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Abstract 42 

Ecological and socio-economic impacts from biological invasions are rapidly escalating 43 

worldwide. While effective management underpins impact mitigation, such actions are often 44 

delayed, insufficient or entirely absent. Presently, management delays emanate from a lack of 45 

monetary rationale to invest at early invasion stages, which precludes effective prevention 46 

and eradication. Here, we provide such rationale by developing a conceptual model to 47 

quantify the cost of inaction, i.e., the additional expenditure due to delayed management, 48 

under varying time delays and management efficiencies. Further, we apply the model to 49 

management and damage cost data from a relatively data-rich genus (Aedes mosquitoes). Our 50 

model demonstrates that rapid management interventions following invasion drastically 51 

minimise costs. We also identify key points in time that differentiate among scenarios of 52 

timely, delayed and severely delayed management intervention. Any management action 53 

during the severely delayed phase results in substantial losses (> 50% of the potential 54 

maximum loss). For Aedes spp., we estimate that the existing management delay of 55 years 55 

led to an additional total cost of approximately $ 4.57 billion, compared to a scenario with 56 

management action only 7 years prior. Moreover, we estimate that in the absence of 57 

management action, long-term losses would have accumulated to US$ 32.31 billion. These 58 

results highlight the need for more timely management of invasive alien species — either pre-59 

invasion, or as soon as possible after detection — by demonstrating how early investments 60 

rapidly reduce long-term economic impacts.  61 

62 

Keywords: InvaCost, invasive alien species, logistic growth, socio-economic impacts, 63 

prevention and biosecurity, long-term management 64 

65 
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1 Introduction 66 

Invasive alien species (IAS) can have deleterious impacts on ecosystem structure and 67 

function (e.g., Bellard et al., 2017; Ricciardi & MacIsaac, 2011; Shabani et al., 2020), and on 68 

multiple sectors of the economy such as agriculture, fisheries and forestry (Paini et al., 2016; 69 

Holmes et al., 2009; Haubrock et al., 2021), human health (Shepard et al., 2011; Schaffner et 70 

al., 2020) and human and social well-being (Pejchar & Mooney, 2009; Jones, 2017). Even 71 

though many of these impacts are not yet fully understood or quantified (Vilà et al., 2010; 72 

Kumschick et al., 2015; Crystal-Ornelas & Lockwood, 2020), the scientific consensus is that 73 

IAS impacts — although variable in their nature — are massive, growing, and constitute a 74 

major driver of biodiversity loss and global change (Simberloff et al., 2013; IPBES 2019; 75 

Pyšek et al., 2020; Seebens et al., 2017). As a result, resource management agencies and 76 

conservation practitioners worldwide are continuously working to develop management tools 77 

— legal, institutional and methodological — to respond to new invasions through the 78 

prevention of introduction, limitation of spread, and mitigation of impacts (e.g., Hoffmann & 79 

Broadhurst, 2016; Jones et al., 2016).  80 

There are, however, several aspects hindering the effective management of invasive 81 

populations (Courchamp et al., 2017). In particular, the justification of management 82 

expenditures is a challenge, as management is costly, IAS are numerous and budgets are 83 

limited. Even though it is generally assumed that early responses are cost-effective in the 84 

long-term (Leung et al., 2002; Timmins & Braithwaite, 2002; Russell et al., 2015), in 85 

practice, applied management is often delayed, if implemented at all. This situation is 86 

exacerbated by the fact that the proliferation of IAS and their impacts are often delayed due 87 

to time lags (Crooks, 2005; Francis et al., 2021). However, while delays to perceived impact 88 

or population detectability could provide rationale for delaying management actions, a failure 89 

to consider time lags and act early can render IAS management unnecessarily expensive 90 

(Francis et al., 2021).  91 

For decision makers, preventative management can be seen as a riskier strategy than 92 

waiting to control IAS after establishment, because neither its effectiveness, nor the eventual 93 

invasion of a given IAS can be predicted with high certainty (Finnoff et al., 2007). In a 94 

system where impacts are not necessarily borne by the same societal entities as those who 95 

fund management actions, immediate spending always needs to be strongly justified. In 96 

addition, with the existence of budget limitations and competing conservation needs, it is 97 

tempting to wait for impacts to be demonstrated, to be realised, or even to be severe before 98 

investing in management. In the absence of an explicit counterfactual analysis, the cost of 99 

inaction i.e., the additional expenditure due to delayed management, may be implicitly 100 

assumed to be negligible. Nevertheless, bioeconomic risk analysis, exemplified with zebra 101 

mussel invasions in US lakes, has suggested preventative measures benefit society 102 

substantially, but have been underfunded (Leung et al., 2002). Past studies have examined 103 

total invasion costs as a proxy for the benefit of prevention (Epanchin-Niell & Liebhold 104 

2015). However, no studies have focused on a direct quantification of the monetary costs of 105 

delayed action under different invasion and management timing scenarios. Further, previous 106 
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analyses have been limited to the local scale, and have relied on abundance data, which are 107 

frequently unavailable for IAS, and have used external estimates of management efficiency 108 

rather than a direct quantification (Leung et al. 2002; Hastings et al. 2007, Epanchin-Niell 109 

2017).  110 

For biological invasions, there thus remains a lack of justification to invest in early-111 

stage management actions. The objective of our study is to provide a general mathematical 112 

framework for early investment from biological invasion first principles. We do this by 113 

showing that avoidable damage costs grow with management implementation delay. When 114 

management is cost-effective and does not decline in efficiency over time, delaying 115 

management leads to greater total costs (damage and management costs combined) even over 116 

very long time horizons. Even if management declines in efficiency with time, cost savings 117 

can be achieved early in an invasion by managing sooner. After a theoretical demonstration 118 

of the cost of inaction via mathematical modelling, we test our framework using empirical 119 

data for Aedes spp. from the InvaCost database — the most comprehensive and up-to-date 120 

dataset of costs caused by IAS globally (Diagne et al., 2020a, 2020b). 121 

Our central hypothesis and model assumption is that the cumulative costs of both 122 

damage and management of IAS follow a logistic curve with time (sigmoidal type curve). 123 

This assumption follows the well-accepted “invasion curve” (Leung et al., 2002; Lodge et al., 124 

2016), which predicts that the area invaded or impacted by an IAS initially increases slowly, 125 

but then accelerates, and eventually reaches a plateau (Fig. 1), and is also a common pattern 126 

of growth in invasion models (Shigesada et al. 1995). If we assume that impact is 127 

proportional to the area invaded (Parker et al., 1999), the costs associated with a single IAS 128 

should follow a similar logistic curve. While the precise shape of the curve may depend on 129 

case-specific details (e.g., on the environmental properties or stage of invasion), the 130 

assumption of logistic IAS impacts has lacked large-scale empirical testing until recently 131 

(Ahmed et al. 2021). 132 

Given the assumption of a logistic description of cumulative costs, it follows that 133 

marginal damage and management costs are distributed logistically (i.e., according to a bell-134 

shaped curve). Building upon this, we formulate a theoretical cost model for marginal, 135 

realized damage costs and for the total expenditure (inclusive of damage and management 136 

costs), whilst allowing for variable management delay times and time-dependent 137 

management efficiencies. The model incorporates key parameters such as initial costs, cost 138 

growth rates and cost carrying capacities, that are useful to help better understand the 139 

resulting cost dynamics. Furthermore, we compute the cost of inaction to estimate the 140 

additional expenditure due to further management delays. We demonstrate the utility of our 141 

cost model with application to the relatively data rich Aedes genus in the InvaCost database. 142 

In this way, we provide a coherent framework for the valuation of the foregone costs due to 143 

damages, which can be used as an imperative to manage biological invasions as proactively 144 

as possible.   145 

146 
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147 

Figure 1. The classical invasion curve. This relationship displays a generalized invasive alien 148 

population response over time 𝑡, after its introduction and establishment into a new 149 

environment. As the population expands and spreads, the cumulative area invaded (reported 150 

as a percentage of the total invaded area), cumulative impacts and costs (damage and 151 

management) are assumed to follow a logistic curve. There is a key point in time for 152 

management introduction at 𝑡 = 𝑡∗, where the cost of inaction is exactly half of the cost in the153 

scenario where management is never introduced. We refer to this as a runaway point, where 154 

management transitions from delayed to severely delayed and thus from difficult to unlikely 155 

(see later section 2.2 for a theoretical example and section 3.3 for an empirical case study). 156 

Figure adapted from Invasive Plants and Animals Policy Framework, Victorian Government, 157 

2010. 158 

2 Modelling costs 159 

Several cost-related terms are used in the following sections, and are defined in Appendix A1 160 

for ease of interpretation.  161 

2.1 Damage and management costs 162 

163 

In developing a theoretical cost model, we focused on reactive management, i.e., the scenario 164 

where management is introduced after the arrival and establishment of an IAS. As a first step, 165 

following the classical invasion curve (see Fig. 1), we assumed that the cumulative damage 166 

cost as a function of time 𝐶(𝑡) in the absence of management onset is modelled by a 167 

sigmoidal-type curve given by the (modified) logistic function: 168 𝐶(𝑡) = 𝐾(1−𝑒−𝑟𝑡)1+(𝐾𝐴−1)𝑒−𝑟𝑡 , 𝐶(0) = 0, 𝐶(∞) = 𝐾 (1) 169 
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6 

where 𝑟 is the intrinsic growth rate of damage costs, 𝐾 is the cumulative damage cost in the 170 

long term (henceforth referred to as the damage cost carrying capacity), and 𝐴 is a parameter 171 

which modulates the shape of the logistic curve.   172 

It follows that the marginal (or instantaneous) damage cost 𝐷(𝑡) can be computed as 173 

the derivative of Eq. (1), resulting in the logistic distribution (bell-shaped curve), given as: 174 

𝐷(𝑡) = 𝑑𝐶(𝑡)𝑑𝑡  = 𝑟𝐾(1+𝐾𝐴)𝑒−𝑟𝑡(1+𝐾𝐴𝑒−𝑟𝑡)2 , 𝐷(0) = 𝐷0 = 𝑟𝐾1+𝐾𝐴 , 𝐷(∞) = 0 (2) 175 

where 𝐷0 is the initial damage cost, which can be expressed solely in terms of the parameters 176 𝑟, 𝐾 and 𝐴. It can be readily shown that the marginal damage cost reaches a maximum value 177 

of 𝐷𝑚𝑎𝑥 = 14 𝑟(𝐴 + 𝐾) at time 𝑡 = 1𝑟 ln (𝐾𝐴). 178 

With the onset of reactive management, the impact of an invasion decreases, and 179 

therefore so does the cost incurred due to damages. Since the cumulative management cost is 180 

also assumed to depend on the stage of invasion, it can also be modelled as a logistic curve, 181 

albeit with a different intrinsic growth rate 𝑟𝑀 and management cost carrying capacity 182 𝐾𝑀. Therefore the marginal management cost 𝑀(𝑡 − 𝜏) delayed by 𝜏 years is synonymous to 183 

Eq. (2) (i.e., bell-shaped curve) and can be described as: 184 

𝑀(𝑡 − 𝜏) = 𝑟𝑀𝐾𝑀(1+𝐾𝑀𝐴𝑀)𝑒−𝑟𝑀(𝑡−𝜏)
(1+𝐾𝑀𝐴𝑀𝑒−𝑟𝑀(𝑡−𝜏))2 ⋅ 𝐻(𝑡 − 𝜏),   𝑀(0) = 𝑀0 = 12 ⋅ 𝑟𝑀𝐾𝑀1+𝐾𝑀𝐴𝑀 , 𝑀(∞) = 0 (3) 185 

where 𝐻(𝑡 − 𝜏) is a unit step function with value 0 if 𝑡 < 𝜏, 12 if 𝑡 = 𝜏 and 1 if 𝑡 > 𝜏 and 186 𝑀0 is the initial management cost. The maximum marginal management cost is 𝑀𝑚𝑎𝑥 =187 14 𝑟𝑀(𝐴𝑀 + 𝐾𝑀) and occurs at time 𝑡 = 1𝑟𝑀 ln (𝐾𝑀𝐴𝑀) + 𝜏. Note that when 𝜏 = 0, Eq. (3) 188 

corresponds to a scenario with immediate management action. In general, it is expected that 189 𝑀0, 𝑀𝑚𝑎𝑥 and 𝐾𝑀 are much smaller than 𝐷0, 𝐷𝑚𝑎𝑥 and 𝐾, respectively. 190 

Since marginal damage and management costs are modelled as a bell-shaped curve, 191 

these costs decay exponentially in the long-term, eventually approaching zero. This 192 

assumption is supported by empirical cost data for several taxa (Diagne et al. 2020b), where 193 

reported costs at large timescales can be several orders of magnitude smaller than the 194 

reported maximum cost, indicating a trend towards null costs. As a result, cumulative 195 

management and damage costs saturate at their respective cost carrying capacities 𝐾𝑀, 𝐾 (see 196 

Ahmed et al. 2021).  197 

We assume that the management expenditure directly reduces the cost due to 198 

damages, and therefore once management is introduced at time 𝑡 = 𝜏, the realized marginal 199 

damage cost 𝐷∗ is:200 𝐷∗(𝑡, 𝜏) = 𝐷(𝑡) − 𝐸(𝑡 − 𝜏) ⋅ 𝑀(𝑡 − 𝜏) (4) 201 
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202 

which is a positive quantity, or otherwise equal to zero. Within this equation, we propose a 203 

management efficiency term 𝐸 as a function of time: 204 𝐸(𝑡 − 𝜏) = 1 + (𝐸0−1)(𝐸1−1)(𝐸0−1)+(𝐸1−𝐸0)𝑒−𝛼(𝑡−𝜏) (5) 205 

which quantifies the amount of reduction in the damage cost for every $ 1 spent on 206 

management. 207 

At the time of management introduction 𝑡 = 𝜏, efficiency can be either effective if 208 𝐸0  > 1 or ineffective if 𝐸0  = 1. In the case that 𝐸0  > 1, the efficiency can either increase, 209 

decrease or remain constant depending on the growth rate 𝛼. If 𝛼 > 0 the efficiency grows, 210 

approaching a constant maximum value 𝐸1 in the long term. If 𝛼 < 0, then the efficiency 211 

decays to 1. In the case that 𝛼 = 0, the efficiency remains constant at 𝐸0. Since 𝐸 > 1 for all 212 

time, it is assumed that management action is effective, as $ 1 spent on management always 213 

reduces the damage cost by an amount greater than $ 1, see Fig. 2. If, however, 𝐸0 = 1, then 214 

the efficiency remains constant at this value for all time, i.e., 𝐸 = 1, and therefore 215 

management is considered as ineffective as $ 1 spent on management reduces the damage 216 

cost by the exact same amount, see Eq. (5).  217 

218 

Figure 2. Management efficiency 𝐸 as a function of time. For 𝐸0 > 1 efficiency either 219 

increases if 𝛼 > 0 or decreases if 𝛼 < 0. In either case management is assumed to be 220 

effective since the efficiency is always greater than 1 once management is introduced. 221 

However, if 𝐸0 = 1, then the efficiency 𝐸 remains constant at this value, and management is 222 

deemed to be ineffective. Although not shown here, we note that if 𝐸 lies between 0 and 1, 223 
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then management is counterproductive, as $ 1 spent on management reduces the damage cost 224 

by less than $ 1. 225 

With management action and the subsequent reduction in damage costs, the total cost 226 𝑇 incurred by the invasion is the sum of realized damage and management costs: 227 𝑇(𝑡, 𝜏) = 𝐷∗(𝑡, 𝜏) + 𝑀(𝑡 − 𝜏). (6) 228 

In the case that management is effective (𝐸0  > 1), the total cost is always less than the cost229 

due to damages i.e., 𝑇 < 𝐷, whereas if management is ineffective (𝐸0  = 1) then the total 230 

expenditure is equal to the damage cost, i.e., 𝑇 = 𝐷. Note that if 𝐸 lies between 0 and 1, then 231 𝑇 > 𝐷 and therefore in this case, management is deemed counterproductive. 232 

233 

Fig. 3 illustrates the behaviour of the cost model described by Eqs. (2)-(6) for the 234 

damage cost 𝐷, management cost 𝑀, realized damage cost 𝐷∗and the total cost 𝑇. For235 

illustrative purposes, we consider scenarios with effective management (𝐸0 = 2 > 1) with 236 

increasing efficiency (𝛼 = 0.01 > 0) or decreasing efficiency (𝛼 = −0.01 < 0), with either 237 

immediate (𝜏 = 0) or delayed (𝜏 = 20 > 0) management action. Note that since 238 

management is deemed to be effective, both 𝐷∗ and 𝑇 are less than 𝐷 once management is239 

introduced. 240 

241 

The cost dynamics differ depending on whether management efficiency increases or 242 

decreases over time. In the case of increasing efficiency (𝛼 > 0) the maximum costs for 243 𝐷∗ and 𝑇 are lower than in the case of decreasing efficiency (𝛼 < 0), and these maxima244 

occur earlier if management is delayed (Table 1). Also, irrespective of 𝛼, 𝐷∗and 𝑇 approach245 

zero faster in the presence of a management delay compared to immediate management, c.f. 246 

Fig. 3 plots (c) and (d). However, note that both 𝐷∗and 𝑇 exhibit larger maximum cost values247 

with delayed management (Table 1).  248 

249 
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Figure 3. Model behaviour over time for selected parameters: 𝑟 = 0.1, 𝐾 = 100, 𝐴 = 1, 𝐷0 =250 0.099, 𝑟𝑀 = 0.1, 𝐾𝑀 = 25, 𝐴𝑀 = 0.5, 𝑀0 = 0.026, 𝐸0 = 2, 𝐸1 = 5. Initial costs 𝐷0, 𝑀0 are 251 

computed from 𝐴, 𝐴𝑀 , respectively, see Eqs. (2) and (3). We consider scenarios of decreasing 252 

or increasing efficiency, with immediate or delayed management. The maximum costs for 253 𝐷∗and 𝑇 are indicated with black/red markers with values listed in Table 1. Note that the bell-254 

shaped curve for marginal costs shown here results in logistic (sigmoidal) growth of 255 

cumulative costs (see also section 2.1).     256 

257 

Table 1 Time of occurrence and maximum cost values for the realized marginal damage cost 258 𝐷∗ and the total cost 𝑇, as indicated in Fig. 3.259 

260 𝐷∗ 𝛼 = −0.01 𝛼 = 0.01 𝑇 𝛼 = −0.01 𝛼 = 0.01 𝜏 = 0 (49.53, 1.63) (50.68, 1.27) 𝜏 = 0 (47.46, 2.14) (48.17, 1.76) 𝜏 = 20 (42.70, 1.82) (41.67, 1.71) 𝜏 = 20 (44.65, 2.19) (43.51, 2.05) 

261 

2.2 Cost of inaction 262 

We define the marginal cost of inaction 𝜑 as the cost difference at time 𝑡 between two 263 

distinct scenarios where management is introduced at a fixed time 𝜏∗and at a further delayed264 

time 𝜏, given as: 265 𝜑(𝑡, 𝜏) = 𝑇(𝑡, 𝜏) − 𝑇(𝑡, 𝜏∗),   𝜏 > 𝜏∗ (7)  266 

which is a positive quantity, or otherwise equal to zero. The cumulative cost of inaction 𝛷 is 267 

then given by:  268 𝛷(𝑡, 𝜏) = ∫ [𝑇(𝑡′, 𝜏) − 𝑇(𝑡′, 𝜏∗)]𝑡0 𝑑𝑡′ (8) 269 

which is the total additional expenditure at time 𝑡 due to delayed management intervention.  270 

The integral in Eq. (8) is not analytically tractable, however an approximation can be 271 

determined using techniques of numerical integration (i.e., trapezoidal rule).  272 

Fig. 4a shows that with no management intervention (𝜏 → ∞), the marginal cost of 273 

inaction increases rapidly, reaching a peak at time 40.46 with cost value 0.85, and then 274 

subsequently decays to zero in the long-term. This peak serves as a critical point where 275 

inaction costs transition from increasing to decreasing. With the introduction of management, 276 

the marginal cost of inaction 𝜑 ‘dips’ due to the direct impact of the initial management on 277 

damage costs. Following this, the cost dynamics depend on the delay time 𝜏 relative to when 278 

the critical point occurs. If 𝜏 < 40.46,  𝜑 continues to grow even after management onset, 279 

eventually reaching a peak with subsequent decay until the cost of inaction is zero. Note that 280 

the maximum inaction cost (peak) is lower with earlier management. In contrast, if 𝜏 ≥281 
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40.46, then 𝜑 decreases monotonically to zero cost. In general, 𝜑 is lower and approaches 282 

zero much quicker with earlier management intervention. 283 

284 

Fig. 4b shows that the cumulative cost of inaction 𝛷 increases rapidly with 285 

management delay 𝜏, eventually approaching a saturation level that represents a potential 286 

additional expenditure of 𝛷𝑠𝑎𝑡 = 33.34 in the absence of management intervention (𝜏 → ∞). 287 

We identify three key markers along 𝛷 which represent time windows that can inform 288 

management decisions. First, the blue marker represents 1% of 𝛷𝑠𝑎𝑡, occurring at 𝜏 =289 0.39 with 𝛷 = 0.34. The 1% threshold was chosen to indicate a period when small losses 290 

have been incurred compared to the potential cost of never managing. Second, the red marker 291 

is a runaway point which represents 50% of 𝛷𝑠𝑎𝑡, occurring at 𝜏 = 21.59 with 𝛷 =292 16.67. Last, the magenta marker is the critical point where the marginal cost of inaction 293 

peaks as shown in Fig. 4a, occurring at 𝜏 = 40.46 with 𝛷 = 25.92 (amounting to approx. 294 

77% of 𝛷𝑠𝑎𝑡). 295 

296 

In this illustrative example (Fig. 4b), we can consider management intervention to be 297 

timely if 𝜏 < 0.39, delayed if 0.39 < 𝜏 < 21.59, severely delayed if 21.59 < 𝜏 < 40.46, and 298 

propose that only small-scale local management is feasible if 𝜏 > 40.46. These time windows 299 

can be interpreted analogously to the different phases in the classical invasion curve 300 

presented in Fig. 1, where managing the invasion transitions from feasible, to difficult, to 301 

unlikely, to nearly impossible with increasing management delay.   302 

303 
Figure 4. (a) The marginal cost of inaction 𝜑, defined as the difference in total costs between 304 

scenarios with management delay 𝜏 (varied) and immediate management action 𝜏∗ = 0, see305 

Eq. (7). The maximum value for 𝜑 remains at 0.85 if the delay time 𝜏 exceeds 40.46, but can 306 

be lower at earlier times. (b) The cumulative cost of inaction 𝛷 evaluated retrospectively (in 307 

the long-term 𝑡 → ∞), whilst considering different management delay times 𝜏 relative to 308 
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immediate management action 𝜏∗ = 0, see Eq. (8). The coloured markers represent points309 

that differentiate among scenarios of the severity of delayed management. In the long term, 310 

the additional expenditure in the absence of management is estimated at 𝛷𝑠𝑎𝑡 = 33.34. All 311 

parameter values are the same as that in the caption of Fig. 3, except that we only consider 312 

the case where management efficiency is increasing with time, 𝛼 = 0.01 > 0, see also Fig. 3 313 

plots (b) and (d).  314 

3 Empirical case study for Aedes spp. 315 

3.1 InvaCost database 316 

At the time of analysis (August 2021), the InvaCost database (version 4) included 13,123 cost 317 

entries (i.e., rows of cost data reported for a particular species in a particular location to a 318 

particular economic activity sector) from systematic and opportunistic literature searches 319 

conducted primarily in English, and altogether in 15 languages (Diagne et al., 2020b; Angulo 320 

et al., 2021). This database captures reported economic costs associated with IAS in their 321 

non-native range (incurring costs from management, damage and losses). Notably, cost 322 

reporting is unevenly distributed geographically, taxonomically and temporally in InvaCost 323 

(Diagne et al., 2021), but this is largely due to underlying biases in IAS research rather than 324 

the database itself (Pyšek et al., 2008). Data were obtained through systematic literature 325 

searches conducted on the Web of Science, Google Scholar and Google search engine 326 

(Diagne et al., 2020b), as well as opportunistic contacting of relevant experts to augment 327 

these data. InvaCost is a dynamic database that is expected to continue growing as more cost 328 

information becomes available in future. The version used for this study includes 1200 329 

unique species or species combinations and 1872 documents reporting costs. A full 330 

description of the data sources, cost search protocols and spatial coverage is available in 331 

Diagne et al. (2020b).  332 

The data in InvaCost are recorded with several descriptors (over 60 in InvaCost 333 

version 4.0, see https://doi.org/10.6084/m9.figshare.12668570 for complete details) and 334 

standardised against a single currency (2017 US$). This currency was selected as it is a 335 

common metric in environmental economics, standardised to 2017 to account for inflation in 336 

the year of the main cost search. These descriptors include, among other things, the cost type 337 

(“Type of cost merged”), which groups costs into three distinct categories: (a) “Damage” 338 

referring to damages or losses incurred by the invasion (e.g., costs for damage repair, 339 

resource losses, medical care), (b) “Management” comprising any expenditures dedicated to 340 

prevent, limit and/or mitigate invasion impacts (e.g., monitoring, prevention, control, 341 

education, eradication) and (c) “Mixed” including indistinguishable damage and management 342 

costs (cases where reported costs were not clearly separable from the aforementioned cost 343 

types categories). We considered all types of damage costs, but only post-invasion 344 

management costs, in order to eliminate preventative management (i.e., for species that have 345 

not yet arrived). This was done using the “Management_type” column of the database by 346 

selecting the “Post-invasion management” category therein. We further filtered our dataset to 347 

examine only costs incurred at larger scales (up to national), using only “Country” and “Site” 348 

spatial scales from the “Spatial_scale” column. We also removed any extrapolated 349 
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(“Potential”) costs (i.e., those extrapolated from different spatial scales) by limiting our 350 

search to “Observed” costs in the “Implementation” column. Furthermore, we considered 351 

only costs in peer-reviewed literature and official documents, or grey literature with fully 352 

reproducible methods, defined as having “High” reliability under the “Method_reliability” 353 

column (Diagne et al., 2020b). 354 

For consistency and to aid comparisons across data, all costs in the original database 355 

were ‘expanded’ so that cost entries could be considered on an annual basis. This means that 356 

single cost entries spanning multiple years (e.g., $ 10 million between 2001 and 2010) were 357 

divided into distinct entries according to their duration (e.g., $ 1 million for each year 358 

between 2001 and 2010, corresponding to ten entries in the expanded database). Expansion 359 

was done using the expandYearlyCosts function of the ‘invacost’ R package (Leroy et al., 360 

2020), which repeats the annual cost for each database entry according to the estimated time 361 

range of impacts provided with each reference in the InvaCost database (but see section 3.2 362 

for a reweighting done in the case of 70 years of constant costs). For the purposes of our 363 

model, each datapoint refers to a single year of cost data aggregated across InvaCost entries 364 

globally for a given genus. 365 

3.2 Description of the Aedes spp. data  366 

To present a case study, we tested our theoretical cost model against empirical cost data for 367 

Aedes spp. (see later section 3.3). This genus was chosen as it is the richest in data, with both 368 

damage and management costs reported continuously on an annual basis over long-time 369 

periods. The costs (extracted from the InvaCost database version 4.0) corresponded to 232 370 

individual publications, which, when expanded, corresponded to 819 entries spanning years 371 

1921 (𝑡 = 0) to 2016 (𝑡 = 95). Damage costs spanned the entire time period, amounting to 372 

134 publications and 631 expanded entries. Damage cost values ranged from $ 9.49 ×373 10−6 billion to $ 0.24 billion, with a maximum reported cost of $ 4.61 billion in 2006 (𝑡 =374 85). 375 

Since the expandYearlyCosts function was used for the Aedes spp. data, it led to costs 376 

from single publications reported over long time periods being re-distributed evenly. As a 377 

result, 70 out of the 74 reported damage costs in the first 73 years were repeated, with a total 378 

sum amounting to $ 0.23 billion. Although this expansion function provides a simple means 379 

to re-distribute costs, it is unrealistic with regards to the likely dynamics of economic impacts 380 

over this long-time horizon and was chosen as a basic representation by the ‘invacost’ 381 

package developers. As a more plausible alternative, we chose to re-distribute the first 73 382 

years of costs as a geometric series, whilst ensuring that the total costs summed to the same 383 

value over that time period. This assumes that costs continue to increase annually, as can be 384 

expected during the early phase of an invasion (see 385 

github.com/emmajhudgins/CostOfInaction for code and transformed data).  386 

Management costs corresponded to 98 publications, which produced 188 expanded 387 

entries. Management was introduced in year 1976 (𝑡 = 55) with cost $ 0.02 billion and 388 

occurred until 2017 (𝑡 = 96) with value $ 1.43 × 10−3 billion. To avoid undue influence of389 
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high leverage costs, we removed two extreme cost records within the management data that 390 

exceeded 1.5 interquartile ranges above the third quartile: a cost of $ 1.19 billion in 2012 391 (𝑡 = 91) and one of $ 0.67 billion in 2016 (𝑡 = 95). Once these outliers were removed, the 392 

maximum management cost was $ 0.22 billion, reported in 2001 (𝑡 = 80). 393 

3.3 Model fitting and results 394 

395 

Fig. 5 illustrates that the theoretical cost model was highly predictive of the Aedes spp. 396 

marginal management and damage cost data, as evidenced by their respective 𝑅2 values. We397 

estimated that with a management delay of 55 years, the maximum management expenditure 398 

amounted to $ 0.17 billion, resulting in a significant reduction of the maximum damage cost 399 

from $ 8.34 billion to $ 4.39 billion (∼ 47% decrease), and a total maximum cost of $ 4.56 400 

billion.  401 

402 

Figure 5.  Best-fitting model for management costs 𝑀 and realized damage costs 𝐷∗ using403 

Eqs. (2)-(5) against the Aedes spp. cost data. Management was introduced in the year 1976 404 

corresponding to a delay time of 𝜏 = 55. The non-linear regression curve fitting tool 405 

lsqcurvefit from Matlab was used to estimate the best-fit model parameters for 406 

management: 𝑟𝑀 = 0.29, 𝐾𝑀 = 2378, 𝐴𝑀 = 0.77, with efficiency parameters 𝐸0 =407 1.44, 𝐸1 = 23.09, 𝛼 = 0.65 and for realized damage cost parameters: 𝑟 = 0.33, 𝐾 =408  100000, 𝐴 = 0.79. Initial costs 𝑀0 = 0.11, 𝐷0 = 0.26 were then computed from 𝐴𝑀 and 𝐴 409 

respectively, using Eqs. (2)-(3). See Appendix A2 for a description of parameters, their units 410 

and their estimated values to a higher degree of accuracy. Note that the parameters that relate 411 

to the magnitude of costs are in US$ millions, whereas the figure is re-scaled to $ billions for 412 

illustrative purposes. Given these parameter estimations, the potential damage costs 𝐷 in the 413 

absence of management and the total cost 𝑇 were determined from Eqs. (2) and (6). The 414 

coefficient of determination (𝑅2) and the root mean squared error (RMSE) were used to415 

quantify the strength of the model fitting, with 𝑅2 = 0.57, 𝑅𝑀𝑆𝐸 = $ 48.35 for the fitting of416 

management costs and 𝑅2 = 0.91, 𝑅𝑀𝑆𝐸 = $ 453.83 for realized damage costs.417 
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418 

Fig. 6 shows the cumulative cost of inaction 𝛷 which determines the additional 419 

expenditure due to delayed management relative to the scenario where management is 420 

introduced in the year 1969 (𝜏∗ = 48). We found that 𝛷 remained very low for a short time421 

period, with a subsequent rapid increase, and eventually approached saturation i.e., the 422 

estimated no action cost 𝛷𝑠𝑎𝑡 = $ 32.31 billion. The base year of 1969 was chosen since it is 423 

the first instance where the reported damage cost (of value $ 0.12 million) exceeds the 424 

estimated initial management cost 𝑀0 = $ 0.11 million. Moreover, the sum of all reported 425 

costs over the time period 𝑡 < 48 is $ 0.42 million, amounting to < 0.01% of 𝛷𝑠𝑎𝑡, and thus 426 

provides a negligible contribution. To put the magnitude of these estimated costs into 427 

perspective, note that the long-term cumulative cost of damages in the absence of 428 

management amounts to approx. 𝐾 = $ 100 billion.  429 

We identified four markers of relevance in Fig. 6. First, the blue marker represents a 430 

cumulative cost value $ 0.32 billion when management is introduced at 𝜏 = 52.63 years after 431 

the first recorded damage cost, which is 1% of the expenditure in the scenario where no 432 

action is ever taken, i.e., 𝛷𝑠𝑎𝑡. Second, the red marker (runaway point) occurs at delay time 433 𝜏 = 59.67 years, where 𝛷 amounts to $ 16.16 billion, which is approx. 50% of 𝛷𝑠𝑎𝑡. 434 

Management intervention prior to this point would lead to < 50% of the amount of losses 435 

incurred in comparison to a no action scenario. Third, the magenta marker (critical point 436 

where the marginal cost of inaction peaks) occurs at 𝜏 = 77.32 years with 𝛷 =437 $ 30.98 billion (approx. 96% of 𝛷𝑠𝑎𝑡), indicative of severely delayed management with little 438 

prospect of cost savings. Last, the green marker represents the currently observed scenario 439 

within InvaCost considering Aedes spp. (𝜏 = 55 years), with estimated total losses 440 

amounting to $ 4.57 billion; a considerable amount that could have been saved with earlier 441 

management intervention.  442 
443 

444 
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Figure 6. The cumulative cost of inaction 𝛷 for Aedes spp. computed retrospectively (in the 445 

long-term 𝑡 → ∞) for different management delay times 𝜏, relative to 𝜏∗ = 48, using Eq. (8).446 

Coloured markers represent points that differentiate among scenarios of the severity of 447 

delayed management. In the long-term, the additional expenditure in the absence of 448 

management is estimated at 𝛷𝑠𝑎𝑡 = $ 32.31 billion. All estimated parameter values are 449 

mentioned in the caption of Fig. 5, see also Appendix A2.  450 

In general, any management intervention during the period between the blue and red 451 

markers can be considered ‘delayed’, with cost impacts of delay exacerbated closer to the 452 

latter marker. However, this allows us to identify a short time window of opportunity from 453 

52.63 to 59.67 years (∼7 years) for potential large savings, precisely during a phase where 454 𝛷 increases rapidly. Note that the observed scenario for Aedes spp. lies within this timeframe, 455 

suggesting delayed management, albeit with losses only amounting to approximately 14% of 456 

the potential no action cost, 𝛷𝑠𝑎𝑡 . Beyond the runaway point, management can be considered 457 

‘severely delayed’ with losses approaching 𝛷𝑠𝑎𝑡. 458 

459 

4 Discussion 460 

Our work highlights that failing to begin managing an invasion can quickly lead to immense 461 

economic costs. The cost of inaction increases rapidly prior to a certain threshold time, after 462 

which the rate of accumulation slows down, and eventually saturates at a high level (see Fig. 463 

6). This means not only that IAS costs can quickly increase to unbearable amounts, but also 464 

that they may initially be deceitfully slow to accrue, therefore not signalling to policy makers 465 

the urgency to invest in management. Indeed, during this initial time period, the willingness 466 

to allocate funds to IAS management may be low due to the lack of perceived risk or impact 467 

detection (Finnoff et al., 2007). A lack of willingness to invest may also represent a potential 468 

moral problem, whereby invader impacts are seemingly incurred by other regions, sectors, or 469 

generations than those that take management action—paralleling challenges in moral 470 

responsibilities for climate change (Gardiner, 2006). However, as we have shown here, these 471 

costs can inflate suddenly and potentially overwhelm major sectors of the economy.  472 

Our findings are generally in line with the resource economics literature and 473 

associated bioeconomic analyses that suggest a higher value for today’s benefits compared to 474 

future benefits. This is because today’s benefits can be invested and yield more value through 475 

time, which confers a higher advantage compared to delaying those benefits. This in turn 476 

implies that the effect of control actions applied earlier are worth more, which also explains 477 

why prevention and early action are also prominent in bioeconomic analyses for invasions 478 

(Hui and Richardson, 2017; see also McDermott et al., 2013; Polasky 2020 for more 479 

examples of how early identification and removal bears the strongest benefits). These 480 

findings tie into efforts to combat policy makers’ hesitancy to commit to more proactive 481 

management spending, given limited conservation budgets that could alternatively be used 482 

only for reactive management actions. Bioeconomic frameworks using real options theory 483 

have shown that, particularly in cases of fast-spreading species where diffusion is too fast and 484 

unpredictable, immediate action is the only option (Sims et al., 2016). Controlling such 485 
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species immediately has large potential returns and therefore incentivizes larger investments, 486 

even if the spread’s volatility increases the risk in these investments (Sims et al., 2016).  487 

Since our theoretical cost model predicts the damage cost and total expenditure from 488 

model fitting against realized damage and management cost data (see Fig. 5), it provides a 489 

simpler yet conceptual description of the resulting cost dynamics, in contrast to more 490 

complex models that are reliant on time series of IAS abundances (Leung et al., 2002). Also, 491 

our approach goes beyond prescriptive frameworks for optimal control, as it allows for a 492 

direct estimation of management efficiency from empirical cost data. Further, our approach is 493 

focused at the global rather than regional or site-specific scales. As such, we show that when 494 

management is effective (𝐸 > 1) and less costly than damage: (i) initiating management at 495 

any time can reduce the total cost of a given IAS over a short time period; (ii) greater 496 

reductions in the total expenditure are achieved with increasing management efficiency (see 497 

Table 1, Fig. 3); and (iii) there are critical time windows that distinguish among timely, 498 

delayed and severely delayed management, corresponding to different phases of the invasion 499 

curve, where IAS eradication transitions from feasible to difficult and to unlikely, 500 

respectively (see Fig. 1). Importantly, (iv) we compute the time taken to reach the runaway 501 

point, where initiation of management action prior can lead to a considerable amount of cost 502 

savings (< 50% of the potential cost in the absence of management), with more cost savings 503 

given earlier management (see Fig. 6). Also, note that the model also allows not only for an 504 

estimation of the cost of inaction but also of the reverse scenario, i.e., estimating the cost 505 

savings of timely management based on counterfactual analyses of hypothetical delays.  506 

In the Aedes case study, the cost of inaction grew relatively slowly over an initial 53 507 

year period, but then accumulated rapidly within a critical ~ 7 year period by at least two 508 

orders of magnitude. This resulted from a sudden rapid increase in the cost due to damages, 509 

combined with a delayed suboptimal management strategy (see Fig. 6). In practice, this 510 

window of opportunity may be difficult to identify due to context-dependencies that influence 511 

invasion debt as well as the magnitude of impact and differences in detection timing among 512 

regions. These challenges indicate that acting sooner, even when costs accrue slowly, is the 513 

optimal risk averse strategy (see also Leung et al. 2002). Given these uncertainties, we 514 

suggest that policy makers should prioritise investments at the earliest possible invasion stage 515 

to improve efficiency and reduce future invasion costs, while also maintaining effort to 516 

curtail the invasion and increasing awareness of IAS impacts throughout the duration of the 517 

invasion. Additionally, the fact that the cost of inaction saturates in the long-term should not 518 

deter management effort at late invasion stages, whereby control can still be effective and 519 

help mitigate ongoing and emerging ecological and socio-economic impacts through, for 520 

example, novel arbovirus emergence in our Aedes model taxon (Barrera et al., 2019). Indeed, 521 

despite management being delayed by 55 years and incurring an inaction cost of $ 4.57 522 

billion, our model estimates that an additional cost of $ 27.74 billion could have been 523 

incurred in the absence of any Aedes management whatsoever. As a cautionary note, given 524 

that we only presented a single case study for Aedes spp., the model should be treated as a 525 

conceptual one, and our aim is not to be prescriptive about the costs of inaction. Rather, this 526 

should be seen as an illustrative example, where cost estimates are subject to improvements 527 
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upon availability of more refined data, and further development of the underlying model with 528 

added complexity to better reflect reality. 529 

In the cost model, damage and management costs are parametrized by their initial 530 

costs (𝐷0, 𝑀0), intrinsic cost growth rates (𝑟, 𝑟𝑀) and cost carrying capacities (𝐾, 𝐾𝑀), as per531 

Appendix A2. Although we demonstrated an example with Aedes, the model can be applied 532 

to other genera, and parameters can thus be estimated given the availability of sufficient 533 

empirical cost data for these taxa. We expect these parameters to be inherently affected by, 534 

for example, the taxonomic group, size of the invasible area, introduction pathways and traits 535 

of IAS. In light of this, we predict that large-bodied IAS such as raccoons and squirrels 536 

(Procyon, Callosciurus), as well as other rapidly spreading invaders, such as ballast 537 

water/hull contaminants (e.g., mollusks and copepods; Lin et al., 2020) may have high cost 538 

growth rates 𝑟. In contrast, genera similar to Aedes that may not necessarily disperse rapidly 539 

at continental scales, but have potential for triggering significant costs, could exhibit high 540 

cost carrying capacities 𝐾 in spite of lower cost growth rates. IAS with both a large capacity 541 

for damage and a fast growth in costs would have high r and K values. These patterns would 542 

likely be similar for the fall armyworm (Spodoptera frugiperda), which has spread rapidly 543 

throughout Africa and Asia with high economic impacts on agriculture (Abrahams et al., 544 

2017). Other species we suspect will show this pattern are the Asian hornet Vespa velutina 545 

and the lionfish Pterois volitans, as they are among the fastest spreading IAS in terrestrial and 546 

marine realms, respectively, and are also known to have very high management and/or 547 

damage impacts (Barbet-Massin et al., 2020; Diagne et al., 2020a).  548 

While our base model assumption is that cumulative costs follow a logistic curve 549 

(sigmoidal type), from which we derive that marginal costs are logistically distributed (bell-550 

shaped), we acknowledge that many IAS may not have any reported economic costs, let alone 551 

costs that conform to a logistic description. IAS impacts are often hard to quantify and 552 

monetize (Charles & Dukes, 2007), with many economic losses therefore pervasively 553 

unreported due to a suite of biases or limited capacity to capture them (Bellard & Jeschke, 554 

2016). The cost data selected for this analysis were chosen based on the availability of 555 

consistent cost reporting through time by multiple independent sources. While this resulted in 556 

the selection of the relatively data-rich genus Aedes spp., we highlight that other genera (or 557 

species) lacked cost information at a sufficient temporal resolution.  558 

The implications of data limitations are as follows: firstly, given the general tendency 559 

to research and record species with higher costs for both management and damage, the cost 560 

data available to us through InvaCost are likely skewed to highly damaging species and 561 

species requiring costly management. Further, due to lags in IAS detection along with their 562 

impacts (Essl et al., 2011), the actual occurrence of impacts is likely earlier on in the 563 

timelines, compared to the ones we report in this study, and varies across species and invaded 564 

countries (Seebens et al., 2020). Furthermore, our cost saturation estimations could reflect 565 

delays in more contemporary cost reporting, and do not preclude the possibility of future 566 

spikes in cost due to range expansions of these IAS (Louppe et al., 2019), new types of 567 

impacts (e.g., virus emergence) or advances in cost quantification methods, and should 568 

therefore be interpreted with caution. Secondly, as our data pooled multiple Aedes spp. 569 
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(although primarily Aedes aegypti and Aedes albopictus), we did not account for differential 570 

environmental tolerances and life histories among congenerics that could influence 571 

invasiveness in different regions (Juliano and Lounibos, 2005; Medlock et al., 2012, 572 

Appendix A3). For example, A. albopictus is better-adapted to temperate regions due to the 573 

production of cold-resistant eggs, with temperate climates reported to preclude A. aegypti 574 

invasion success (Medlock et al., 2012). Finally, the costs incurred are subject to country-575 

level differences considering, for example, the importance of certain industries (e.g., see 576 

estimated impacts to agriculture across different countries in Paini et al., 2016, see map in 577 

Appendix A3), the different research capacity, effort and funding landscapes, the suitability 578 

of habitat for each IAS (Parker 1999), and other socioeconomic or environmental factors that 579 

differ across countries.  580 

  We note that given the potential for Aedes to vector arboviruses at relatively low 581 

population densities (Barrera et al., 2019), management of this genus may have been 582 

perceived to be necessary by decision makers even at very early invasion stages, which is 583 

currently unlikely to be the case for most other IAS. As shown for Aedes, one of the most 584 

intensively managed IAS with immediate impacts, the investments in management made over 585 

the course of more than five decades succeeded in reducing inaction costs in the long-term by 586 

86%. If management had occurred approximately seven years prior, larger savings ($ 4.57 587 

billion) would have been made for this taxon. It is also worth noting that since InvaCost data 588 

are well-known to be prone to underestimation (Diagne et al. 2021), this value is likely a 589 

severe underestimation of the true cost savings. The present study estimated the historical 590 

trend in Aedes management efficiency, however, efficiency can increase or decrease over 591 

time due to a range of anthropogenic or biological factors. For Aedes and other invaders, our 592 

observed increase in efficiency may have been due to changes in policy, increased 593 

recognition, technology/skill improvement, or public participation in mitigation strategies 594 

(Allen et al., 2021). However, management of other genera or future Aedes spp. management 595 

may experience the opposite trend due to reduced public participation, biotic facilitation, 596 

alternative stable states or phenomena such as emerging resistance to control approaches 597 

(e.g., insecticide resistance) (Fung et al., 2011; Moyes et al., 2017; Agha et al., 2021). Future 598 

research should address knowledge gaps and focus on further empirical validation, where the 599 

suitability of this model is tested across multiple taxa, habitats, and costs from different 600 

sectors of the economy—including situations where management was immediate but could 601 

have been costlier if delayed. This calls for more effort into estimating and reporting costs in 602 

a standardized way (Diagne et al., 2021).  603 

It is also worth noting that while our analysis was done only on Aedes spp, it is likely 604 

that in many cases, biosecurity measures and other proactive approaches can be rendered 605 

even more cost effective when several species are managed simultaneously. For instance, 606 

airport quarantine and interception services deal with very large lists of potential invaders 607 

such as insect species, with only marginal costs for each additional species (Lougheed et al., 608 

2007). Aquatic biosecurity measures such as Check Clean Dry campaigns and ballast water 609 

treatment systems similarly target a range of taxa indiscriminately (e.g., plants, invertebrates, 610 

and vertebrates; Anderson et al., 2015; Shannon et al., 2018; Coughlan et al., 2020; Lin et al., 611 

2020). Transport legislation such as wood-packing material treatment protocol ISPM15 can 612 
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also help minimize IAS risk at that pathway level (Leung et al., 2014; Turbellin et al., this 613 

issue). In these cases, modest initial biosecurity investments can yield substantial returns in 614 

reduced invasion risk across multiple taxonomic groups. 615 

5 Conclusion 616 

There are many well-documented cases where even simple, conceptual models made 617 

a direct and significant effect on ecosystem management, in particular assisting in an efficient 618 

and cost-saving strategy (e.g., DeAngelis et al., 2021). In studies on biological invasion, 619 

mathematical models have been used efficiently for a few decades aiming to identify 620 

different invasion scenarios, to reveal the effect of various factors on invasion success and 621 

thus to facilitate understanding of the phenomenon (Hengeveld, 1989; Shigesada and 622 

Kawasaki, 1997; Roemer et al., 2002; Courchamp et al., 2004; Lewis et al., 2016). Economic 623 

issues such as losses and associated costs have been a focus of modelling studies too (e.g., 624 

see Marten and Moore, 2011), although this line of research, in our opinion, remains under-625 

developed.  626 

The present study, for the first time, presents a conceptual model which monetizes the 627 

cost of inaction surrounding IAS management. While the cost of inaction is often implicitly 628 

assumed to be negligible, we show that it can take on a very high value and can grow quickly 629 

from small values at difficult-to-predict threshold times. We hope that this conceptual 630 

demonstration can help motivate the collection of necessary cost data that allows for more 631 

comprehensive empirical estimates of the cost of inaction. Further, we have confirmed, using 632 

our relatively data-rich Aedes spp. case study, that more rapid management interventions can 633 

greatly reduce inaction costs — at the multi-billion $ scale over a few decades for this genus 634 

alone. Moreover, our cautionary identification of a runaway point should motivate timely 635 

management prior to the closing of IAS windows of opportunity for efficient and effective 636 

control; yet it should also spur immediate management as soon as possible after IAS 637 

detection, or ideally, pre-invasion. We expect our results to help resource managers justify 638 

early action, even if costly, and accordingly decision makers to fund it, in order to 639 

simultaneously increase efficiency and efficacy while decreasing overall costs.  640 

Appendix A1: Cost terminology 641 

Vocabulary relating to invasion costs used throughout the manuscript. 642 

Cost type Definition 

Total Cost The sum of management and damage (cumulative or 

instantaneous) costs 

Cumulative cost 

The sum of (management, damage, or total) costs 

incurred by an IAS since its first reported cost of that 

type.
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Marginal cost The change in the cumulative (management, damage, 

or total) cost of a given IAS between two timesteps 

(which we model as being equivalent to the 

instantaneous cost). 

Management efficiency The amount of dollars in reduced damages caused by 

one dollar spent on management 

Cost of inaction The difference in total cost of an invasion at a given 

point in time compared to the total cost in a scenario 

where management began immediately 

643 

Appendix A2: Definitions of parameters and their precise values as used in section 3.3 644 

The parameter values reported in the manuscript for Aedes spp. are rounded for brevity (see 645 

section 3.3 and the caption of Fig. 5), whereas the cost of inaction calculation (see Fig. 6) 646 

used estimated best-fit parameters to a higher degree of accuracy. We have also included the 647 

definitions of each parameter here for reference.648 

Management cost parameters 

Intrinsic growth rate for cumulative management costs (year -1) 

Carrying capacity for cumulative management costs (US$ 

millions) 

Management cost shape 

Initial marginal management cost (US$ millions) 

𝑟𝑀𝐾𝑀𝐴𝑀𝑀0

0.290629657870594 

2377.72313470411 

0.769924032752697 

0.111845162835995 

Damage cost parameters 

Intrinsic growth rate for cumulative damage costs (year-1) 

Carrying capacity for cumulative damage costs (US$ millions) 

Damage cost shape 

Initial marginal damage cost (US$ millions) 

𝑟 𝐾 𝐴 𝐷0
0.33366697569415 

99999.990003501 

0.790808474326249 

0.263864585318034 

Management efficiency parameters 

Initial management efficiency  

Long term management efficiency (for 𝛼 > 1)
Change in management efficiency (year -1) 

𝐸0𝐸1𝛼 

1.43984633504595 

23.0893065550804 

0.647071384104067 

Time of management introduction (years) for the observed 

scenario for Aedes spp.   
𝜏 55 (corresponding to 

the year 1976) 
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Statistical metrics 

Variation explained, management model 

Root mean squared error, management model (US$ millions) 

Variation explained, damage model 

Root mean squared error, damage model (US$ millions) 

𝑅2𝑅𝑀𝑆𝐸𝑅2𝑅𝑀𝑆𝐸 

0.565681856677696 

48.3549208967877 

0.90651033148684 

453.831424095273 

Appendix A3: Global map of the first economic impacts over time for Aedes spp 

a. Damage impacts plotted according to the first record in InvaCost for each country,

where applicable.

b. Management impacts plotted according to the first record in InvaCost for each

country, where applicable.
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