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Abstract
Background: Increased drought due to climate change will alter �re regimes in mesic forested landscapes
where fuel moisture typically limits �re spread, and where fuel loads are consistently high. These
landscapes are often extensively modi�ed by human land use change and management. We forecast the
in�uence of varying climate scenarios on potential shifts in the wild�re regime across the mesic forests
of the Southern Appalachians. This area has a long history of �re exclusion, land use change, and an
expanding wildland urban interface. We considered interactions among climate, vegetation, and
anthropogenic in�uences to forecast future �re regimes and changes to the forest structure. We used
climate scenarios representing divergent drought patterns (overall drought trend and interannual
variability) within a process-based �re model that captures the in�uence of climate, fuels, and �re ignition
patterns and suppression. 
Results: Compared to simulations using historical climate (1972-2018), future total burned area (2020-
2100) increased by 42.3 % under high drought variability, 104.8 % under a substantial increase in drought
severity, and 484.7 % when combined. Landscape patterns of �re exclusion and suppression drove the
spatial variability of �re return intervals (FRI). Our projections indicate wide spatial variability in future �re
regimes with some areas experiencing multiple �res per decade while others experience no �re. More
frequent �res corresponded with increased oak prevalence and a reduction in the biomass of mesic
hardwoods and maple; however, mesic hardwoods remained prevalent under all �re intervals because of
their contemporary dominance. 

Conclusions: Our study illustrates how future drought-�re-management interactions and a history of �re
exclusion could alter future �re regimes and tree species composition. We �nd that increasing trends in
drought magnitude and variability may increase wild�re activity, particularly in areas with minimal �re
suppression. In ecosystems where fuel moisture (and not load) is the standard limitation to �re spread,
increased pulses of drought may provide the conditions for more �re activity, regardless of effects on fuel
loading. We conclude the effects of climate and human management will determine the novel conditions
for both �re regime and ecosystem structure.

Background
Climate change will alter �re regimes through several mechanisms, which may fundamentally shift
ecosystem structure and function (Turner et al., 2010). Fire frequency and intensity are determined by fuel
availability (live and dead biomass), weather and climate effects on fuel moisture, and ignition sources
(Krawchuk and Moritz, 2011). Warming temperatures will increase evaporative demand, drying fuels more
rapidly, and will thus increase the �ammability of fuels and expand the seasonality of available fuels
(Flannigan et al., 2016; Ma et al., 2020). Extended drought periods may lengthen the wild�re season as
fuels will become and remain dry for longer (Abatzoglou and Williams, 2016). Understanding how
drought in�uences wild�re regimes is crucial to estimating climate change impacts and their ecological
consequences (McLauchlin et al., 2020; Pausas & Keeley, 2021). Droughts' in�uence on moist forests
may be especially pronounced, as signi�cant increases in �re frequency within mesic forests have been
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observed globally (Abatzaglou et al., 2018). For example, in sub-Saharan Africa, warming reduced the
likelihood of �re in drier areas by limiting the available fuels, yet more mesic regions increased in areas
burned as fuel aridity rose (Wei et al., 2020). Studies in central Australia have also found that moist forest
systems will experience signi�cantly more �re, owing to reduced fuel moisture, without an appreciable
decline in fuel loads (King et al., 2012).

Understanding the change in vegetation due to climate and plant responses to the �re regime is crucial to
estimating future �re regime changes. Following a shift in vegetation, fuel combustibility, drying rates,
fuel bed thickness, and forest �oor moisture will change, altering the �re regime (Kreye et al., 2013). A
more frequent �re regime may favor species that promote �re whereas less frequent �re may favor
species that dampen �re's likelihood and are more susceptible to �re mortality, each creating a positive
feedback cycle (Nowacki and Abrams, 2014). This is confounded by evidence that more �re adapted
species can produce a larger organic layer than more �re sensitive species, causing a positive feedback
loop of potentially higher delayed mortality in �re-adapted species due to more �ne-root death during
organic layer consumption by �re (Carpenter et al. 2020, Robbins et al. 2022). In extreme cases, altered
�re regimes may push forested systems into state change or extirpation (Johnston et al., 2016; Serra-Diaz
et al., 2018; Nowacki and Abrams 2008, Lindenmayer et al., 2022).

A purely biophysical representation of �re regimes will, however, fail to capture changes to the regime due
to human in�uences (Andela et al., 2017). The wildland-urban interface (WUI) de�nes areas where
wildland vegetation and human development intersect, illustrating where humans are directly impacted
by and actively modifying �re regimes (Stewart et al., 2007). Housing development in the WUI and
associated forest fragmentation can increase �re likelihood, particularly in areas where natural ignitions
are sparse (Alencar et al., 2015); though, the interactions between fragmentation and �re will vary as
development and fragmentation can also lead to increased access for �re suppression and the creation
of fuel breaks (Syphard et al., 2019, Driscoll et al., 2021). Fire suppression and exclusion (preventing
ignitions or limiting �re spread due to infrastructure barriers) have led to global declines in area burned,
particularly in areas of human development (Stewart et al., 2007; Yang et al., 2014).

In the United States, the Southern Appalachian region represents a transition zone between mesic and
xeric forests, where precipitation regime changes are projected to increase �re risk due to prolonged
droughts during the �re season (Mitchell et al., 2014). The 2016 �re season occurred during the most
severe drought in the southeastern United States in the last 50 years (Williams et al., 2017). During the
fall of 2016, wild�res occurred throughout the Southern Appalachians; these wild�res burned an area
greater than  of the area burned in the preceding 23 years (1992-2015) combined (James et al., 2020).

Land management and urban expansion have greatly in�uenced the �re regime and vegetation of the
Southern Appalachians. Fire exclusion and suppression in the last century have fundamentally shifted
forest composition (Flatley et al., 2015; Flatley et al., 2013). Historically, individual stands experienced
�res frequently (�re return interval < 25 years), leading to open conditions and dominance by �re-adapted
species (e.g., Quercus spp. and Pinus spp.; Flatley et al., 2013; Hanberry, Bragg, and Alexander, 2021).
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Following �re exclusion, the �re return interval (FRI; time between �re returning to an area) increased to
hundreds of years, favoring non-�re-adapted species (e.g., Acer rubrum L., Liriodendron tulipifera L.; Lafon
et al., 2017). The Southern Appalachian WUI is also expanding (Thomas & Butry, 2014), and suppressing
wildland �res that encroach towards the WUI has become a priority. In addition, accidental human
ignitions now account for 82.4% of recent area burned by wild�re in the Southern Appalachians (Short,
2021).

Our goal was to assess how interactions among climate, disturbance, and vegetation may change under
a future characterized by increased drought. To do so, we used a simulation modeling framework to
estimate how climate will transform disturbance regimes and how disturbances would subsequently
shape forested ecosystems (Scheller, 2018). We deployed a process-based model of vegetation dynamics
coupled to a �re model driven by �re weather conditions to capture the ecological response of wild�re
(Scheller et al., 2019; Robbins et al., 2022). We selected climate projections representing divergent
drought projections for the Southern Appalachians to capture future climate uncertainty.

Within this experimental framework, we tested the following hypotheses: H1) an increase in climatic
drought would increase the total area burned due to dryer fuels; H2) an increase in interannual variability
of drought will increase the total burned area because wild�re disproportionately occurs under drought
conditions (as witnessed in 2016), and H3) any resulting increase in the burned area will favor historically
�re-adapted species but will not restore their historic dominance because there will be insu�cient burning
to displace the mesic tree species that are now widely established.

Methods
Study Area

Our study area was the Blue Ridge ecoregion of the Southern Appalachians (as de�ned by Omernik,
1995) in North Carolina, South Carolina, Tennessee, and Georgia, United States (Fig. S.1). The study area
encompasses ~2.8 million ha of topographically diverse landscape (ranging from ~120m to mountain
peaks ~2,017 m, Fig. S.2) resulting in a varied climate pro�le (Fig. S.3-S.5). Mean summer temperatures
between 1979-2019 in the warmest region average a daily mean of 23 °C in June -August, while are ~18
°C in the coolest region. During the same historical period, the warmest region averaged a daily mean of
~ 6 °C between November and January and ~ 3 °C in the coolest areas (Thorton et al., 2014).

This area consists primarily of upland hardwood forests. Our evaluation of the U.S. Forest Inventory and
Analysis data (Bechtold & Patterson, 2015) indicates that over 50 tree species are regularly present.
Ranked by aboveground biomass, the most common xeric deciduous species were chestnut oak (Quercus
montana Willd ), white oak (Quercus alba L.), northern red oak (Quercus rubra L.), scarlet oak (Quercus
coccinea Muenchh.), and sourwood (Oxydendrum arboreum L.). Common mesic hardwoods included red
maple (Acer rubrum L.) and tulip-poplar (Liriodendron tulipifera L.). Common conifers included eastern
white pine (Pinus strobus L.), Virginia pine (Pinus virginiana, Mill.), and loblolly pine (Pinus taeda L.).
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Climate Scenarios

To understand future drought outcomes, we analyzed 20 downscaled global climate projections available
from the MACA database (Abatzoglou & Brown, 2012) for the CMIP5 under Relative Concentration
Pathway (RCP) 8.5 (Table S.2). We selected RCP 8.5 to get a wide range of variability in model outcomes
from which to select divergent scenarios. These models include forecasted data for daily relative
humidity, temperature, precipitation, wind speed, and wind direction. For each model, we calculated the
annual potential evapotranspiration (PET) for 2006-2100 using a Thornthwaite model (Thornthwaite,
1948). We then calculated each climate model's annual precipitation (PPT) to PET ratio. Next, we ranked
models by the slope in PPT: PET using a linear trend with a �xed intercept; drought increased under all
climate projections (Fig. S.6). We determined decadal variance in drought by calculating the decadal
mean of PPT: PET and its squared variance. We then summed the squared variance for the study period
and used this to rank each model (Fig. S.6 and Fig S.7). From this analysis; we selected four
representative models (Table S11): 1) a minimal drought trend with low decadal variability (hence,
LowT/LowV: MRI CGCM3 RCP 8.5), 2) a minimal drought trend with high decadal variability
(LowT/HighV: CNRM CM5 RCP 8.5), 3) a maximal drought trend with low decadal variability
(HighT/LowV: IPSL CM5A MR RCP 8.5), and 4) a maximal drought trend with high decadal variability
(HighT/HighV: HadGEM2 ES365 RCP 8.5).

Landscape change model 
We simulated a dynamic wild�re regime and vegetation change using a landscape disturbance and
change model, LANDIS-II (Scheller et al., 2007). LANDIS-II represents the landscape as an interconnected
grid, simulating vegetation and disturbance processes within and between cells. Each grid cell
represented a 250m-by-250m forest stand (6.25 ha). LANDIS-II simulates the establishment and
succession of tree cohorts (cohorts are single species and age class; each cell can contain multiple
species and age classes). LANDIS-II includes spatially explicit seed dispersal. We used the Net Ecosystem
Carbon and Nitrogen succession (‘NECN’) sub-model (Scheller et al., 2011) and parameterized the growth
and trait characteristics for 48 separate tree species. NECN simulates tree growth, regeneration, and
mortality in each landscape cell; cohorts compete for light, nitrogen, and soil moisture, and regeneration
is a function of species-speci�c seasonal temperature and moisture responses. Finally, NECN calculates
the exchange of carbon and nitrogen between living tissue, dead tissue, and soil pools following the logic
of the CENTURY model (Parton, 1996). Particularly crucial to this exercise, NECN estimates fuel loads
over time; the decay rates for fuels are a function of climate and leaf composition (lignin content, carbon
to nitrogen ratio). Therefore, each cohort has a unique contribution to the fuel pool, creating a continuous
and temporally dynamic fuel model.

We simulated the �re regime using the Social-Climate Related Pyrogenic Processes and their Landscape
Effects (SCRPPLE). SCRPPLE includes separate sub-models for ignitions, �re-spread, and the resulting
tree mortality (Scheller et al., 2019, Robbins et al. 2022). The ignition sub-model calculates the likelihood
of a successful accidental and lightning ignition based on the daily Canadian Fire Weather Index (FWI,
Van Wagner, 1974). The sub-model �ts the estimated ignitions for the entire landscape from a zero-
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in�ated Poisson model (Zuur et al., 2019). SCRPPLE distributes the calculated number of ignitions
spatially using a probability distribution map for each ignition type. Each cell is weighted based on
probability, and then a weighted uniform draw is performed. SCRPPLE calculates the probability of
intercellular �re spread based on FWI, effective wind speed (wind speed adjusted by topography; Nelson,
2002), and �ne fuels in adjacent cells. Notably, effective wind speed accounts for the effect of
topography on �re behavior, as effective winds increase with steeper slopes and account for aspect.
Therefore, �res burning uphill spread more rapidly. For each daily timestep, a �re spreads cell to cell
based on adjacent intercellular probabilities of spread until no more cells achieve positive spread or the
daily maximum spread is reached (estimated from the observed maximum rate of possible spread
modeled with FWI and effective wind speed). Cohort mortality calculated in SCRPPLE is based on cohort
bark thickness and site-level characteristics when �re passes through a cell (Robbins et al., 2022).
We �t the SCRPPLE model based on �re occurrence data from our study area for 1992-2016 (Robbins et
al. 2022) (Fig. S.1). We �t the �re ignitions sub-model by comparing historic FWI to historical ignitions
from 1992-2016 (Short, 2021). We used separate processes to generate probability maps for each
ignition type. For lightning, we used a climatology of lightning for the area (Albrecht et al., 2016), and for
accidental human ignitions, we interpolated the spatial distribution from the wild�re record (Short, 2021).
We parameterized the �re spread function using fuel load, daily FWI, and topographically downscaled
and effective wind speed. To model the probability of spread given the predictor variables, we identify the
adjacent cells where a �re could spread using daily �re perimeter polygons for wild�res (Scheller et al.,
2019; Walters et al., 2011). Finally, we used the combined data set to �t a generalized linear binomial �re
spread model (Scheller et al., 2019).

Prescribed �res were spatially and probabilistically distributed to match the distribution of land
ownership classi�cation to the amount of prescribed burning (see Robbins et al., 2022). We
parameterized federal lands using the proposed area for prescribed burns in National Forest plans (Table
S.3). To parameterize non-federal additional prescribed burning, we used records on known prescribed
burning in other jurisdictions (private, tribal, state, and other). While prescribed �re is an integral part of
this landscape (currently accounting for ~40% of the burned area), each future scenario represents the
same total area burned by prescribed �re. Thus, we focus on the in�uence of drought on future wild�res
and the resulting �re effects. We spatially delineated three wild�re suppression levels using a
combination of wildland-urban interface (WUI) de�nitions (Radeloff et al., 2018), maps of roads,
topography, and USFS roadless wilderness designation (U.S. Forest Service, 2021). To parameterize the
three levels of wild�re suppression, we compared historical records of �re rotation period (FRP) for each
of the three suppression zones to unsuppressed �re spread. We then calibrated suppression under three
�re weather index scales.
Scenario analysis

To test the in�uence of drought trends and variability, we simulated seven replicates for each climate
projection for 80 years (using the parameterized landscape from Robbins et al., 2022 with the addition of
climate change). In addition, we included a baseline historical-random (HR) climate scenario randomly
assigning climate years from 1972 to 2016 to future years.
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First, we analyzed how climate affected the total area burned across the landscape. We next calculated
the FRP, the FRI, and the spatial distribution of �re occurrence. Finally, we examined how tree species
composition (by biomass) changed under each climate scenario.

Results
Wild�re regime

Both lightning and human ignitions were sensitive to changes in FWI (Robbins et al., 2022). The lightning
ignition sub-model was signi�cant for FWI in both portions of the model (the probability of excess zeros
and the daily number of ignitions). The likelihood of an excess zero increased with increasing FWI;
however, so did the predicted daily lightning. The model �t balances rare conditions in which a lightning
ignition occurs on the landscape, requiring both weather conditions dry enough for fuel ignition and
enough moisture that lightning storms would occur. The accidental human ignition sub-model was not
sensitive to FWI for the probability of excess zeros; however, the daily ignition count was positively
correlated with FWI. Therefore, accidental ignition likelihood increases slightly with increasing FWI.

SCRPPLE calculates both the likelihood of intercellular �re spread and the maximum �re spread within a
day. We found both FWI and �ne fuels signi�cant predictors of the probability of intercellular �re spread
(Table 2). Visual interpretation of the effects of FWI and �ne fuels suggests that FWI is the dominant
control of �re spread (Fig. 1). However, increasing �ne fuel will increase the probability of intercellular �re
spread by as much as ~10%. Fire weather is the primary contributor to days of high intercellular �re
spread, but the spatial relationship of fuels may determine where a �re is most likely to spread. Due to
directional error, wind speed was removed from predicting intercellular speed probability. Wind speed,
however, was the predictor used in calculating the maximum daily rate of spread within the model. This
may re�ect the limitations of downscaled wind speed in weather records (i.e.: at a large-scale wind speed
affects �re spread rates, but this cannot be captured at the scale relevant to intercellular spread.)

Validating the wild�re regime
The SCRPPLE �re model reproduced the expected number of accidental human-ignited �res (1,623 [95%
CI: 1,598-1,649] compared to 1,709 observed) and lightning-ignited �res (160 [95% CI: 153-177] compared
to 174 observed) from 1992 to 2016 (Fig. S.9). The mean total area burned in the simulations for 1992-
2016 was 140,316 (95% CI: [119,067-161,564]) ha, compared to 147,367 ha observed by Short, 2021 (a
mean underestimation of ~2%; Fig. S.10). The SCRPPLE �re model captured the �re size distribution
generally, slightly overestimating the proportion of small (0-50 ha) and large (5,000 ha and above) �res
while underestimating other �res (50-5,000ha) (Fig 2; Short et al., 2021). Comparing the annual area
burned shows that the model captured about 46% of interannual variability in the burned area (Fig 3). It
consistently overestimated the same years (1992-1994, 2011-2012). Some years with a larger burned
area (e.g., 2007, 2008) show higher variability in the area burned (ranging from ~10,000-40,000 ha
burned). Simulations of the peak �re year in 2016 (observed ~67,000 ha burned) yielded highly variable
modeled values of burned area (13,112 ha - 87, 043 ha) (Fig 3).
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Climate simulations
The modeled burned area of the historical-random and LowT/LowV scenarios were generally similar (Fig.
4a). The burned area of the HighT/LowV scenario (high drought trend, low variability) was 104.8% higher
than the historical-random simulation. The burned area of the LowT/HighV scenario (increased drought-
variability), was 42.3% higher than the historical-random simulation. The burned area for the
HighT/HighV scenario, (high drought trend and drought-variability) increased over 500% from the
historical-random scenario (Fig. 4a). The LowT/LowV model showed similar temporal patterns to the
random historical simulations oscillating around ~ 60,000 hectares burned per decade (Fig. 4b). The
LowT/HighV scenario forecasted increasing hectares burned during the middle part of this century and
eventually returned to the range of the burned interval seen in the historic-random scenario. The
HighT/LowV scenario forecasted a similar burned area to the historical-random simulation until the
middle of the century, when the burned area rose and remained elevated for the rest of the century. The
HighT/HighV scenario began with an elevated burned area (~2 x the historical-random) and increased
throughout the simulation, forecasting a burned area ~9 x higher than the random historical scenario
during the last decade of the century (Fig. 4b).
The modeled mean landscape FRP for the historic climate scenario was ~ 284 years, in the LowT/LowV
scenario ~ 314 years, in the LowT/HighV scenario ~ 200 years, in the HighT/LowV scenario ~139 years,
and in the HighT/HighV scenario ~48 years. In forecasts using the LowT/LowV, LowT/HighV, and
HighT/LowV scenarios, most of the landscape had an FRI over 200 years or experienced no �re (Table 3).
However, under the HighT/HighV scenario, only ~ 22% had an FRI longer than 200 years or experienced
no �re. The modeled spatial distribution showed speci�c concentrations of �res in roadless areas, and
national forests (Fig. 5). The Northwestern and Southwestern areas where concentrations are the highest
across scenarios represented the boundaries of the Chattahoochee-Oconee and the Cherokee National
Forests. Fires were concentrated primarily (though not exclusively) outside of the WUI. Crucially, the total
area impacted by consistent �re (FRI < 50 years) expanded under climate scenarios with increased
burned area (Table 3). This shift suggests that �re frequency will increase and �re (its potential ecological
bene�ts and its hazards) will impact a more signi�cant proportion of the landscape.

Modeled �re severity remained similar throughout the simulation, generally low with a minimal increase
in the proportion of the higher severity �res or increase in the gross number of higher severity �res (Fig
S.13). In scenarios with more burned area (HighT/LowV and HighT/HighV), mean �re severity per
individual stand fell slightly through time. Lower severity is likely due to the prior removal of the most
susceptible cohorts.

Modeled mean total biomass decreased in sites with an FRI of <5 years (79.95 Mg/ha) as compared to
25-50 years (104.46 Mg/ha), 50-80 (119.73 Mg/ha), or sites that experienced no �re (131.03 Mg/ha).
Both sites with 0-25 years and 25–50 years FRI had lower biomass than the initial landscape average
(106.24 Mg/ha). Xeric white oak increased in percentage of total biomass in all FRI but increased with
decreasing FRI and moved from 32.3% to 45.4 % under the most frequent FRI (Fig. 5). Xeric red oaks held
constant in all scenarios. The percent of maple biomass declined by half under the scenario with the
most frequent FRI (from 13.1 % of landscape biomass to ~8 %). Mesic hardwood biomass remained
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relatively stable in all FRI, although the proportion declined with decreasing FRI. Yellow pine declined in all
scenarios (from 1.0 % to ~ 0.5%). Non-oak xeric hardwoods declined in all scenarios from (~5% to around
0.3 %, Fig. 5).

Discussion
We found that both increasing annual drought trends and greater drought variability could increase the
area burned across the Southern Appalachians, validating our �rst two hypotheses (H1 and H2).
Furthermore, the increase in the modeled burned area due to a high drought trend and high drought
variability suggests multiplicative non-linear interactions (Fig. 4) and represents the threshold-driven
nature of the wild�re regimes in mesic forested systems (Young et al., 2017, Abatzoglou et al., 2021). The
historical data and our simulations suggest that drought years (particularly those containing months with
�re weather indices > 22) will determine a large proportion of the burned area. Because strong drought
years account for a disproportionate amount of area burned by wild�re, an increase in drought variability
has a substantial effect on the modeled area burned even without an overall increase in the projected
drought trend.

Our �ndings re�ect the complex interactions of the non-linear increases ub �re frequency due to climate
coupled with changes in �re behavior due to human management of fuels and �re (Balch et al., 2017;
Pausas and Keeley, 2021; Krawchuk et al., 2009). Our results suggest an expansion in the area burned
under increased drought trends, increased drought variability, and their combination across the
landscape, even in areas where a high level of �re suppression was modeled (Table 3). Our inclusion of
�re suppression and patterns of human ignition indicates that the current pace of management actions
that control wild�re may not be su�cient under a more arid future climate and increased wild�re activity.
However, this effect is most prominent in areas away from housing development and population centers.
As such, restoration goals that target the WUI more actively under drier future conditions could continue
to be effective in this region (Sturtevant et al., 2009; Krofcheck et al., 2019). In other forested systems,
however, land management and human interaction with the landscape have been projected to play a
more prominent role in increasing �re activity than the role projected by the warming climate (Creutzberg
et al., 2017), at least in the near term (Maxwell et al., 2022). Our results are similar to those of Mortiz et al.
(2012), who found that climate trends could exceed the in�uence of land management. Our results differ
in that our model suggests short-term drought patterns (as represented by drought variability) also had a
large effect. Other factors to consider include that fuel loads can increase due to rural abandonment and
long periods of �re suppression, and ignitions can increase in previously remote areas via increased
access through fragmentation (Pausus & Keeley, 2014). On the other hand, �re suppression and exclusion
efforts could increase in the future (Andela et al., 2017; Driscoll et al., 2021).

Our results run contrary to prior projections of area burned under climate change in the southern
Appalachians (Prestemon et al., 2016, James et al., 2020). These studies suggested that the total area
burned would likely decline over the next 50 years under the CMIP3 models, MIROC32, CSIROMK35, and
CGCM31 (scenarios AB1, A2, and B2). This was attributed to denser populations and rising wealth
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resulting in increased wild�re suppression efforts in the area, negating any increase in �re size associated
with future temperatures. These studies, however, used the �re period of 1992-2010 to parameterize and
did not capture the thresholds crossed in subsequent �re years such as 2016 (those with monthly FWIs >
22), and how these effects may propagate into the future. Our �ndings suggest that failing to capture
such exceptionally dry years will severely underestimate landscape-level wild�re activity as these drought
years account for a disproportionate amount of burned area. In the context of all three studies, including
ours, the level of �re suppression could ultimately drive the �re regime across this landscape, but their
success will be challenged by increased levels of high drought variability (Prestemon et al., 2016, James
et al., 2020).

The difference in modeled area burned between the four climate scenarios used in this study was
determined by their divergent forecasts. The HADGEM-ES 365 (High T / HighV) model predicted the most
drastic changes in future climate, with mean temperatures 7 °C higher and a decrease in precipitation of
180 mm annually by the end of the century (Fig. S.8). The ISPL CM5A-LR (High T/ Low V) and CNRM-
CM5 (Low T/ High V) models predicted 5-6 °C of warming, with slight increases in annual precipitation
(Fig. S4). However, see Bishop et al. (2019) and Rupp (2016) for discrepancies with fall precipitation
patterns for the southern United States derived from the Coupled Model Intercomparison Project Phase 5
(CMIP5).
Our results suggest that the species composition change has passed a threshold whereby reversion to
species composition during pre-�re suppression and exclusion, even under drastic climatic and �re
regime shifts, is unlikely in the next century across the Southern Appalachians (Nikanorov and
Sukhorukov, 2008). Based on these conclusions, we a�rm our third hypothesis (H3) that the amount of
area burned is unlikely to restore the majority of the landscape to more �re-adapted conditions, as even
the most frequent FRI maintained near current levels of mesic hardwoods (non-�re-adapted species).
These results suggest an alternative stable state and that even consistent reintroduction of �re alone may
not restore the landscape to a more �re-adapted state (Beisner, Haydon, and Cuddington, 2003; Alexander
et al., 2021). This assumes no further increases in restoration by land managers.

Under a modeled shift to a much more frequent FRI, stands were able to maintain both �re-adapted and
non-�re-adapted tree species across the century, unlike more arid areas in the Western U.S, where more
permanent state shifts are expected to occur (Davis et al., 2019). Continued fuel availability will be a
critical component to �re activity in areas that experience increases in drought under future warming
(Abatzoglou et al., 2018). Our succession sub-model (NECN) calculates the fuel load as sur�cial detrital
biomass (re�ecting annual foliage turnover and recent disturbance, not including large wood material);
our simulations indicated that the fuel load would not decline to the point of limiting �re at the landscape
scale, even under an increase in �re frequency and its resulting mortality.

While increased area burned did not revert the tree species composition (no complete reduction in mesic
species or restoration of Quercus Spp.), our simulations suggest that white oak (Leucobalanus: Q.
montana Willd and Q. alba) will remain the primary dominant canopy species and will not be replaced by
other species within the next century, regardless of scenario simulated. While oaks are currently less
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prevalent in the mid and understory, larger and older oak trees will make up an increasing fraction of the
overstory biomass in the future because of their continued growth potential. Many oaks in the Southern
Appalachians were established between the early industrial harvesting and before �re suppression and
exclusion (1890-1930) and generally can live between 200-400 years (Loehle, 1988). Essentially, the
larger oaks still have considerable growth potential, maintaining their successional legacy into the next
century. While more frequent �res may favor oaks under the hotter and drier climate projections, this was
accompanied by lower regeneration rates in all species due to increasing drought stress (higher frequency
and intensity, Fig. S.11-S.14). Including oak decline (Greenberg and others, 2014) or disturbances other
than �re (Clinton, Boring, and Swank, 1993) in future simulation studies could provide further insight into
these dynamics.

Our study presents a novel approach to simulating the spatio-temporal interactions of �re suppression,
management, and increased and more variable drought conditions and quanti�es how these interactions
affect wild�re activity on this large landscape. Future work includes quantifying the effects of varied �re
suppression and ignition reduction tactics coupled with other management strategies, such as changes
in the planning of prescribed �re, to balance ecosystem resilience with human community safety.
Limitations to our forecasts must be considered. Anomalous events in wild�re records, such as those of
the 2016 �re season, are di�cult to model as they have no replicates and are outliers from preceding
wild�re patterns. However, our �re spread model is centered around �re behavior metrics (fuel load, FWI,
windspeed), which should provide some extrapolation to future annual weather conditions. Additionally,
our model of interacting �re spread, and suppression is non-adaptive, meaning that while the effect of �re
suppression does scale with �re weather conditions, it does not consider the reorganization of �re
suppression resources, as might be expected if the wild�re regime radically shifts. Nor did we consider a
future reduction in �re suppression resources created by national-scale wild�res that compete for
�re�ghting labor (Belval et al., 2020). Our simulations represented the cumulative effects of climate-
wild�re interactions over the entire Southern Appalachians (3.4M ha area simulations), not the e�cacy of
individual prescriptions on speci�c stands or areas. Finally, �re severity was parameterized primarily from
current stands in areas where �re events were rare (Robbins et al., 2022). While the initial study included
areas that had been burned twice, a shift in �re frequency may change the mortality pro�le. Increased �re
frequency may reduce �re severity by removing trees that are more susceptible to subsurface burning due
to the buildup of duff, or by altering the mycorrhizal environment (Waldrop et al., 2016; Carpenter et al.,
2020)

Conclusion
Increased future drought severity and variability may generate a much greater area burned in the
Southern Appalachian region than has recently been experienced, even when accounting for human
patterns of �re suppression. In ecosystems where fuel moisture (and not load) is the standard limitation
to �re spread, increased pulses of drought may provide the conditions for more �re activity, regardless of
effects on fuel loading. Furthermore, while �re suppression and other disturbances for over a century
have altered this landscape's vegetation composition, the future projected increases in wild�re will likely
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not revert the landscape to pre-suppression conditions, owing to the establishment of non-�re-adapted
species. However, oak canopy dominance will likely continue into the next century because of continued
growth potential of the current oak population, but oak regeneration is more questionable. Thus, the
future �re regime of the Southern Appalachians (and other fuel moisture-limited systems) may be neither
like the past nor the present, but a novel ecosystem state governed by climate and human activities.
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Tables
Table 1: The CMIP 5 climate models (Abatzoglou & Brown, 2012) selected to represent the four drought
outcomes for the study area.  

Climate model Ranking in
drought trend

Ranking in drought
variability

Mean Warming
by 2100

Labeled in this
study

MRI CGCM3 RCP
8.5

20 of 20 20 of 20 ~ 3° C LowT/LowV

CNRM CM5 RCP
8.5
 

19 of 20 4 of 20 ~ 5° C LowT/HighV

IPSL CM5A MR
RCP 8.5

 

2 of 20 12 of 20 ~6°C HighT/LowV

HaGEM2 ES365
RCP 8.5

1 of 20 2 of 20 ~ 7° C HighT/HighV

 

Table 2: Parameters for the SCRPPLE �re model that control �re spread. 

a) Fire spread probability

Coe�cient Estimate Std. Error P value

Intercept -1.740204 0.113415 < 0.0001

Fire weather index 0.725350 0.188870 < 0.0001

Fine fuel index  0.061306 0.003369 < 0.0001
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 b) Maximum rate of daily spread (ha)
 

Coe�cient Estimate Std. Error P value

Intercept 477.60 55.70 < 0.0001

Mean effective windspeed (m/s) 393.00 13.28 < 0.0001

 c) Fire suppression values 
 

Suppression class FWI < 20 20< FWI< 28 FWI >28

Low (1) 0.30 0.12 0.05

Medium (2) 0.50 0.25 0.03

High (3) 0.70 0.35 0.20

  

Table 3: The distribution of FRI intervals across the landscape for each climate model, based on all seven
replicates combined.  

FRI LowT/LowV LowT/HighV HighT/LowV HighT/HighV

0-25 0.00% 0.00% 0.01% 15.07%

25-50 0.00% 1.87% 5.52% 28.62%

50-100 3.70% 12.27% 20.26% 21.17%

100-200 17.01% 23.82% 26.71% 13.00%

200-Inf 79.21% 62.01% 47.37% 22.13%

Figures



Page 20/25

Figure 1

The relationship within the model between �re variables (�ne fuels, �re weather index, and effective
windspeed) and model �re spread; a) The intercellular �re spread probability as a function of �ne fuel
level and �re weather index. Colored lines represent different fuel levels (10th percentile, median, 90th
percentile). b) The maximum daily rate of spread (ha) as a function of effective daily wind speed. The
model probabilistically calculates the likelihood of intercellular spread based on cellular conditions but is
capped daily by the maximum daily rate of spread.
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Figure 2

The distribution of �re sizes within the model and those observed by Short, 2021. The LANDIS-II
simulations represent the average of 10 replicates of the observed years (1992-2016). Note the varied y-
axis.
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Figure 3

The interannual variability in the simulated annual burned area, compared to the observed burned area.
Transparent grey dots represent individual replicates, solid red dots represent the observed data (Short,
2021). R2 represents the predictive power of the combined replicates in explaining the annual variation in
the observed data.
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Figure 4

The change in the burned area attributed to drought and drought variability; (a) the total area burned
during a 90-year simulation; error bars represent the 95 % CI across models. (b) Hectares burned per
decade under the four selected climate models. Dots represent individual model runs and the trend line
represents a LOESS smoothed model. High T represents a major drought trend, while Low T represents a
minor drought trend. High V represents high variability, while Low V represents low variability. The
Historical simulation’s climate is years drawn randomly from the years 1979-2016.



Page 24/25

Figure 5

Spatial distribution of the �re return interval (FRI: years simulated/�res that occurred) across the Southern
Appalachian landscape under 4 climate scenarios. Each map represents the combined FRI of 7
simulations (wildland �re plus prescribed �re). The white outline denotes the study boundary.
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Figure 6

Landscape proportions of functional groups by �re return interval (FRI: years simulated/�res that
occurred). Represents the mean of all locations that experience that FRI across the landscape in all
simulations under all climate models. Functional groups are de�ned in Table S.1.
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