1. Bonney, KM, Engman, DM. Chagas heart disease pathogenesis: one mechanism or many? Curr Mol Med. 2009; 8:510-518; https://doi:10.2174/1566524087857480044.
2. Pan, AA, Rosenberg, GB, Hurley, M., Schock, GJH, Chu, VP, Aiyappa, AA. Clinical evaluation of an EIA for the sensitive and specific detection of serum antibody to Trypanosoma cruzi (Chagas' disease). J Infect Dis. 1992; 165:585–588; https://doi:10.1093/infdis/165.3.585.
3. Brashear, RJ, Winkler, MA, Schur, JD, Lee, H, Burczak, JD, Hall, HJ, Pan, AA. Detection of antibodies to Trypanosoma cruzi among blood donors in the southwestern and western United States. I. Evaluation of the sensitivity and specificity of an enzyme immunoassay for detecting antibodies to T. cruzi. Transfusion 1995; 35:213-218; https://doi:10.1046/j.1537-2995.1995.35395184277.x.
4. Pan, AA, Winkler, MA. The threat of Chagas’ disease in transfusion medicine. The presence of antibodies to Trypanosoma cruzi in the US blood supply. Lab Med. 1995; 28:269-274.
5. Winkler, MA, Brashear, RJ, Hall, HJ, Schur, JD, Pan, AA. Detection of antibodies to Trypanosoma cruzi among blood donors in the southwestern and western United States. II. Evaluation of a supplemental enzyme immunoassay and radioimmunoprecipitation assay for confirmation of seroreactivity. Transfusion 1995; 35:219-225; https://doi:10.1046/j.1537-2995.1995.35395184278.x.
6. Ibañez, CF, Affranchino, JL, Macina, RA, Reyes, MB, Leguizamon, S, Camargo, ME, Åslund, L, Pettersson, U, Frasch, ACC. Multiple Trypanosoma cruzi antigens containing tandemly repeated amino acid sequence motifs. Mol Biochem Parasitol. 1988; 30:27-34; https://doi:10.1016/0166-6851(88)90129-6.
7. Winkler, MA, Rivera, DM, Pan, AA, Nowlan, SF. Homology of Trypanosoma cruzi clone 36 repetitive DNA sequence to sequence encoding human Ro/SSA 52 kD autoantigen. Parasite 1998; 5:94-95. PMID: 9754305.
8. Whelan, FJ, Yap, NVL, Surette, MG, Golding, BG, Bowdish, DME. A guide to bioinformatics for immunologists. Front Immunol. 2013; 4: 1-16; https://doi.org/10.3389/fimmu.2013.00416.
9. Meroni, G, Diez-Roux, G. TRIM/RBCC, a novel class of single protein RING finger’ E3 ubiquitin ligases. Bioessays 2005; 27:1147-1157; https://doi:10.1002/bies.20304.
10. Ozato, K, Shin, DM, Chang, TH, Morse III, HC. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol. 2008; 8:849-860; https://doi:10.1038/nri2413.
11. Nisole, S, Stoye, JP, Saib, A. TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol. 2005; 3:799–808; https://doi:10.1038/nrmicro1248.
12. Sjöstrand, M, Carrow, B, Espinosa, A. TRIM21 controls toll-like receptor 2 responses in bone-marrow-derived macrophages. Immunology 2020; 159:335-343; https://doi:10.1111/imm.13157.
13. Kong, HJ, Anderson, DE, Lee, CH, Jang, MK, Tamura, T, Tailor, P, Cho, HK, Cheong, JH, Xiong, H, Morse III, HC, Ozato, K. Autoantigen Ro52 is an interferon inducible E3 ligase that ubiquitinates IRF-8 and enhances cytokine expression in macrophages. J Immunol. 2007; 179:26-30; https://doi:10.4049/jimmunol.179.1.26.
14. Higgs, R, Gabhann, JN, Larbi, NB, Breen, EP, Fitzgerald, KA, Jefferies, C. The E3 ubiquitin ligase Ro52 negatively regulates IFN- production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol. 2008; 181:1780-1786; https://doi:10.4049/jimmunol.181.3.1780.
15. Espinosa, A, Dardalho, V, Brauner, S, Ambrosi, A, Higgs, R, Quintana, FJ, Sjostrand, M, Eloranta, M-L, Gabhann, JN, Winqvist, O, Sundelin, B, Jefferies, CA, Rozell, B, Kuchroo, VK, Wahren-Herlenius, M. Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway. J Exp Med. 2009; 206:1661-1671; https://doi:10.1084/jem.20090585.
16. Winkler, MA, Pan, AA. Is there a link between the human TRIM21 and Trypanosoma cruzi clone 36 genes in Chagas’ disease? Mol Immunol. 2010; 48:365-367; https://doi:10.1016/j.molimm.2010.07.013.
17. Hidron, A, Vogenthaler, N, Santos-Preciado, JI, Rodriguez-Morales, AJ, Franco-Paredes, C, Rassi, A, Jr. Cardiac Involvement with parasitic infections. Clin Microbiol Rev. 2110; 23:324-349; https://doi.org/10.1128/cmr.00054-09.
18. DeCuir, J, Tu, W, Dumonteil, E, Herrera, C. Sequence of Trypanosoma cruzi reference strain SC43 nuclear genome and kinetoplast maxicircle confirms a strong genetic structure among closely related parasite discrete typing units. Genome 2021; 64:525-531; https://doi:10.1139/gen-2020-0092.
19. Cunha-Neto E, Dzau VJ, Allen PD, Stamatiou D, Benvenutti L, Higuchi ML, Koyama NS, Silva JS, Kalil J, Liew CC. Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas’ disease cardiomyopathy. Am J Pathol. 2005;167: 305–313; https://doi.org/10.1016/S0002-9440(10)62976-8.
20. Marin-Neto, JA, Cunha-Neto, E, Maciel, BC, Somões, MV. Pathogenesis of chronic Chagas heart disease. Circulation 2007; 115:1109-1123; https://doi.org/10.1161/CIRCULATIONAHA.106.624296.
21. Teixeira, MM, Gazzinelli, RT, Silva, JS.. Chemokines, inflammation and Trypanosoma cruzi infection. Trends Parasitol. 2002:18:262–265; https://doi.org/10.1016/S1471-4922(02)02283-3.
22. Gomes, JAS, Bahia-Oliveira, LMG, Rocha, MOC, Martins-Filho, OA, Gazzinelli, Correa-Oliveira, R. Evidence that development of severe cardiomyopathy in human Chagas’ disease is due to a Th1-specific immune response. Infect Immun. 2003:71:1185–1193; https://doi.org/10.1128/iai.71.3.1185-1193.2003.
23. Afgan, E, Baker, D, Van den Beek, M, Blankenberg, D, Bouvier, D, Cech, M, Chilton, J, Clements, D, Coraor, N, Eberhard, C, Grüning, B, Guerler, A, Hillman-Jackson, J, Von Kuster, G, Rasche, E, Soranzo, N, Turaga, N, Taylor, J, Nekrutenko, A, Goecks, J,. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses. Nucl Acids Res. 2016; 44:W3-W10; https://doi:10.1093/nar/gkw343.
24. Blankenberg, D, Taylor, J, Schenck, I, He, J, Zhang, Y, Ghent, M, Veeraaghavan, N, Albert, I, Miller, W, Makova, KD, Hardison, RC, Nekrutenko, AA. A framework for collaborative analysis of ENCODE data: Making large-scale analyses biologist-friendly. Genome Res. 2007; 17:960-964; https://doi.org/10.1101/gr.5578007.
25. Rice, P, Longden, I, Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000; 16:276-277; https://doi.org/10.1016/S0168-9525(00)02024-2.
26. Bayer-Santos, E, Aguilar-Bonavides, C, Rodrigues, SP, Cordero, EM, Marques, AF, Varela-Ramirez, A, Choi, H, Yoshida, N, da Silveira, JF, Almeida, IC. Proteomic Analysis of Trypanosoma cruzi secretome: Characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res. 2013:883-897; https://doi.org/10.1021/pr300947g.
27. Brigant, B, Metzinger-Le Meuth, V, Rochette, J, Metzinger, L. TRIMming down to TRIM37: Relevance to inflammation, cardiovascular disorders, and cancer in MULIBREY nanism. Int J Mol Sci. 2019; 20:67-80; https://doi.org/10.3390/ijms20010067.
28. Gutierrez, FRS, Guedes, PMM, Gazzinelli, RT, Silva, JS. The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol. 2009; 31:673-685; https://doi:10.1111/j.1365-3024.2009.01108.x.
29.. Santos, FM, Mazzeti, AL, Caldas, S, Concalves, KR, Lime, WG, Torres, RM, Bahia, MT. Chagas cardiomyopathy: The potential effect of benznidazole treatment on diastolic dysfunction and cardiac damage in dogs chronically infected with Trypanosoma cruzi. Acta Tropica 2016; 161:44-54; https://doi:10.1016/j.actatropica.2016.05.007.
30. Jansen, AM, Xavier, SCC, Roque, ALR. Ecological aspects of Trypanosoma cruzi: Wild hosts and reservoirs. In: Telleria, J, Tibayrenc, M. (eds). American Trypanosomiasis Chagas’ Disease. 2nd ed. Elsevier, Amsterdam, 2017. pp 243-264; https://doi.org/10.1016/B978-0-12-801029-7.00011-33.
31. Hoffman, KA, Reynolds, C, Bottazzi, ME, Hotez, P, Jones, K. Improved biomarker and imaging analysis for characterizing progressive cardiac fibrosis in a mouse model of chronic chagasic cardiomyopathy. J Am Heart Assoc. 2019: 8:e013365; https://doi.org/10.1161/JAHA.119.013365.
32. Hoffman, KA, Villar, MJ, Poveda, C, Bottazzi, ME, Hotez, PJ, Tweardy, DJ, Jones, KM. Signal transducer and activator of transcription-3 modulation of cardiac pathology in chronic chagasic cardiomyopathy. Front Cell Infect Microbiol. 2021:11:708325; https://doi.org/10.3389/fcimb.2021.708325.