1. Devine JF. Chronic obstructive pulmonary disease: an overview. American health & drug benefits. 2008;1(7):34-42.
2. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet. 2012;380(9859):2095-128.
3. Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. The lancet. 2009;374(9691):733-43.
4. Bascom R. Differential susceptibility to tobacco smoke: possible mechanisms. Pharmacogenetics and Genomics. 1991;1(2):102-6.
5. Mannino DM. COPD: epidemiology, prevalence, morbidity and mortality, and disease heterogeneity. Chest. 2002;121(5):121S-6S.
6. Mannino DM. Chronic obstructive pulmonary disease: definition and epidemiology. Respiratory care. 2003;48(12):1185-93.
7. Silverman EK. Genetics of COPD. Annual review of physiology. 2020;82:413-31.
8. Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo L, et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nature Genetics. 2017;49(3):416-25.
9. Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS genetics. 2009;5(3):e1000421.
10. Wilk JB, Chen T-h, Gottlieb DJ, Walter RE, Nagle MW, Brandler BJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS genetics. 2009;5(3):e1000429.
11. Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nature genetics. 2010;42(1):45-52.
12. Repapi E, Sayers I, Wain LV, Burton PR, Johnson T, Obeidat Me, et al. Genome-wide association study identifies five loci associated with lung function. Nature genetics. 2010;42(1):36-44.
13. Cho MH, Boutaoui N, Klanderman BJ, Sylvia JS, Ziniti JP, Hersh CP, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nature genetics. 2010;42(3):200-2.
14. Cho MH, McDonald M-LN, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. The lancet Respiratory medicine. 2014;2(3):214-25.
15. Yamada M, Motoike IN, Kojima K, Fuse N, Hozawa A, Kuriyama S, et al. Genetic loci for lung function in Japanese adults with adjustment for exhaled nitric oxide levels as airway inflammation indicator. Communications Biology. 2021;4(1):1288.
16. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nature reviews genetics. 2005;6(2):95-108.
17. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature reviews genetics. 2008;9(5):356-69.
18. Newton-Cheh C, Hirschhorn JN. Genetic association studies of complex traits: design and analysis issues. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2005;573(1-2):54-69.
19. Chimusa ER, Defo J. Dissecting meta-analysis in GWAS era: Bayesian framework for gene/subnetwork-specific meta-analysis. Frontiers in Genetics. 2022;13.
20. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nature genetics. 2019;51(4):584-91.
21. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nature Reviews Genetics. 2018;19(9):581-90.
22. Chimusa ER, Zaitlen N, Daya M, Möller M, van Helden PD, Mulder NJ, et al. Genome-wide association study of ancestry-specific TB risk in the South African Coloured population. Human molecular genetics. 2014;23(3):796-809.
23. Han B, Eskin E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. The American Journal of Human Genetics. 2011;88(5):586-98.
24. Esterhuizen TM, Thabane L. Con: Meta-analysis: some key limitations and potential solutions. Nephrology Dialysis Transplantation. 2016;31(6):882-5.
25. Lee YH. Strengths and Limitations of Meta-Analysis. Korean J Med. 2019;94(5):391-5.
26. Garg AX, Hackam D, Tonelli M. Systematic review and meta-analysis: when one study is just not enough. Clinical journal of the American Society of Nephrology : CJASN. 2008;3(1):253-60.
27. Kavvoura FK, Ioannidis JP. Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls. Human genetics. 2008;123:1-14.
28. Thompson JR, Attia J, Minelli C. The meta-analysis of genome-wide association studies. Briefings in bioinformatics. 2011;12(3):259-69.
29. Wang X, Chua H-X, Chen P, Ong RT-H, Sim X, Zhang W, et al. Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies. Human Molecular Genetics. 2013;22(11):2303-11.
30. Adeyemo A, Rotimi C. Genetic variants associated with complex human diseases show wide variation across multiple populations. Public health genomics. 2010;13(2):72-9.
31. Li YR, Keating BJ. Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Medicine. 2014;6(10):91.
32. Finckh A, Tramèr MR. Primer: strengths and weaknesses of meta-analysis. Nature clinical practice Rheumatology. 2008;4(3):146-52.
33. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707-13.
34. Mahajan A, Go M, Zhang W, Below J, Gaulton K, Ferreira T, et al. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; Mexican American Type 2 Diabetes (MAT2D) Consortium; Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples (T2D-GENES) Consortium. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46(3):234-44.
35. Tian C, Gregersen PK, Seldin MF. Accounting for ancestry: population substructure and genome-wide association studies. Human molecular genetics. 2008;17(R2):R143-R50.
36. Seldin MF, Price AL. Application of ancestry informative markers to association studies in European Americans. PLoS genetics. 2008;4(1):e5.
37. Price AL, Butler J, Patterson N, Capelli C, Pascali VL, Scarnicci F, et al. Discerning the ancestry of European Americans in genetic association studies. PLoS genetics. 2008;4(1):e236.
38. Gallagher MD, Chen-Plotkin AS. The Post-GWAS Era: From Association to Function. American journal of human genetics. 2018;102(5):717-30.
39. Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne CA, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nature Genetics. 2019;51(3):481-93.
40. Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne CA, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet. 2019;51(3):481-93.
41. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nature Communications. 2017;8(1):1826.
42. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-74.
43. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic acids research. 2010;38(16):e164.
44. Jin X, Wang Y, Zhang X, Zhang W, Wang H, Chen C. Gene mapping and functional annotation of GWAS of oral ulcers using FUMA software. Scientific Reports. 2020;10(1):12205.
45. Kircher M, Witten DM, Jain P, O'roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nature genetics. 2014;46(3):310-5.
46. Consortium G. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science (New York, NY). 2020;369(6509):1318-30.
47. Zhernakova DV, Deelen P, Vermaat M, Van Iterson M, Van Galen M, Arindrarto W, et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nature genetics. 2017;49(1):139-45.
48. Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell reports. 2016;17(8):2042-59.
49. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2019;36(8):2628-9.
50. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26(17):2190-1.
51. Leiper JM, Santa Maria J, Chubb A, MacAllister RJ, Charles IG, Whitley GS, et al. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. The Biochemical journal. 1999;343 Pt 1(Pt 1):209-14.
52. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Research. 2020;49(D1):D545-D51.
53. Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29(14):1830-1.
54. American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2003;21(12):2397-406.
55. Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics. 2011;27(1):95-102.
56. Peng G, Luo L, Siu H, Zhu Y, Hu P, Hong S, et al. Gene and pathway-based second-wave analysis of genome-wide association studies. European journal of human genetics : EJHG. 2010;18(1):111-7.
57. Pasaniuc B, Price AL. Dissecting the genetics of complex traits using summary association statistics. Nature reviews Genetics. 2017;18(2):117-27.
58. Wells SM, Buford MC, Migliaccio CT, Holian A. Elevated asymmetric dimethylarginine alters lung function and induces collagen deposition in mice. American journal of respiratory cell and molecular biology. 2009;40(2):179-88.
59. Janssen W, Pullamsetti SS, Cooke J, Weissmann N, Guenther A, Schermuly RT. The role of dimethylarginine dimethylaminohydrolase (DDAH) in pulmonary fibrosis. The Journal of pathology. 2013;229(2):242-9.
60. Genovese T, Cuzzocrea S, Di Paola R, Failla M, Mazzon E, Sortino MA, et al. Inhibition or knock out of inducible nitric oxide synthase result in resistance to bleomycin-induced lung injury. Respiratory research. 2005;6(1):58.
61. Yildirim AO, Bulau P, Zakrzewicz D, Kitowska KE, Weissmann N, Grimminger F, et al. Increased protein arginine methylation in chronic hypoxia: role of protein arginine methyltransferases. American journal of respiratory cell and molecular biology. 2006;35(4):436-43.
62. Telo S, Kırkıl G, Kuluöztürk M, Balin M, Deveci F. Can ADMA play a role in determining pulmonary hypertension related to chronic obstructive pulmonary disease? The clinical respiratory journal. 2018;12(4):1433-8.
63. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310-5.
64. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic acids research. 2014;42(D1):D1001-D6.
65. Hou L, Zhao H. A review of post-GWAS prioritization approaches. Frontiers in genetics. 2013;4:280.
66. Peterson RE, Kuchenbaecker K, Walters RK, Chen C-Y, Popejoy AB, Periyasamy S, et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell. 2019;179(3):589-603.
67. Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. The American Journal of Human Genetics. 2013;93(5):779-97.
68. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome research. 2012;22(9):1748-59.