferation. Moreover, cancer cells can utilize lipids as an energy source, which may contribute to a
decrease in lipid levels in the tissue (Menendez and Lupu 2007).

In an effort to identify cellular markers that could distinguish between the various grades and stages of BC,
several metabolomics studies of urine and blood of BC patients have been reported (Di Meo et al. 2022; Petrella
et al. 2021). To our knowledge, however, only three studies have investigated the connections between changes
in metabolite levels in tissues from BC patients and the distinct grades and/or stages of tumor development
(Piyarathna et al. 2018; Sahu et al. 2017; Tripathi et al. 2013).

In our study, signi�cantly higher concentrations of lactate and ethanolamine were measured in the HG cancer
tissue of BC patients compared to the levels found in the normal tissue group (Fig. 3, Table 1). We found that
lactate is one of the most differentiating metabolites between normal and neoplastic tissue, regardless of the
stage of cancer. Ethanolamine is a component of certain phospholipids that make up the structure of cell
membranes and plays an important role in the structure and function of cell membranes. These lipids are also
involved in cell signaling and other cellular processes (Vance and Tasseva 2013). In some types of cancer, there
is evidence that the levels of ethanolamine differ signi�cantly between samples collected from cancer patients
compared to controls (Swanson et al. 2008). The higher level of ethanolamine may be related to the increased
cell proliferation and growth that is characteristic of cancer. Cancer cells may require more ethanolamine to
support the synthesis of new cell membranes and other cellular structures as they divide and multiply (M.
Cheng et al. 2016).

Our research has identi�ed a panel of 11 metabolites that, when considered together, may be good
discriminators of low-grade cancer tissue versus adjacent normal tissue in bladder cancer patients. These
metabolites include lactate, alanine, choline, glutamine, hypoxanthine, leucine, methionine, phenylalanine,
serine, threonine, and tyrosine, eight of which are alpha-amino acids.
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One of the most differentiating compounds between LG cancer and normal tissue from BC patients is choline. It
is a crucial water-soluble quaternary amine that is often classi�ed as a B vitamin due to its similar chemical
structure. Choline has several important functions within the human body, particularly in neurochemical
processes (Tayebati et al. 2017). Choline plays a critical role in the production of phospholipids and the
metabolism of triglycerides, making it essential for the proper structure and function of cell membranes. Our
study found that cancer tissue from patients with bladder cancer had higher levels of choline compared to
normal tissue, which could be due to increased absorption of choline by cancer cells. Our �ndings are
consistent with previous research demonstrating that cancer cells tend to increase fatty acid synthesis, which
can then act as a substrate for phosphatidylcholine synthesis, leading to its elevation in tumor cells
(Koundouros and Poulogiannis 2019; Saito et al. 2022). Interestingly, we observed the same trend in urine
samples, with increased levels of choline observed in patients with BC (Li et al. 2021; Alba Loras et al. 2019b).
Moreover, one of our previous studies revealed that the increase in tissue choline levels among cancer patients
is consistent with the decrease in choline levels found in the serum of patients with BC compared to control
individuals (Ossoliński et al. 2022).

Our current study has indicated that tissue-based metabolite pro�ling can accurately discriminate different
stages of cancer tissue (pTa and pT1) from normal tissue from BC patients (Table 1, Fig. 4). In the tissue
extracts of patients with pTa and pT1 stages of BC, we identi�ed 13 signi�cant metabolites that were good
discriminators of the different cancer stage groups compared to the normal tissue group, most of which are
alpha-amino acids and have also been reported in the literature, as described above, in relation to the
occurrence of cancer.

Conclusion
Our study has demonstrated that the combination of multivariate statistics, high-resolution NMR, and silver-
109-based high-resolution LDI-MS metabolomics can effectively identify changes in tissue metabolome of
patients with bladder cancer (BC). Using 1H NMR metabolomics, we identi�ed six potentially robust metabolic
indicators of BC, including lactate, glutamine, glutamate, hypoxanthine, serine, and threonine, which predicted
BC with very good predictive power (AUC values > 0.853). Furthermore, using silver-109 nanoparticle-based LDI-
MS, we identi�ed 34 additional compounds, mostly lipids, that helped differentiate between cancer and normal
tissues. Additionally, we found thirteen metabolites that could potentially discriminate between low-grade and
high-grade bladder cancer and thirteen metabolites that could serve as potential reporters of different grades of
BC. Overall, our �ndings suggest that a combination of tissue metabolites has better predictive potential for
diagnosing BC and evaluating disease severity and progression than using individual metabolites alone.
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Figures

Figure 1

Representative 1D 1H-NMR spectra of metabolites extracts obtained from cancerous versus healthy tissue of
bladder cancer (BC) patients. (a) Full 1D 1H NMR spectrum of a bladder cancer (BC) patient metabolite sample
recorded on MSU 600 MHz (14 Tesla) solution NMR spectrometer.  The chemical shift locations of several
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identi�ed metabolites in the tissue metabolite extracts of BC patients compared to healthy (normal) controls
are labeled.  Panel A depicts the overlays of 1H NMR spectra from BC patient tissue samples (black) and
control tissue samples (blue) are shown. Expanded regions of the spectra are shown in (b) for the chemical
shift region 1.33-1.30 ppm corresponding to lactate; (c) for the chemical shift region 2.37-2.31 ppm
corresponding to glutamate; and (d) for the chemical shift region 2.48-2.41 ppm corresponding to glutamine.
The weight-normalized spectral overlays clearly indicate that the levels of these metabolites are higher in the
cancer tissue of the BC patients compared to the levels found in the healthy tissue controls.

Figure 2

Cancer and normal tissue metabolite pro�les obtained from 1H NMR data distinguish BC and AN samples in
the training set. (A,B) The tumor (violet) and normal (orange) tissue samples were evaluated using (a) 2D PCA,
and (b) OPLS-DA scores. (c) ROC curves of six distinct metabolites: lactate, glutamine, glutamate,
hypoxanthine, serine and threonine. (d-h) Box-whisker plots of selected metabolites levels in tissue samples
from NCs and AN. AUC: area under the curve; PC: primary component; ROC: the receiver operator characteristic
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Figure 3

Analysis of the tissue metabolite pro�les obtained from the 1H NMR training dataset and assessment of
whether metabolite differences can be used to differentiate between various grades of bladder cancer and
normal tissue samples. (a) PCA and (b) OPLS-DA score plots of HG BC (violet) and AN (orange) tissue samples.
(c) ROC curves of the two most differentiating HG BC metabolites. (d) PCA and (e) OPLS-DA score plots of LG
BC (green) and AN(orange) tissue samples. (f) ROC curves of the eleven most differentiating LG BC
metabolites. (g - i) The box-and-whisker plots of selected metabolites were observed in the control, HG, and LG
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BC urine samples. AN: adjacent normal; AUC: area under the curve; HG: high grade; LG: low grade; PC: primary
component; ROC: the receiver operator characteristic;

Figure 4

Analysis of the tissue metabolite pro�les obtained from the 1H NMR training dataset and assessment of
whether metabolite differences can be used to differentiate between various stages of bladder cancer and
normal tissue samples. (a) PCA and (b) OPLS-DA score plots of pTa BC (violet) and AN (orange) tissue
samples. (c) ROC curves of the twelve most differentiating pTa BC metabolites. (d) PCA and (e) OPLS-DA score
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plots of pT1 BC (green) and AN (orange) tissue samples. (f) ROC curves of the two most differentiating pT1 BC
metabolites. AN: adjacent normal; AUC: area under the curve; PC: primary component; ROC: the receiver
operator characteristic
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