
An automated approach for binary classi�cation on
imbalanced data
Pedro Marques Vieira ( pedro.pmv22@gmail.com)

Polytechnic Institute of Porto
Fátima Rodrigues

Polytechnic Institute of Porto

Research Article

Keywords: Imbalanced Classi�cation, Resampling, Meta-learning, Automated Machine Learning

Posted Date: June 6th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3015970/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Knowledge and Information Systems on
January 12th, 2024. See the published version at https://doi.org/10.1007/s10115-023-02046-7.

https://doi.org/10.21203/rs.3.rs-3015970/v1
mailto:pedro.pmv22@gmail.com
https://doi.org/10.21203/rs.3.rs-3015970/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10115-023-02046-7

Springer Nature 2021 LATEX template

An automated approach for binary

classification on imbalanced data

Pedro Marques Vieira1* and Fátima Rodrigues1,2*

1ISEP, Polytechnic Institute of Porto, Rua Dr. António
Bernardino de Almeida, Porto, 4249-015, Porto, Portugal.

2ISRC, Interdisciplinary Studies Research Center.

*Corresponding author(s). E-mail(s): pedro.pmv22@gmail.com;
mfc@isep.ipp.pt;

Abstract

Imbalanced data is present in various business areas and must be dealt

with the appropriate resampling techniques and classification algorithms.

However, there is a magnitude of multiple combinations of resampling

and learning methods to handle imbalanced data that require specialised

knowledge to be used correctly. In this paper, several approaches, rang-

ing from more accessible and more advanced in the domains of data

resampling and cost-sensitive techniques, will be considered to handle

imbalanced data. The application developed delivers recommendations

of the most suited combinations of techniques for a specific dataset,

by extracting and comparing dataset meta-features values recorded in

a knowledge base. It facilitates effortless classification and automates

part of the machine learning pipeline with comparable or better results

to a state-of-the-art solution and with a much smaller execution time.

Keywords: Imbalanced Classification, Resampling, Meta-learning,
Automated Machine Learning

1 Introduction

Several current real-world datasets are imbalanced by nature, in that they have
one or some classes underrepresented compared to the other class or classes.

1

Springer Nature 2021 LATEX template

2 Article title

The class imbalance problem arises in multiple areas, including telecommunica-
tion, bioinformatics, fraud detection, and medical diagnosis. The best approach
to handle imbalanced data highly depends on the nature of the data. The
methods and combination of methods proposed are abundant in various con-
ceivable outcomes, and most times they require specialised knowledge to be
used correctly.

As such, this project focuses on an open-ended current problem associated
with machine learning tasks, being a new proposal to automate imbalanced
classification, applied to different case study solutions.

Classification algorithms for imbalance scenarios applied without proper
data resampling or a cost-sensitive approach, for instance, tend to perform
better for well-represented classes and worse for underrepresented classes. In
these cases, the underrepresented class tends to be the class with more interest
to predict. Multiple strategies have been proposed to address class imbalance
problems. However, there is no general guidance on when to use each technique.

In addition, combining different data resampling techniques, classification
algorithms and multiple hyperparameter optimisation makes the possibilities
to evaluate the desired solution endless. Thus, a solution to automate and
facilitate these imbalanced classification tasks is needed, hence, to get better
and faster results.

This project aims to develop a system to automatically prepare an imbal-
anced dataset to be used by a classifier. To accomplish that, this project
includes a review of the state of the art on related solutions, an implementation
of the most promising balance techniques and testing different combinations of
them in several public datasets, using different classification algorithms. The
best combination of the balance technique, with the best-performing classifi-
cation algorithm and the appropriate meta-features values of the dataset, are
recorded in a knowledge base to be recommended for new datasets.

The remainder of this paper is organised as follows. Section 2 reviews
and discusses existing solutions for imbalanced classification. The developed
solution that includes a learning module and a recommendation module is
described in Section 3. In the learning module, it is presented the criteria for
datasets selection to be used in the development of the solution, the meta-
features extracted from the selected datasets, the resampling and classification
algorithms used, and it is also explained the process of selection of the best
combinations of resampling and classification algorithms to be considered in
the learning module. The recommendation module describes the selection pro-
cess of the best resampling and classification recommendations for a specific
dataset. Section 4 presents an internal and external evaluation of the rec-
ommendation module. The internal evaluation compares the recommendation
module with the best resampling and classification algorithms obtained with
the learning module. The external evaluation compares the recommendation
module results with a TPOT pipeline. The main conclusions and prospects of
future work are disclosed in the final section.

Springer Nature 2021 LATEX template

Article title 3

2 State of the Art

There are several applications and services, capable of providing tools that
can handle imbalanced classification. For instance, Scikit-Learn [1] is a general
purpose machine learning Python library, which provides data preparation,
machine learning algorithms, and model evaluation schemes and although not
designed around imbalanced classification, it provides some useful tools for
handling imbalanced datasets also. One Python library that directly addresses
imbalanced classification is imbalanced-learn [2] which is related to Scikit-Learn
and implements most of the necessary techniques. For R programming lan-
guage, there exists the ROSE [3] and imbalanced [4] libraries, among various
others, also specialised in imbalanced classification.

Numerous libraries automatically permit the creation of a predictive system
with few steps capable of doing classification, even for imbalanced scenarios,
with various results. For open-source software libraries ready to use when cod-
ing, the first concern to note is that most of them focus only on some parts
of the automated machine learning (autoML) pipeline [5]. For instance, Auto-
sklearn [6] is built on top of Scikit-Learn and formulated as a CASH problem
capable of automatically trying different classifiers and hyperparameters, how-
ever, it only searches for traditional machine learning models [7]. Auto-sklearn
does an automatic ensemble of the different models searched and applies a
post-processing method, instead of discarding all the models searched [7]. It
can do parallelisation on a single computer or in a cluster on a limited time
budget [8].

Additionally, AutoKeras [9] based on Keras [10], supports multi-modal and
multitask by searching for deep learning models [5]. Neural Network Intelli-

gence (NNI) [11] developed by Microsoft, also integrates Scikit-Learn features
that can automate feature engineering, hyperparameter optimisation, and
Neural Architecture Search, becoming a powerful and lightweight toolkit for
autoML. TPOT (Tree-based Pipeline Optimisation Tool) is an autoML tool
specifically designed to efficiently construct optimal pipelines through genetic
programming. TPOT is an open-source library and makes use of Scikit-learn
components for data transformation, feature decomposition, feature selection
and model selection [12].

In addition, there is also Hyperopt-sklearn [13] which supports various
classifiers of Scikit-Learn and provides a fixed pipeline structure, to one classi-
fication algorithm to each processor, by adding a configuration space definition
[8]. Finally, there is also H2O AutoML [14] that, instead of being built on
Python, is programmed in Java, thus not using the Scikit-Learn library. It is
able, without pre-processing, to select and tune each classification algorithm
by a fixed order and create a final ensemble of them like Auto-sklearn [8]. Also,
many big tech companies like Microsoft, Amazon and Google provide autoML
services, such as Microsoft Azure Automated Machine Learning [15], Amazon

Web Services (AWS) SageMaker Autopilot [16] and Google Cloud Platform

(GCP) AutoML [17], correspondingly. All these services provide autoML tools
by interacting on the website and without needing to code the implementation.

Springer Nature 2021 LATEX template

4 Article title

For R programming language, there is the proposed Automated Imbalanced

Classification (ATOMIC) method implemented in the autoresampling package
which applies autoML specifically for imbalanced classification becoming to
their knowledge, the first approach that specialises in automating imbalanced
classification [18]. It uses meta-learning therefore computationally complex to
instantiate and on 101 imbalanced datasets tested, it got a predictive per-
formance comparable to or better than similar state-of-the-art solutions. It
is mainly for binary classification and only builds models using the Random

Forest learning algorithm.
When analysing all these libraries/packages/frameworks, at this point there

are not any advanced data pre-processing methods in the context of autoML,
most methods combine predefined operators with features naively, and there
are few flexible approaches to the autoML pipeline [8]. In addition, as most
automate the creation of the pipeline, it is difficult to comprehend how a
specific pipeline was created and introduce some hyperparameters to be used,
it prevents the automation that autoML should automate in the first place. To
make autoML truly available to inexperienced users in this domain, integration
and deployment measures are necessary [8]. Moreover, there is sometimes a
lack of scientific proof of why certain outcomes are achieved, and numerous
papers do not cover all aspects of the implementation in detail, becoming
complicated to reproduce the same outcomes [5].

Finally, when creating an autoML solution and addressing multiple
datasets of different domains, it is also possible to remember previously learnt
knowledge, however, the performance of the model on the previous datasets is
substantially reduced [5]. For instance, there is the learning without forgetting

method, which applies incremental learning and trains a model using only new
data while preserving its original capabilities [19]. Then, in another work con-
ducted, it is possible to only use a small proportion of old data for pretraining,
and then escalate the proportion of a new class of data used to train the model
[20].

Therefore, the contribution of this project is to implement a new easy-
to-use application that automates the classification of imbalanced datasets
even for less experienced users, mainly because that are few applications that
specialise in imbalanced datasets.

3 Developed solution

The application was originally developed for a Thesis of master’s degree [21]. It
is built in Python and available, in a GitHub repository [22], as free and open-
source software, licensed as GPL 3.0 [23]. The built application implements
two distinct modules, but they are interconnected, the learning module, which
builds a knowledge base to be used by the second one, the recommendation
module.

In the first module, the goal is to combine several resampling and classi-
fication algorithms, select the best combination of both to handle a dataset

Springer Nature 2021 LATEX template

Article title 5

and save the dataset meta-features, the evaluation metrics, and the execution
time of the best combination into the knowledge base.

In the second module, with the assistance of the previous knowledge
base constructed, the application can recommend the best combination of
resampling and classification algorithms to handle a new imbalanced dataset
imported. This recommendation is made by finding in the knowledge base the
most similar dataset in terms of meta-features.

To better understand this application, it was envisioned the architecture
of the solution expressed as a component diagram in Figure 1.

Fig. 1 Component Diagram.

Here, a dataset file should be loaded in the application using the data
retrieval component that is responsible for reading the dataset file and that
is called by the machine learning controller component. Then, the machine
learning controller component communicates with the learning component, at
the early stages of the application, and with the recommendation component,
at the late stages of the application. The learning controller is composed of the
handling imbalanced classification (HIC), classifier and optimiser components.

This first component applies different techniques to handle imbalanced
classification, primarily in the pre-processing stage of the machine learning
pipeline. The classifier component should select the most appropriate classifi-
cation algorithm for the loaded dataset file, and then the optimiser component
improves the selected classifier by optimising its parameters. When the model
is prepared, the machine learning controller component uses the data manager
component that is responsible for writing to the knowledge base.

3.1 Learning Module

To populate the knowledge base, several datasets were chosen from different
business domains that have imbalanced data. The aim is to always choose
publicly available datasets without needing to do specific data cleaning tasks
before using them. In addition, it was also ensured to have a different ratio of
proportions of imbalanced data across the diverse datasets.

Springer Nature 2021 LATEX template

6 Article title

In a summarised manner, first, it is read the imported dataset by file or by
OpenML [24] dataset ID, then, it is extracted the meta-features information
with the help of the Meta-Feature Extractor (MFE) library [25], next it is
combined several resampling techniques and classification algorithms to train,
test and validate, and then, the obtained results from the best combination
of resampling and classification algorithm is written to the knowledge base of
the application.

3.1.1 Datasets

Initially, it was analysed several candidate datasets from websites like UCI

Machine Learning Repository [26], KEEL – Knowledge Extraction based on

Evolutionary Learning [27], OpenML, Kaggle [28] and Google Dataset Search

[29]. Then, it was selected to work with KEEL website because it listed the
diverse datasets by the imbalanced ratio in an organised manner with key
information. Afterwards, it was also selected to work with OpenML since it
provides plenty of datasets to choose from, and it has an easy-to-use, and well-
documented Application Programming Interface (API) [30] that simplified the
different related datasets tasks.

At the time of this project development, the OpenML API provided 125
datasets when filtering the datasets that have an active status, for binary
classification problems, with the number of instances (rows) between 200 and
10000, the number of features (columns) less than 500 and with an imbalance
ratio above 2. Of these 125 datasets, some datasets were repeated since they
have different versions of the same dataset, in this case it was selected the
most recent one, discarding the older ones.

Other datasets were not possible to use because it was not conceivable to
provide a decent enough evaluation metrics score. They needed major indi-
vidual data pre-processing tasks that were not the point of this application to
make. It was also selected datasets from the KEEL website, getting a total of
65 datasets to be used. For these 65 datasets, it was found that the imbalanced
ratio ranges from 1.820 (minimum) to 85.880 (maximum), averaging 14.501
with a standard deviation of 19.301.

3.1.2 Reading and extracting knowledge from a dataset

To have a robust knowledge base to be used in the recommendation mod-
ule, it was achieved 65 imported, executed, and documented datasets in the
knowledge base. Most of these datasets were obtained with the help of the
OpenML API and some by the KEEL website, as previously described. It
was assumed in all these imbalanced datasets that the class with less repre-
sentation is the class with more interest to predict, as it regularly occurs in
imbalanced binary classification. Last, in some datasets, it is also needed to
properly encode the existing categorical columns to integers/indicator values
because some classification algorithms require it.

Regarding the MFE library to extract the meta-feature information from
the datasets, it used the following groups of meta-features: complexity, concept,

Springer Nature 2021 LATEX template

Article title 7

general, itemset, landmarking, model-based and statistical. Additionally, the
summary function used was the average/mean, standard deviation, kurtosis,
and skewness. It is important to note that some meta-features can have a
distinct value, for example, the “c2” meta-feature of the group “complexity”
which is the value of the imbalance ratio with no summary function values.
Other ones are expressed with all (or some) of the summary functions defined,
for example, the “cov” meta-feature of the group “statistical” which is the
absolute value of the covariance of distinct dataset attribute pairs. All these
meta-features used resulted in 257 values.

3.1.3 Sampling and classification algorithms used

This process started by executing 19 resampling techniques and 1 without any
pre-processing technique combined with 11 classification algorithms, resulting
in 220 different combinations. The 19 resampling techniques used, as of the
time of writing, are all available in the Imbalanced Learn library [31].

Concerning resampling techniques, we considered 11 under-
sampling techniques: ClusterCentroids, CondensedNearestNeighbour,
EditedNearestNeighbours, RepeatedEditedNearestNeighbours, AllKNN,
InstanceHardnessThreshold, NearMiss, NeighbourhoodCleaningRule, OneSid-

edSelection, RandomUnderSampler and TomekLinks ; 6 over-sampling
techniques: RandomOverSampler, SMOTE, ADASYN, BorderlineS-

MOTE, KMeansSMOTE, SVMSMOTE ; and 2 combinations of over and
under-sampling techniques: SMOTEENN and SMOTETomek.

The 11 classification algorithms used, available in Scikit-Learn, Light-

GBM [32] and XGBoost [33] libraries, are: LogisticRegression, GaussianNB,
SVC, KNeighborsClassifier, LGBMClassifier, XGBClassifier, RandomForest-

Classifier, ExtraTreesClassifier, AdaBoostClassifier, BaggingClassifier, Gradi-

entBoostingClassifier.
It was used the default parameters of all resampling and classification

algorithms, and for all the executions random state equal to 42, to guarantee
reproducibility and n jobs equal to -1 to use all the processors of the machine
during the cross-validation step.

When it was possible to specify that the dataset is binary or the
class weight is ”balanced,” it was appropriately indicated. The former spec-
ifies the learning objective function, and the latter stipulates, in “balanced”
mode, to automatically adjust the class weights inversely proportional to class
frequencies.

It was chosen the RepeatedStratifiedKFold function of the Scikit-Learn

library that repeats a Stratified K-Fold cross-validator several times with dif-
ferent randomisation in each repetition, which assures an improved estimator
performance. Here, it was used 10 folds with ”n splits” repeated 3 times with
“n repeats”, which are common values for this case study.

Regarding the evaluation metrics to evaluate the solution, accuracy and
error rate are not suited for imbalanced scenarios [34]. When the accuracy
reflects the underlying class distribution, the accuracy paradox can occur. To

Springer Nature 2021 LATEX template

8 Article title

rigorously evaluate each of these combinations, it was selected 5 adequate
evaluation metrics to use in imbalanced binary classification, being: Balanced
Accuracy, F1 Score, ROC AUC, Geometric Mean and Cohen Kappa.

3.1.4 Process of Discarding the Worst Performant

Combinations

Testing 220 combinations of resampling techniques and classification algo-
rithms on 65 datasets would be computationally very expensive, so, iteratively,
we discarded some worst-performing combinations of resampling techniques
and classification algorithms.

To do this selection, the 220 combinations of resampling techniques and
classification algorithms were first applied to one dataset randomly chosen,
which permitted to associate of each combination a final score, resulting from
the average of the 5 metrics previously mentioned, and a corresponding rank-
ing position, for example, position 22 from the 220 of total combinations.
Next, two lists were initialised, one concerning the resampling techniques
(ResampTechRankList) and the other with the classification algorithms (Clas-
sifierRankList), both lists ordered from better to worse scores by the ranking
position of resampling technique and classification algorithm, respectively.

Then, when some more datasets were randomly chosen and processed, the
various positions of each combination were analysed by grouping all the differ-
ent rank positions, first by the resampling technique and then by the classifier.
Next, the combinations with the worst scores, with values above the third
quartile (75% to 100%), were discarded for all the processed datasets.

In the first step, after 3 datasets were imported and processed, 5 resam-
pling techniques and 3 classification algorithms were discarded, remaining 120
combinations. The algorithm was iteratively applied to several datasets, ran-
domly chosen in each iteration. After five-time steps, it was discarded a total
of 16 resampling techniques and 8 classification algorithms, with a total of
31 datasets processed. The rest of the datasets imported and processed no
longer caused discarding more combinations because it was not found any
worse performant resampling technique or classifier based on the previous
explanation.

In the end, the remaining combinations were 12 with 4 resampling
techniques and 3 classifiers, being:

• Resampling techniques:

– RandomOverSampler,
– SMOTE,
– SVMSMOTE,
– SMOTETomek.

• Classifiers:

– LGBMClassifier,
– XGBClassifier,

Springer Nature 2021 LATEX template

Article title 9

– GradientBoostingClassifier.

3.2 Recommendation Module

With this module, the goal is to deliver recommendations for the best combi-
nations of resampling and classification algorithms to be used for a particular
imported dataset.

For this, we started to get the best recommendation by developing a multi-
classification model using the meta-feature values of each dataset as prediction
features and the combination of resampling techniques and classification algo-
rithms as the target. However, because of the limited size of the training set, 65
available datasets (number of instances/rows), each having 257 meta-features
values, with 12 different target combinations, and the complexity of the classi-
fiers, overfitting happened. Therefore, we calculated the best recommendations
following an instance-based learning approach.

For that, it is computed the Frobenius norm (the Euclidean distance of
two vectors) by using the “linalg.norm” function from the NumPy library
[35], which, in this case, is the average of all Euclidean distances (vectors) of
each meta-feature extracted between the current imported dataset and all the
datasets in the knowledge base.

This takes into consideration the previously processed 257 meta-features
in the learning module. The Frobenius norm can be expressed as Equation 1
and the Euclidean distance as Equation 2.

∥A∥F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|ai,j |2 (1)

∥x∥2 =

√

∑

i

(ui − vi)2 (2)

Next, the three smaller average values are selected, since a smaller value
means that those two datasets resemble the most in terms of the features used.
By knowing the corresponding datasets, it is recommended the three combina-
tions of resampling techniques and classification algorithms that are distinct
and were recorded as the better performant ones, in the learning module, for
those datasets.

3.2.1 Recommendation module exemplification

The user, in this module, interacts with the application through a GUI desktop
application with the support of the PySimpleGUI library, as illustrated in
Figure 2.

To better understand how this recommendation works, it will be exempli-
fied with the following simple scenario. First, it is imported the “car-good.dat”
dataset and submitted to the application, when it finalises all the calculations,
it informs, in this example, that (SVMSMOTE, GradientBoostingClassifier),

Springer Nature 2021 LATEX template

10 Article title

Fig. 2 GUI Application for Recommendation Module.

(SMOTE, GradientBoostingClassifier), (SMOTE, XGBClassifier) were the
best three combinations of resampling techniques and classification algorithms
correspondingly, as illustrated in Figure 3.

Fig. 3 GUI recommendations example.

The application also outputs information to the console with more detailed
and technical information, as illustrated in Figure 4.

Fig. 4 GUI recommendations output example.

For this case, those recommendations were given because the “anal-
catdata germangss” [36] (OpenML ID : 1025), “poker-8 vs 6.dat” [37] and
“glass1.dat” [38] datasets had the lowest Euclidean distances, 0.202055,
0.227712 and 0.275151, respectively. Those datasets, in the learning module,
had each of the best combinations of resampling techniques and classifiers.
For instance, the “analcatdata germangss” dataset, in the learning module,

Springer Nature 2021 LATEX template

Article title 11

achieved the best final score (average of all evaluation metrics) with the
(SVMSMOTE, GradientBoostingClassifier) combination.

4 Solution Evaluation

The evaluation of the solution is conducted with two distinct steps, an internal
evaluation, and an external evaluation. The former is made by analysing and
comparing the final recommended results, with the results that were acquired
by the learning module. The latter can be made by analysing and comparing
the final recommended results with other results from publicly available state-
of-the-art papers, or by using autoML solutions. Find relevant state-of-the-art
papers that could address these 15 selected datasets with a machine learning
pipeline that adopted similar resampling techniques and/or classification algo-
rithms, with a similar validation (Stratified K-Fold cross-validation) and with
the same evaluation metrics selected it will be very difficult or even impos-
sible. Consequently, the external evaluation will be done with one autoML
application.

In the internal and external evaluation, the evaluation metrics used to
evaluate the different solutions are the same used in the knowledge base con-
struction: Balanced Accuracy, F1 Score, ROC AUC, Geometric Mean and
Cohen Kappa. Additionally, it was assumed that the minority target class is
the most relevant to predict. Also, it is important to mention that each evalu-
ation task that needs to be executed, is executed with the same conditions of
the same available local computer resources.

Concerning the datasets chosen to evaluate this application internally and
externally, it was randomly selected 15 imbalanced datasets from the 65 used in
the implementation of the application. The imbalanced ratio of these datasets
ranges from 2.307 (minimum) to 67 (maximum), averaging 18.662 with a stan-
dard deviation of 21.998. The datasets, its dimension and their imbalance ratio
are presented in table 1.

4.1 Internal Evaluation

It should be noted that the knowledge base records of the test datasets were
not used in the internal evaluation, as this would not make sense, since the
recommendation module is based on searching for the datasets closest to the
dataset that is intended to find the best techniques to apply. It is important
to mention that the values from the recommendation module are the ones
got when executing the learning module to those 15 datasets, for the first
recommended combination (of the three combinations available). All these
values are expressed in the following Table 2 and Table 3, and the final score

is the average of all metrics.
Consequently, for all 15 datasets, the recommendation module presented a

final score smaller than the learning module and accomplished with all datasets

Springer Nature 2021 LATEX template

12 Article title

Table 1 Datasets selected to test the application.

ID Dataset lines x columns IR

D1 dis (OpenML ID :40713) 3772 x 30 64.034
D2 musk (OpenML ID :1116) 2000 x 100 5.488
D3 mfeat-fourier (OpenML ID :971) 2000 x 77 9.000
D4 Satellite (OpenML ID :40900) 5100 x 37 67.000
D5 arsenic-male-bladder (OpenML ID :947) 5590 x 5 22.292
D6 analcatdata apnea2 (OpenML ID :765) 475 x 4 6.422
D7 regime alimentaire (OpenML ID :42172) 220 x 20 3.744
D8 page-blocks0.dat 5473 x 10 8.789
D9 dgf test (OpenML ID :42883) 3420 x 5 5.053
D10 cpu small (OpenML ID :735) 8190 x 13 2.307
D11 analcatdata birthday (OpenML ID :968) 365 x 4 5.837
D12 optdigits (OpenML ID :980) 5620 x 65 8.825
D13 kr-vs-k-zero vs eight.dat 1460 x 6 53.074
D14 analcatdata lawsuit (OpenML ID :450) 264 x 5 12.895
D15 JapaneseVowels (OpenML ID :976) 9960 x 15 5.172

Table 2 Evaluation metrics values of the learning module.

Dataset
Balanced
Accuracy

F1
Score

ROC
AUC

Geometric
Mean

Cohen
Kappa

Final
Score

D1 0.868 0.990 0.943 0.852 0.523 0.835
D2 0.998 0.996 1.000 0.998 0.996 0.998
D3 0.995 0.999 1.000 0.995 0.993 0.996
D4 0.875 0.752 0.993 0.860 0.749 0.846
D5 0.795 0.636 0.836 0.716 0.625 0.722
D6 0.936 0.833 0.972 0.934 0.804 0.896
D7 0.949 0.899 0.973 0.947 0.869 0.927
D8 0.946 0.883 0.990 0.945 0.870 0.927
D9 0.987 0.971 0.999 0.987 0.966 0.982
D10 0.916 0.947 0.979 0.916 0.827 0.917
D11 0.860 0.932 0.936 0.851 0.619 0.840
D12 0.979 0.997 0.999 0.979 0.971 0.985
D13 0.999 0.970 1.000 0.999 0.969 0.987
D14 0.970 0.916 0.993 0.965 0.909 0.951
D15 0.989 0.995 1.000 0.989 0.972 0.989

an average final score of 0.9087 ± 0.0837 and the learning module accom-
plished 0.9199 ± 0.0798. Thus, the final score of the recommendation module
is smaller, on average, by 1.23% than the one attained by the learning module.

Regarding the evaluation metrics achieved from the recommendation mod-
ule compared to the development module concerning the 15 datasets, the
recommendation module will always return worse or, in the best scenario, equal
to the best one got by the development module. This situation occurs because
there is always one combination that returns the best score of the metrics used
and all the remaining ones are worse, depending on the dataset used.

Concerning the execution time for all 15 datasets, the execution of the
recommendation module was accomplished in 1073 seconds and the learning

Springer Nature 2021 LATEX template

Article title 13

Table 3 Evaluation metrics values of the recommendation module.

Dataset
Balanced
Accuracy

F1
Score

ROC
AUC

Geometric
Mean

Cohen
Kappa

Final
Score

D1 0.787 0.995 0.915 0.747 0.614 0.812
D2 0.998 0.996 1.000 0.998 0.996 0.998
D3 0.990 0.999 0.999 0.990 0.986 0.993
D4 0.882 0.672 0.984 0.870 0.666 0.815
D5 0.795 0.636 0.836 0.716 0.625 0.722
D6 0.936 0.833 0.972 0.934 0.804 0.896
D7 0.940 0.876 0.977 0.938 0.840 0.914
D8 0.950 0.868 0.992 0.949 0.852 0.922
D9 0.987 0.971 0.999 0.987 0.965 0.982
D10 0.914 0.943 0.976 0.913 0.816 0.912
D11 0.800 0.937 0.944 0.778 0.576 0.807
D12 0.982 0.996 0.999 0.982 0.960 0.984
D13 0.980 0.947 0.998 0.977 0.945 0.969
D14 0.966 0.873 0.991 0.962 0.863 0.931
D15 0.978 0.987 0.998 0.978 0.925 0.973

module in 8237 seconds. Thus, for these 15 datasets, the recommendation
module time was approximately 8 times smaller/faster than the learning
module time execution. This was expected because it is usually faster to exe-
cute Euclidean distances on some meta-feature values than executing some
combinations of resampling techniques and classification algorithms.

4.2 External Evaluation

In the external evaluation, the goal was to select one autoML application
that could be executed for these 15 datasets with the same machine learning
pipeline. It was explored all the different applications previously analysed in
the State of the Art section. The first ones to be excluded from this choice were
the autoML services, such as Microsoft Azure Automated Machine Learning,
AWS SageMaker Autopilot and GCP AutoML, because they execute in differ-
ent servers/machines than the one used in the implementation and evaluation
of the developed application, this would cause a compromised comparison.

The autoML tool selected was the TPOT, a tree-based pipeline optimisa-
tion tool because it was noted to be the open-source tool that permits defining
parameters that assure test conditions like those defined by our application. In
this scenario, it was only needed to test higher or smaller values with a “try-
error” approach for two parameters, as explained further. Additionally, it can
export any produced pipeline directly to Python code.

It was executed the Python file to all the 15 test datasets selected which
contain the “TPOTClassifier” function with the following parameters used,
as illustrated in Figure 5.

First, the “generations” and the “population size” parameters are, in this
scenario, the parameters used as a “try-error” approach because specifying
them with higher values usually results in higher scores/metrics values but with

Springer Nature 2021 LATEX template

14 Article title

Fig. 5 TPOTClassifier function used.

also increased times of execution. To have similar values of execution time as
the recommendation module of the implemented application achieves, it was
concluded that the value of “2” to the “generations” and the “population size”
was the most suited to these 15 datasets and the available local computer.

Then, it was used the “max time mins” parameter with “10” which sets
the maximum time that TOPT must optimise the pipeline because it is a
closer value to the maximum time that the learning module achieved in one of
these 15 datasets. Next, the “scoring” parameter was set to “f1” because F1
Score is one of the metrics used, and this parameter only lets set one metric.

Afterwards, the “cv” parameter sets the cross-validation strategy to be
used, and the “n jobs” and “random state” parameters were set the same as
the implementation of the application.

4.2.1 Evaluation Metrics Comparison

Now, the evaluation metrics achieved from the recommendation module will be
compared to the TPOT tool, previously explained, concerning the 15 datasets.
The evaluation metrics values of the recommendation module were already
presented previously in table 3, and the evaluation metric values of the TPOT

tool are presented in Table 4.

Table 4 Evaluation metrics values of the TPOT tool.

Dataset
Balanced
Accuracy

F1
Score

ROC
AUC

Geometric
Mean

Cohen
Kappa

Final
Score

D1 0.721 0.994 0.721 0.666 0.566 0.734
D2 0.998 0.991 0.998 0.998 0.989 0.995
D3 0.941 0.993 0.941 0.939 0.920 0.947
D4 0.875 0.857 0.875 0.866 0.855 0.866
D5 0.800 0.750 0.800 0.775 0.736 0.772
D6 0.528 0.105 0.528 0.236 0.091 0.298
D7 0.972 0.917 0.972 0.972 0.888 0.944
D8 0.906 0.868 0.906 0.902 0.853 0.887
D9 0.981 0.961 0.981 0.981 0.954 0.972
D10 0.890 0.939 0.890 0.888 0.784 0.878
D11 0.532 0.922 0.532 0.297 0.092 0.475
D12 0.958 0.992 0.958 0.957 0.924 0.958
D13 0.688 0.042 0.688 0.662 0.031 0.422
D14 0.742 0.600 0.742 0.701 0.569 0.671
D15 0.976 0.992 0.976 0.976 0.948 0.974

Springer Nature 2021 LATEX template

Article title 15

Consequently, for all 15 datasets, the recommendation module presented a
final score greater than the TPOT tool and accomplished with all datasets an
average final score of 0.9087 ± 0.0837 and the TPOT tool accomplished 0.7862
± 0.2240. Thus, the final score of the recommendation module is greater, on
average, by 15.6% than the one attained by the TPOT tool.

Concerning the execution time for all 15 datasets, the execution of the
recommendation module was accomplished in 1073 seconds and the TPOT

tool in 1381 seconds. Thus, for these 15 datasets, the recommendation module
time was 29% smaller/faster than the TPOT tool time execution.

5 Conclusions

This application was successfully documented, designed, implemented, and
evaluated. It can deliver recommendations of suited combinations of resam-
pling techniques and classification algorithms to imbalanced datasets, therefore
automating this step in the machine learning pipeline, and thus reducing the
human effort placed in building accurate predictive models.

Such tasks are complicated and time-consuming because they require test-
ing a significant number of possible solutions. The proposed application takes
advantage of solutions already tested with previous datasets and provides rec-
ommendations to a newly imported dataset by using its meta-features values,
to be compared with the most similar datasets already present in the knowl-
edge base, thus helping to automate the development of efficient solutions to
imbalance binary classification problems.

Additionally, it was used appropriate evaluation metrics to benchmark
internally each combination, and externally to the overall recommendations
delivered by this application compared to other autoML solution. The latter
was achieved with small success but with smaller execution times, as it was
evaluated to certain conditions established.

As it was analysed in the State of the Art, there are several autoML solu-
tions. However, there are a few that focus specifically on handling imbalanced
classification problems. Consequently, this project has a positive overview of
the work done, especially when considering some limitations and future work
needed, as it is going to be explained in the next section.

5.1 Limitations and Future Work

While the objectives were accomplished, there is still some improvement that
should be adopted for this application. First, it should be evaluated if some
hyperparameter optimisation techniques like grid search, Bayesian optimi-

sation and others can improve the results achieved. Moreover, it can be
experimented to run the application on the GPU instead of the CPU of the
computer with libraries like Apache Spark, Dask, Ray or others, to improve
the execution times.

Springer Nature 2021 LATEX template

16 Article title

Furthermore, it can also be applied a meta-feature selection like principal

component analysis to the extracted meta-features. Additionally, it can be ver-
ified if the results obtained when recommending are improved by adding more
datasets to the knowledge base of the application. Finally, in the future, this
application should be extended to operate also with multi-class classification
problems.

Ethical Approval

Not Applicable.

Availability of supporting data

The data used in this study is openly available from public sources as described
in the text. The code developed is freely available at GitHub [22] and licensed
as GPL 3.0 [23].

Competing interests

The authors have no competing interests to declare.

Funding

Not Applicable.

Authors’ contributions

Pedro Marques Vieira: application implementation, original manuscript prepa-
ration and writing. Fátima Rodrigues: conceptualisation, supervision and
review/editing.

References

[1] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O. Scikit-learn: Machine learning in python. Journal of Machine Learning
Research, 12, pp. 2825–2830, 2011.

[2] G. Lemâıtre, F. Nogueira, and C. K. Aridas, ‘Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning’, J.
Mach. Learn. Res., vol. 18, pp.1–5, Jan. 2017.

[3] N. Lunardon, G. Menardi, and N. T. Maintainer, Package “ROSE” Type
Package Title Random Over-Sampling Examples, 2021.

[4] CRAN - Package imbalance. https://cran.rproject.org/web/packages/
imbalance/index.html accessed Feb. 14, 2022.

https://cran.rproject.org/web/packages/imbalance/index.html
https://cran.rproject.org/web/packages/imbalance/index.html

Springer Nature 2021 LATEX template

Article title 17

[5] He, X., Zhao, K., Chu, X. AutoML: A survey of the state-of-the-art.
Knowledge-Based Systems, 2021, 212, p. 106622. https://doi.org/10.1016/
j.knosys.2020.106622

[6] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, ‘Auto-
Sklearn 2.0: Hands-free AutoML via Meta-Learning’, 2020, http://arxiv.
org/abs/2007.04074 accessed: Feb. 13, 2022.

[7] Yao, Q., Wang, M., Chen, Y., Dai, W., Li, Y. F., Tu, W. W., Yu, Y., Taking
Human out of Learning Applications: A Survey on Automated Machine
Learning, 2018, https://arxiv.org/abs/1810.13306v4

[8] M. A. Zöller and M. F. Huber, Benchmark and Survey of Automated
Machine Learning Frameworks, J. Artif. Intell. Res., vol. 70, pp. 409–472,
2021, https://doi.org/10.1613/jair.1.11854.

[9] AutoKeras https://autokeras.com/ accessed Feb. 13, 2022.

[10] Keras: the Python deep learning API https://keras.io/ accessed Feb. 13,
2022.

[11] Welcome To Neural Network Intelligence — An open source AutoML
toolkit for neural architecture search, model compression and hyper-
parameter tuning (NNI v2.6). https://nni.readthedocs.io/en/stable/
accessed Feb. 13, 2022.

[12] Olson, R.S., Bartley, N., Urbanowicz, R.J. and Moore, J.H., Evaluation
of a tree-based pipeline optimisation tool for automating data science. In
Proceedings of the genetic and evolutionary computation conference pp.
485-492, 2016. https://doi.org/10.1145/2908812.2908918

[13] hyperopt-sklearn by hyperopt https://hyperopt.github.io/
hyperopt-sklearn/ accessed Feb. 13, 2022.

[14] AutoML: Automatic Machine Learning — H2O 3.36.0.2 documenta-
tion https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html accessed
Feb. 13, 2022.

[15] Automated Machine Learning - Microsoft Azure, 2022. https://azure.
microsoft.com/en-us/services/machine-learning/automatedml/#features
accessed Feb. 07, 2022

[16] Amazon SageMaker Autopilot - Amazon SageMaker, 2022 https://aws.
amazon.com/pt/sagemaker/autopilot/ accessed Feb. 07, 2022

[17] Cloud AutoML - Google Cloud, 2022 https://cloud.google.com/automl
accessed Feb. 07, 2022.

https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
http://arxiv.org/abs/2007.04074
http://arxiv.org/abs/2007.04074
https://arxiv.org/abs/1810.13306v4
https://doi.org/10.1613/jair.1.11854
https://autokeras.com/
https://keras.io/
https://nni.readthedocs.io/en/stable/
https://doi.org/10.1145/2908812.2908918
https://hyperopt.github.io/hyperopt-sklearn/
https://hyperopt.github.io/hyperopt-sklearn/
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://azure.microsoft.com/en-us/services/machine-learning/automatedml/#features
https://azure.microsoft.com/en-us/services/machine-learning/automatedml/#features
https://aws.amazon.com/pt/sagemaker/autopilot/
https://aws.amazon.com/pt/sagemaker/autopilot/
https://cloud.google.com/automl

Springer Nature 2021 LATEX template

18 Article title

[18] N. Moniz and V. Cerqueira, Automated imbalanced classification via
meta-learning, Expert Systems with Applications, 178, 115011 https://doi.
org/10.1016/j.eswa.2021.115011

[19] Z. Li, D. Hoiem, Learning without Forgetting, IEEE transactions on
pattern analysis and machine intelligence 40, no. 12 (2017): 2935-2947,
https://doi.org/10.1109/TPAMI.2017.2773081

[20] S. A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, iCaRL: Incre-
mental Classifier and Representation Learning, In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pp. 2001-2010

[21] P. Vieira, Automatic Handling of Imbalanced Datasets for Classification.
http://hdl.handle.net/10400.22/22518 accessed Mar. 30, 2023

[22] P. Vieira, PedroVieira1160634/automated-imbalanced-classification:
Automated Imbalanced Classification. https://github.com/
PedroVieira1160634/automated-imbalanced-classification accessed Sep.
10, 2022

[23] GNU General Public License v3.0 - Project GNU - Free Software
Foundation https://www.gnu.org/licenses/gpl-3.0.html accessed Sep. 10,
2022

[24] OpenML https://www.openml.org/search?type=data accessed Feb. 14,
2022

[25] The PyMFE example gallery — pymfe 0.4.1 documentation https://
pymfe.readthedocs.io/en/latest/auto examples/index.html accessed Aug.
20, 2022

[26] UCI Machine Learning Repository https://archive.ics.uci.edu/ml/index.
php accessed Feb. 14, 2022

[27] KEEL: A software tool to assess evolutionary algorithms for Data Mining
problems (regression, classification, clustering, pattern mining and so on)
https://sci2s.ugr.es/keel/datasets.php accessed Feb. 14, 2022

[28] Find Open Datasets and Machine Learning Projects - Kaggle https://
www.kaggle.com/datasets accessed Feb. 14, 2022

[29] Dataset Search https://datasetsearch.research.google.com/ accessed Feb.
14, 2022

[30] OpenML APIs - OpenML Documentation https://docs.openml.org/
APIs/ accessed Jul. 30, 2022

https://doi.org/10.1016/j.eswa.2021.115011
https://doi.org/10.1016/j.eswa.2021.115011
https://doi.org/10.1109/TPAMI.2017.2773081
http://hdl.handle.net/10400.22/22518
https://github.com/PedroVieira1160634/automated-imbalanced-classification
https://github.com/PedroVieira1160634/automated-imbalanced-classification
https://www.gnu.org/licenses/gpl-3.0.html
https://www.openml.org/search?type=data
https://pymfe.readthedocs.io/en/latest/auto_examples/index.html
https://pymfe.readthedocs.io/en/latest/auto_examples/index.html
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://datasetsearch.research.google.com/
https://docs.openml.org/APIs/
https://docs.openml.org/APIs/

Springer Nature 2021 LATEX template

Article title 19

[31] Imbalanced-learn documentation — Version 0.9.1 https://
imbalancedlearn.org/stable/ accessed Sep. 10, 2022

[32] Python-package Introduction — LightGBM 3.3.2.99 documentation
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html accessed
Sep. 10, 2022

[33] Python Package Introduction — xgboost 1.6.2 documentation https://
xgboost.readthedocs.io/en/stable/python/python intro.html accessed Sep.
10, 2022

[34] N. Japkowicz, Learning from Imbalanced Data Sets: A Comparison
of Various Strategies, 2000, https://www.researchgate.net/publication/
2628420 Learning from Imbalanced Data Sets A Comparison of Various
Strategies accessed: Feb. 06, 2022.

[35] NumPy https://numpy.org/ accessed Sep. 10, 2022

[36] OpenML: analcatdata germangss dataset (ID: 1025), 2014. https://www.
openml.org/search?type=data&status=active&id=1025 accessed Sep. 11,
2022

[37] KEEL: Poker Hand dataset https://sci2s.ugr.es/keel/dataset.php?cod=
1340 accessed Sep. 11, 2022

[38] KEEL: Glass Identification dataset https://sci2s.ugr.es/keel/dataset.
php?cod=142 accessed Sep. 11, 2022

https://imbalancedlearn.org/stable/
https://imbalancedlearn.org/stable/
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html
https://xgboost.readthedocs.io/en/stable/python/python_intro.html
https://xgboost.readthedocs.io/en/stable/python/python_intro.html
https://www.researchgate.net/publication/2628420_Learning_from_Imbalanced_Data_Sets_A_Comparison_of_Various_Strategies
https://www.researchgate.net/publication/2628420_Learning_from_Imbalanced_Data_Sets_A_Comparison_of_Various_Strategies
https://www.researchgate.net/publication/2628420_Learning_from_Imbalanced_Data_Sets_A_Comparison_of_Various_Strategies
https://numpy.org/
https://www.openml.org/search?type=data&status=active&id=1025
https://www.openml.org/search?type=data&status=active&id=1025
https://sci2s.ugr.es/keel/dataset.php?cod=1340
https://sci2s.ugr.es/keel/dataset.php?cod=1340
https://sci2s.ugr.es/keel/dataset.php?cod=142
https://sci2s.ugr.es/keel/dataset.php?cod=142

	Introduction
	State of the Art
	Developed solution
	Learning Module
	Datasets
	Reading and extracting knowledge from a dataset
	Sampling and classification algorithms used
	Process of Discarding the Worst Performant Combinations

	Recommendation Module
	Recommendation module exemplification

	Solution Evaluation
	Internal Evaluation
	External Evaluation
	Evaluation Metrics Comparison

	Conclusions
	Limitations and Future Work

