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Deep learning (DL) models currently used for materials research have limitations in providing meaningful25

information for interpreting predictions and understanding the relationships between structure and mate-26

rial properties. To address this, we propose a DL architecture that incorporates the attention mechanism27

to predict material properties and gain insights into their structure–property relationships. The proposed28

architecture is evaluated using four datasets: the QM9 molecule dataset and three in-house-developed com-29

putational materials datasets. Train–test–split validations confirm that the models derived from the proposed30

DL architecture exhibit strong predictive capabilities, comparable to those of current state-of-the-art models.31

Furthermore, comparative validations, based on first-principles calculations, indicate that the degree of atten-32

tion of the atoms’ local structures to the representation of the material structure is critical when interpreting33

structure–property relationships with respect to physical properties. The properties include molecular orbital34

energies or formation energies of crystals. Our proposed architecture shows great potential in accelerating35

material design by predicting material properties and identifying critical features of corresponding structures.36

Keywords: materials informatics, machine learning, neural network, attention model, structural representa-37

tion38

I. Introduction39

A central challenge in the field of materials science is40

using both experience and theory to explore the compo-41

sitions and structures of materials with specific proper-42

ties and subsequently validate them via experimentation.43

Unfortunately, the research and development of mate-44

rials is a time-consuming endeavor that often relies on45

serendipity. To address these challenges, materials infor-46

matics (MI) has emerged as a rapidly growing interdisci-47

plinary field that employs data-driven methods to extract48

practical knowledge regarding materials and their related49

physicochemical phenomena from experimental and com-50

putational data, thus ultimately accelerating the discov-51

ery of superior materials 1–4.52

a)Electronic mail: dam@jaist.ac.jp

The majority of MI approaches consist of three key53

components5. The first component comprises datasets54

containing information regarding the structure of the55

materials, measurement results directly related to these56

structures, and physical properties relevant to the mate-57

rial development goals. The second component, i.e., rep-58

resentation, quantitatively describes the data instances in59

the first component, collecting a primitive description of60

materials for identification and analogical inference. The61

final component is a system that utilizes machine learn-62

ing or data mining algorithms (either a single approach63

or a combination of approaches) to extract knowledge64

from the materials datasets for specific purposes, such as65

predicting properties or identifying new material compo-66

sitions and structures.67

Traditionally, materials are characterized by their ele-68

mental compositions and structures, and researchers rely69

mailto:dam@jaist.ac.jp
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on their knowledge and experience (or tacit knowledge)1

to predict certain properties of hypothetical materials2

with a specific composition and structure. Computa-3

tional chemistry approaches based on quantum mechan-4

ics, particularly density functional theory (DFT) simula-5

tions, can be used to theoretically verify the compositions6

and structures of these materials through in−silico com-7

putational experimentation. However, computational ex-8

periments have limitations despite providing accurate in-9

formation on the physical properties of hypothetical ma-10

terials. For example, the vast number of potential hy-11

pothetical materials renders the design of materials with12

desired physical properties time-consuming and expen-13

sive due to the exhaustive calculations required. More-14

over, researchers need specialized and detailed knowledge15

to narrow down the candidate compositions and material16

structures.17

Unlike traditional approaches, MI approaches initially18

involve the conversion of primitive data descriptions into19

appropriate representations that can be used for math-20

ematical reasoning and inference. In particular, MI sys-21

tems are tasked with estimating qualitative and quanti-22

tative between materials based on these transformed rep-23

resentation, allowing them to uncover potential patterns24

in the material data6–8. The development of material25

representation (i.e., the design of material descriptors or26

methods for learning material representation from data)27

play a crucial role in MI approaches. This is because the28

effectiveness of an MI algorithm highly depends on the29

material representation, as it directly impacts the algo-30

rithm’s performance and facilitates the explanation and31

interpretation of the inference process and prediction re-32

sults9. Recent advancements in automated experiments33

and high-performance computers have enabled the ac-34

quisition of substantial experimental and computational35

data. Consequently, there is a growing need for the de-36

velopment of explainable and interpretable MI methods37

to enhance our understanding of physical and chemical38

phenomena.39

Recently, various deep learning (DL)-based MI ap-40

proaches have been developed to address challenges re-41

lated to material representation and to predict physical42

properties10–13. A typical example is the DL architec-43

ture that uses a continuous-filter convolution layer with44

filter-generation networks to handle atomistic systems45

and accurately predict the properties of molecular and46

crystalline materials10. Another example is the convo-47

lutional neural network based on crystal graphs, which48

can predict material properties with an accuracy com-49

parable to that of DFT calculations while also providing50

atomic-level chemical insight12. In addition to the afore-51

mentioned approaches, researchers have developed vari-52

ous other DL architectures to encode the local chemical53

environments of atoms and improve the prediction ac-54

curacy by integrating different types of material descrip-55

tors, applying graph neural networks (GNNs), and utiliz-56

ing many-body tensor representations11,13. Furthermore,57

there are notable studies that incorporate prior knowl-58

edge to construct neural network models that ensure the59

properties of both outputs and inputs14–16.60

However, a significant challenge faced by both tradi-61

tional and DL-based machine learning approaches is the62

issue interpretability. Machine learning models often pri-63

oritize including all available information rather than se-64

lecting an interpretable representation to improve predic-65

tion accuracy. The relationship between material repre-66

sentation and its properties is complex and nonlinear,67

resulting in machine learning models acting as “black68

boxes” that do not explicitly reveal correlations. Al-69

though statistical evaluations based on existing data of-70

ten exhibit high prediction accuracies, estimating their71

predictive capability for new materials is challenging.72

Gaining detailed insight via machine learning to clar-73

ify underlying physicochemical phenomena also remains74

challenging.75

Numerous studies have aimed to enhance model in-76

terpretability by incorporating additional information or77

features. For instance, graph convolutional networks use78

SMILES strings to represent molecules as inputs, en-79

abling the identification of crucial fingerprint fragments80

and facilitating interpretation17,18. Despite this, these81

networks still require assistance in accurately predicting82

the properties of molecular and crystalline materials due83

to the absence of 3D structural information. Message-84

passing neural network-based models (MPNNs)19–21 em-85

ploy heuristic bonding information to capture atomic86

interactions but encounter difficulties with long-range87

interactions, feature interpretability, global information88

representation, and scalability when dealing with large89

molecule/crystal datasets. Attention-based models16 are90

emerging as a potential solution to these limitations, of-91

fering superior parallel computational efficiency for large-92

scale applications. However, designing attention-based93

models specifically tailored for material structure repre-94

sentation is crucial for applications in materials science95

studies.96

To address these challenges, we propose a DL archi-97

tecture incorporating the attention mechanism to predict98

material structure properties and provide meaningful in-99

sights into these predictions. The proposed architecture100

starts by learning the representation of local structures of101

atoms within a material structure through the recursive102

application of attention mechanisms to the local struc-103

tures of the neighboring atoms (Fig. 1a). The local104

structure of an atom includes the atom itself as the cen-105

tral atom, its neighboring atoms, and the arrangement106

of these atoms around the central atom. Finally, the ma-107

terial structure representation is derived from the repre-108

sentations of these local structures of the atoms. This109

architecture utilizes the attention mechanism to incorpo-110

rate information about the geometrical arrangement of111

neighboring atoms into the representations of local struc-112

tures. Moreover, it quantitatively measures the degree of113

attention given to each local structure from a global per-114

spective when determining the representation of the ma-115

terial structure (Fig. 1b). Additionally, by training the116
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FIG. 1. Schematics of (a) the learning recursive representation of a local structure (central atom and its neighboring atoms)
within the molecular structure of phenol (C6H5OH), and (b) measurement of the global attention given to a local structure when
determining representation of the molecular structure. The direction and size of each arrow indicate the degree of attention
given to other atoms when establishing the representation of the local structure of a particular atom.

model with specific target property, it becomes possible1

to determine the influence of information related to each2

atomic site on the final material structure representation3

with respect to the target property.4

II. Results5

A. SCANNet framework6

We introduce a novel DL architecture called the7

Self-Consistent Attention Neural Network (SCANNet).8

SCANNet focuses on representing material structures9

from local structures of atoms with learned weights, thus10

facilitating the prediction and interpretation of mate-11

rial properties. The key objective of SCANNet is to12

recursively learn consistent representations of these lo-13

cal structures within the material (as shown in Fig. 1a),14

which are then appropriately combined to obtain an over-15

all representation of the material structure.16

In this study, each material structure S in a dataset17

D is represented using the atomic numbers and the cor-18

responding coordinates of its M atoms. By employing19

Voronoi tessellation, a set of neighboring atoms Ni can20

be identified for each atom ai in the structure S. Then,21

a vector gij is defined as the geometrical influence of a22

neighboring atom aj on atom ai (1 ≤ j ̸= i ≤ M) (Sec-23

tion IV A). Next, SCANNet employs an embedding layer24

to express the atomic information of each atom ai in S by25

an h-dimensional vector c0i . Hereinafter, we denote the26

matrix C0 = [c0i ]1≤i≤M as [c0i ]1≤i≤M = [c01, c
0
2, ..., c

0
M ].27

The SCANNet architecture consists of a series of L lo-28

cal attention layers and a global attention layer, each29

utilizing attention mechanisms16 to represent the local30

structures within a material structure and the material31

structure itself, respectively. The layer-wise design of the32

local attention layers allows SCANNet to iteratively learn33

and improve the consistency of local structure represen-34

tations, thereby providing information regarding long-35

range interactions between these local structures (Section36

IV B). For instance, the representation vector cl+1
i of the37

local structure {ai,Ni} at the (l + 1)
th

local attention38

layer is derived as follows:39

cl+1
i = LocalAttentionl+1(cli,C

l
Ni

×GNi
), (1)

where cli is the central atom at layer lth, Cl
Ni

= [clj ]aj∈Ni
40

denotes its neighboring local structures, and the ge-41

ometrical influence of the neighboring atoms GNi
=42

[gij ]aj∈Ni
.43

The representation of a material structure is deter-44

mined by linearly combining the representation vectors45

of its local structures, with global attention (GA) scores46

as the coefficients (Section IV C). Consequently, this ap-47

proach can measure the amount of attention (GA scores)48

that should be given to a local structure by summing all49

corresponding directional pairwise attention scores from50

other local structures (Fig. 1b). We preserve the struc-51

tural information of S from all representations of its local52

structures obtained at the final local attention layer to53

produce CL, where CL = [cLi ]1≤i≤M . The global atten-54

tion layer subsequently learns a suitable representation55

of the material structure based on the representations of56

its constituent local structures to accurately predict the57

material’s properties.58

xS = GlobalAttention(CL) =
M∑

i=1

αg
i k

g
i , (2)
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FIG. 2. Overview of the proposed SCANNet architecture, which is formed by stacking an embedding layer and local attention
layers to learn the representations of various local structures in a material. In the readout stage, a global attention layer is used
to assess the attention scores of these local structures. The attention score indicates the degree of attention that should be
paid to a local structure to accurately represent the material and predict its physical property. The material representation is
linearly combined based on the representations of its local structures with their corresponding attention scores. Fully connected
(FC) layers are applied to the material representation to estimate the property of the material.

where kg
i = cLi W

g
k is the transformation of the local1

structure representation cLi and Wg
k ∈ R

h×h is the learn-2

able weight of the global attention layer. Consequently,3

the physical property yS of the material structure S can4

be predicted from the learned representation xS with5

fully connected layers FS , as follows:6

ŷS = FS(xS), (3)

Furthermore, the GA scores αg = [αg
1, α

g
2, ..., α

g
M ] of the7

local structures, obtained from the global attention layer,8

help in identifying key factors that contribute to un-9

derstanding the structure–property relationships of the10

material. A comprehensive depiction of the proposed11

SCANNet architecture is presented in Figure 2.12

B. Experimental design13

In this study, the proposed architecture’s performance14

in predicting target properties and its ability to provide15

information regarding the structure–property relation-16

ship (interpretability) are evaluated using four molecular17

and crystal structure datasets (Table I). The properties18

of these datasets are determined through quantum me-19

chanical calculations using DFT. The predictive capabil-20

ity is assessed by splitting the data into train-validation-21

test sets, where the models are trained on the training22

set and optimized based on the lowest mean absolute23

TABLE I. Summary of dataset information regarding seven
properties analyzed with the SCANNet models, including
dataset size (number of structures - #Size), number of atoms
present in structures (#Atoms), and the specific physical
properties examined.

Dataset #Size #Atoms Properties

QM96 130,831 4 to 29 EHOMO , ELUMO,

Egap, α, Cv

Fullerence-MD22 3000 60, 70, 72 EHOMO , ELUMO

Pt/Graphene-MD22 21,666 103 ∆U

SmFe12-CD
23 3307 13 ∆E

EHOMO (meV): Energy of the highest occupied molecular or-

bital; ELUMO (meV): Energy of the lowest unoccupied molec-

ular orbital; Egap (meV): Energy gap; α (bohr3): Isotropic

polarizability; Cv (cal/mol K): Heat capacity at 298 K; ∆U

(eV): Deformation energy; ∆E (eV/atom): Formation energy

error (MAE) on the validation set. The MAEs of the24

predictions for the target properties on the test sets are25

reported for comparison with other models reported in26

the literature. Models fitted with parameters obtained27

using SCANNet are referred to as SCANNet models in28
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this study. More details about the datasets used can be1

found in Section IV E.2

Furthermore, the interpretability of the SCANNet3

models is assessed by examining the relationship between4

the learned GA scores of the local structures and the5

corresponding results from first-principles calculations.6

The results demonstrate the capability of the SCAN-7

Net models to provide valuable information regarding the8

structure–property relationships of materials in four sce-9

narios: the local structures and HOMO/LUMO molec-10

ular orbitals (QM96 and Fullerene-MD22), the deforma-11

tion energy ∆U and the deformation of the Pt/graphene12

structures (Pt/graphene-MD22), and the derived crystal13

formation energy and the substitution atom species and14

sites of SmFe12-based compounds (SmFe12-CD
23).15

C. Evaluation of the predictive power16

Train–validation–test splits are performed in an17

80:10:10 ratio to evaluate the predictive capability of18

SCANNet in predicting five physical material properties19

(EHOMO, ELUMO, Egap, α, and Cv) in the QM9 dataset.20

Five state-of-the-art DL methods with the MAE of the21

predictions derived from the models are also employed22

for comparison. The evaluation process is repeated five23

times to obtain an average MAE for the test set, thereby24

providing a robust assessment of the predictive capabili-25

ties of the models14,15.26

Table II presents the average MAE scores obtained27

from five training runs of the SCANNet models, as well28

as the corresponding scores for the competing models.29

In terms of EHOMO prediction, the Cormorant model30

exhibited the best performance, with an MAE of 3431

meV . The SCANNet model had an MAE of 41 meV32

for EHOMO prediction, which is approximately 120%33

higher than the best model and 50% lower than the34

WaveScatt model. For the prediction of ELUMO, the35

MEGNet model exhibited the best performance, achiev-36

ing the lowest MAE of 31 meV . Although the perfor-37

mance of the SCANNet model is not as good as those38

of the SE(3)-Trans and SchNet models, it is similar to39

that of the Cormorant model and significantly better40

than the WaveScatt model. Regarding Egap prediction,41

the SE(3)-Trans model exhibited the best performance42

with an MAE of 53 meV . However, the results obtained43

using the SCANNet, Cormorant, MEGNet, and SchNet44

models are not significantly different, yielding values in45

the range of 61–63 meV . For α and Cv prediction, the46

Cormorant and MEGNet models outperform the other47

models significantly. Importantly, the performance of the48

proposed SCANNet model is comparable to that of the49

SE(3)-Trans model, with differences in MAE of less than50

10% for these two target properties.51

For the QM9 dataset, the widely accepted “chemical52

accuracy” thresholds are 43 meV for the three energy-53

related properties, EHOMO, ELUMO, and Egap; 0.1 bohr
3

54

for the isotropic polarizability α; and 0.05 cal/molK for55

the heat capacity at 298 K27. Among the five prop-56

erties, only the prediction error of the data-driven ap-57

TABLE II. Comparative evaluation of SCANNet and five
other state-of-the-art DL models predicting five physical prop-
erties using the QM9 dataset. The bold numbers denote the
lowest mean absolute errors (MAEs) among the six models.

EHOMO ELUMO Egap α Cv

(meV) (meV) (meV) (bohr3) (cal/mol K)

WaveScatt24 85 76 118 0.160 0.049

SchNet25 41 34 63 0.235 0.033

MEGNet26 38 31 61 0.081 0.030

Cormorant14 34 38 61 0.085 0.026

SE(3)-Trans15 35 33 53 0.142 0.054

SCANNet 41 37 61 0.141 0.050

EHOMO: Energy of the highest occupied molecu-

lar orbital; ELUMO: Energy of the lowest unoc-

cupied molecular orbital; Egap: Energy gap; α:

Isotropic polarizability; Cv : Heat capacity at 298 K.

proaches for Egap exceeds the threshold for chemical ac-58

curacy (i.e., 43 meV ). However, for the remaining prop-59

erties, at least two models achieved chemical accuracy.60

Notably, the SCANNet models demonstrated a predic-61

tion error of 41 meV for EHOMO, 37 meV for ELUMO62

and 0.05 cal/molK for Cv, indicating that chemical ac-63

curacy thresholds were achieved for these properties. To64

provide a more practical assessment of the models, con-65

sidering real-world application scenarios and chemical ac-66

curacy thresholds, we evaluate the models by averaging67

their performance across the five target properties. Each68

property’s evaluation is either the ratio of the prediction69

error to the chemical accuracy threshold (when the er-70

ror exceeds the threshold) or 1 (when the error is below71

the threshold). The remarkable prediction accuracy of72

SCANNet confirms its practical applicability and guaran-73

tees that the interpretability derived from the attention74

scores effectively uncovers key structure–property rela-75

tionships for the investigated material properties (Sup-76

plementary Table II).77

The obtained results demonstrate that the SCANNet78

model achieves a prediction accuracy comparable to that79

of the five state-of-the-art DL methods and the “chemi-80

cal accuracy” thresholds for predicting EHOMO, ELUMO,81

Egap, α, and Cv in the QM9 dataset. It is worth noting82

that SCANNet effectively learns representations of the83

molecular structures in the QM9 dataset solely based on84

the atoms’ coordinates in the materials’ structures. In-85

corporating conventional prior knowledge (e.g., atomic86

and bonding information between atoms, commonly uti-87

lized in message-passing neural network-based models) or88

adding physical constraints (e.g., equivalencies, covari-89

ates, and equations) into the learning process for ma-90

terial structure representations has the potential to en-91

hance prediction accuracies. However, it is important92

to consider that these strategies can introduce biases93
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in the model by favoring certain materials, overlooking1

others, or oversimplifying complex phenomena, due to2

constraints or potential inaccuracies in the heuristic in-3

formation assigned during the training phase. Conse-4

quently, such issues could hamper the clear understand-5

ing of structure-property relationships, which is the pri-6

mary objective of this study.7

Supplementary Section IV presents an evaluation of8

SCANNet’s predictive capabilities on three in-house-9

developed material datasets, demonstrating its broad10

adaptability and high accuracy in diverse prediction sce-11

narios.12

D. Correspondence between the learned attentions of13

local structures and the molecular orbitals of small14

molecules:15

For small molecules in the QM9 dataset, the SCAN-16

Net models demonstrate a remarkable correspondence17

between the obtained GA scores of the local structures18

and molecular orbitals results obtained by DFT calcu-19

lations. As an example, Figure 3 shows comparisons20

between the GA scores of the local structures and the21

HOMO/LUMO orbitals obtained from DFT calculations22

for four molecules. Notably, an apparent correspondence23

between the relative GA scores of the local structures and24

the HOMO orbitals of the dimethyl butadiene molecule25

(cis-2,3-dimethyl-1,3-butadiene) is evident (Fig. 3a).26

Furthermore, the GA scores of the local structures can27

be easily linked to the interpretation that dimethyl bu-28

tadiene readily undergoes the Diels–Alder reaction. Sim-29

ilarly, the correspondence between the HOMO orbital30

and the GA scores of the local structures is apparent for31

the thymine molecule (5-methyl pyrimidine-2,4 (1H,3H )-32

dione), one of the nucleobases in DNA (Fig. 3b).33

Moreover, similar correspondences are confirmed be-34

tween the GA scores of the local structures and the35

LUMO orbitals obtained from the DFT calculations for36

methyl acrylate (methyl prop-2-enoate) and dimethyl fu-37

marate (dimethyl(2E)-but-2-enedioate). Methyl acry-38

late is a reagent commonly used in the synthe-39

sis of various pharmaceutical intermediates28, whereas40

dimethyl fumarate has been proposed to exhibit im-41

munomodulatory properties without causing significant42

immunosuppression29; thus, it has been evaluated as a43

potential treatment for COVID-1930. The apparent cor-44

respondence between the LUMO orbitals and the GA45

scores of the local structures of these two molecules (Fig.46

3c and d) further highlight that the attention scores of the47

SCANNet model provide valuable insights for interpret-48

ing the structure–property relationships of molecules.49

All carbon, nitrogen, and oxygen atomic sites in the50

QM9 dataset were statistically analyzed to systemati-51

cally evaluate the GA scores obtained by the SCANNet52

models. Since the GA scores of atomic sites were normal-53

ized to 1, the relative GA scores were calculated based on54

the average GA score of the sp3-hybridized carbon atoms55

in each molecule. Molecules without any sp3-hybridized56

carbon atoms were excluded (Fig. 4). The analysis of57

the GA scores for the HOMO energy reveals that the58

GA score for EHOMO

0.150.0

GA score for EHOMO

0.150.0

a b

GA score for ELUMO

0.150.0

GA score for ELUMO

0.150.0

c dmethyl acrylate dimethyl fumarate

LUMO

dimethyl butadiene thymine

HOMO

LUMO

HOMO

FIG. 3. Visualizations of structure–property relationships
obtained from the SCANNet models for 4 molecules: (a)
dimethyl butadiene, (b) thymine, (c) methyl acrylate, and
(d) dimethyl fumarate. For each molecule, the left side of
the figure illustrates the wave function of the HOMO (a), (b),
or the LUMO (c), (d), as calculated by the DFT approach.
The isosurfaces with positive and negative values of the wave
functions are represented by blue and red lobes, respectively.
The right-side figures display the GA scores of local structures
derived from the SCANNet models for interpreting the cor-
responding molecular orbitals. The coloration of atoms and
links between them do not signify the sign or nodes of the
molecular orbital wave functions.

influence on HOMO follows the order of oxygen, nitro-59

gen, and carbon. Specifically, sp3-hybridized carbon sites60

have a lower influence compared to sp2-hybridized or sp-61

hybridized carbon sites (Fig. 4a). These findings align62

with the electronegativity and bonding characteristics of63

the elements. Oxygen and nitrogen exhibit strong elec-64

tronegativity and electron-rich regions in π-bonds, lead-65

ing to a more significant electron density shift and higher66

HOMO energy localized around oxygen, nitrogen, and67

carbon sites with double or triple bonds.68

In contrast, the GA scores for the LUMO energy show69

no significant difference between the three elements. This70

observation is consistent with the understanding that un-71

occupied orbitals primarily influence the LUMO, making72

the difference in electronegativity less pronounced com-73

pared to its effect on the HOMO energy (Fig. 4b).74

E. Correspondence between the learned attentions of75

local structures and molecular orbitals of fullerene76

molecules:77

To further evaluate the interpretability of the proposed78

method, the correspondence between the obtained GA79

scores of the local structures and the molecular orbitals80

obtained from DFT calculations for fullerene molecules is81

examined. Supplementary Figure 1 shows the GA scores82

of the local structures for the HOMO and LUMO en-83

ergies of the C60 molecule (Ih symmetry). In this case,84
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in the molecular structures of the QM9 dataset, calculated based on the average GA score of sp3-hybridized carbon atoms
in each molecule. Gray, blue, and red lines and filled regions represent the statistics for carbon, nitrogen, and oxygen sites,
respectively.

the target molecule has a truncated icosahedral struc-1

ture composed of 20 hexagons and 12 pentagons, with2

all carbon atoms exhibiting equivalent local structures.3

The SCANNet model estimates identical GA scores for4

all local structures of the C60 molecule, thus indicating5

its ability to handle large and symmetric molecules.6

As the number of carbon atoms in the fullerene7

molecule increases, the symmetry of the C70 (D5h sym-8

metry) and C72 (D6h symmetry) molecules becomes9

slightly broken, and the local structures of the carbon10

atoms in these molecules are no longer equivalent. Fig-11

ure 5 demonstrates a significant correspondence between12

the GA scores of the local structures and the HOMO13

and LUMO results obtained from DFT calculations for14

the C70 and C72 molecules. The GA scores of the local15

structures in the C70 and C72 molecules exhibit a five-fold16

(top view) and six-fold (top view) symmetry upon the17

prediction of the HOMO energy, respectively. These re-18

sults align with the structural symmetry and degenerate19

HOMO orbitals of the two fullerene molecules. Notably,20

the C70 molecule possesses an additional 10-carbon ring,21

forming a plane symmetry, resulting in a planar symme-22

try of its HOMO with the node situated on that ring’s23

plane. The SCANNet model reveals a clear correspon-24

dence between the HOMO of the C70 molecule and the25

GA scores of the local structures (Fig. 5a), as well as the26

LUMO and their corresponding GA scores. Furthermore,27

the shapes of LUMO and HOMO of the C72 molecule28

exhibit a perfect correspondence with the GA scores of29

the local structures obtained using the SCANNet mod-30

els (Fig. 5b). Compared to C60, the C72 molecule has31

an additional ring of 24 carbon atoms with six-fold sym-32

metry, consisting of 12 pairs of carbon–carbon bonds in33

five-membered carbon rings. The high GA scores of the34

local structures in the ring indicate the localization of the35

LUMO of the C72 molecule on the ring. In contrast, the36

HOMO orbitals are located on two opposite sides of the37

ring and are also captured by the local structures with38

high GA scores. This evaluation experiment provides39

further confirmation that SCANNet-derived GA scores40

offer valuable insights for understanding the structure–41

property relationship, even for large molecules.42

F. Correspondence between the learned attentions of local43

structures and structural deformation in Pt/graphene:44

Figure 6a presents the GA scores of the local structures45

obtained by the SCANNet model for predicting the defor-46

mation energy of a system comprising a platinum atom47

adsorbed on a graphene flake. The deformation energy48

is defined as the difference between the total energy of49

the deformed and optimized structures. A detailed ex-50

amination of the obtained GA scores reveals that local51

structures with high GA scores possess relatively elon-52

gated carbon–carbon bonds (Fig. 6b). Additionally, the53

carbon atoms that form high local curvatures upon the54

formation of a convex from the planar structure of the sp255

hybridization bonding network received high GA scores56

(Fig. 6c).57

The results obtained from the experiment on the sys-58

tem where a platinum atom was adsorbed on a graphene59

flake reveal that the GA scores obtained by the SCAN-60

Net model exhibit a high correspondence with the ob-61

served structural deformations. In particular, the high62

GA scores for the increased carbon–carbon bond lengths63

and the convexed carbon atoms correspond well with the64

contribution to the deformation energy, as determined65

by DFT calculations. This finding indicates that the GA66

scores generated by SCANNet are reliable indicators of67

structural deformations in such systems, demonstrating68

the model’s capability to capture and interpret the un-69

derlying material instability. These results validate the70
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platinum atom adsorbed on a graphene flake. (a) Visualiza-
tion of the GA scores obtained from the SCANNet model for
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usefulness of SCANNet in understanding and predicting1

structural deformations in materials, particularly in cases2

involving the interaction of different elements or adsorp-3

tion onto surfaces.4

G. Correspondence between the learned attentions of5

local structures and stability of SmFe12-based crystal6

structures:7

The SCANNet model’s ability to predict the formation8

energy of SmFe12-based crystal structures is evaluated9

by analyzing the GA scores of atomic sites. The focus10

is on understanding the effects of substituting Fe sites11

with other elements on the derived formation energy and12

the stabilization of the crystal structure, as well as the13

influence of the elemental substitution on the formation14

energies of other Sm and Fe sites. Note that the GA15

scores of the local structures are normalized to ensure16

that the sum of the attention scores of all local structures17

in the crystal structure is equal to one.18

For instance, Figure 7a shows the GA scores of the lo-19

cal structures obtained by the SCANNet model for pre-20

dicting the formation energies of the SmFe12, SmFe11Mo,21

SmFe11Co, and SmFe11Al crystal structures. For the22

optimized SmFe12 crystal structure, all Fe sites receive23

identical GA scores, indicating a symmetric cage of Fe24

atoms surrounding the Sm atoms. Additionally, the neg-25

ligible difference in GA scores between the Sm and Fe26

sites suggests that when analyzing the formation energy27

of the SmFe12 crystal structure, greater attention should28

be given to the Fe sites rather than the Sm sites. This29

implies that Sm atoms are comfortably placed within the30

cage of Fe atoms in the SmFe12 crystal structure.31

For the crystal structures with Mo substitutions, the32

GA scores of the Mo and Sm sites are estimated to be the33

same as those of the Fe sites. However, for crystal struc-34

tures with Co or Al substitutions, the GA scores of the Co35

and Al sites are significantly higher than those of Fe sites.36

The GA score results for the three crystal structures in-37
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FIG. 7. Visualization of the relationship between structure and formation energy obtained from the SCANNet model for
crystalline magnetic materials in SmFe12-CD. (a) Visualization of the GA scores estimated by the model for atomic sites in
the SmFe12, SmFe11Mo, SmFe11Co, and SmFe11Al crystal structures. (b) Correlation between the ratio of GA scores of the
substitution sites to the minimum GA scores among the Fe sites and the formation energy, as calculated via the DFT approach,
in crystal structures substituted by a single type of element.

dicate that Mo substitution has little effect on the cage1

of Fe atoms, whereas the Sm sites become nonnegligible2

in interpreting the formation energy of the SmFe11Mo3

crystal structure. This suggests that Sm atoms are less4

comfortably placed within the Fe and Mo atom cages in5

the substituted crystal structure. By contrast, for crys-6

tal structures substituted with Co or Al, the GA scores7

of the Co and Al sites are significantly higher than those8

of Fe sites, indicating that the Co and Al sites should9

be the central focus of attention when interpreting the10

formation energy of the SmFe11Co and SmFe11Al crys-11

tal structures, respectively. Moreover, the GA scores of12

Fe sites exhibit a slight decrease, indicating that the Fe13

atoms become more comfortably placed in the substi-14

tuted crystal structures.15

To validate the interpretation above, the ratio of the16

GA scores of the substitution sites to the minimum GA17

scores among the Fe sites is calculated for each crystal18

structure. Subsequently, the relationship between this19

ratio and the estimated formation energies of the struc-20

tures is investigated using DFT calculations. Figure 7b21

shows that the crystal structures substituted with a sin-22

gle type of element can be divided into two groups: one23

with Cu, Zn, and Mo substitutions, and the other with24

Al, Ti, Co, and Ga substitutions. Interestingly, crys-25

tal structures with higher local structure GA scores for26

the substitution sites possess lower formation energies,27

whereas those with lower local structure GA scores for28

the substitution sites possess higher formation energies.29

These results highlight the potential of the SCANNet30

model in estimating the local structure GA scores for a31

rational discussion of SmFe12-substituted crystal struc-32

tures and their formation energies. While additional33

first-principles calculations are necessary for each specific34

crystal structure to fully understand the relationship be-35

tween the substitution elements, the substitution sites,36

and the crystal structure stability, these results confirm37

the potential usefulness of SCANNet. The local structure38

GA score provides valuable information and indicate key39

focus points for understanding the stability of crystalline40

material structures. Thus, this study offers valuable in-41

sights that can contribute to the development of more42

efficient and effective methods for designing crystal ma-43

terial structures.44

III. Discussion45

This study proposes an attention-based DL architec-46

ture, SCANNet, which leverages attention mechanisms47

to learn from material datasets, predict material prop-48

erties, and interpret the underlying features of material49

structures. By applying attention recursively to neigh-50

boring local structures, SCANNet learns representations51

of atomic local structures in a self-consistent manner.52

The architecture combines these local structure repre-53

sentations to form a comprehensive representation of the54

entire material structure, enabling accurate property pre-55

dictions. During the learning process, global attention56
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scores are estimated, indicating the importance of each1

local structure in representing the overall material struc-2

ture. Experimental results based on four molecular and3

crystalline material structure datasets demonstrated the4

excellent predictive capability of SCANNet for different5

material properties. Furthermore, an in-depth qualita-6

tive analysis of the global attention scores of local struc-7

tures revealed that the trained models can extract es-8

sential information from material datasets, facilitating a9

deeper understanding of the structure–property relation-10

ships in both molecular and crystalline materials. This11

ability of the proposed architecture to interpret the at-12

tention scores can aid in identifying critical features and13

accelerating the material design process.14

However, it is important to acknowledge that the in-15

terpretability of attention scores in DL models is still a16

subject of debate and lacks clear guidelines31–33. Several17

factors need to be considered, such as the correlation18

analysis of attention scores, alternative interpretability19

metrics, and counterfactual analysis, to validate mean-20

ingful explanations of the relationships. Additionally, the21

quantification and assessment of uncertainty in attention22

score estimation are essential. Despite these challenges,23

the findings of this study demonstrate the potential of24

attention mechanisms in uncovering valuable information25

that can help in the better understanding of structure–26

property relationships in materials.27

IV. Methods28

A. Characterization of material structure29

Given a material structure S with the property of inter-30

est yS ∈ R containingM atoms (AS = {a1, a2, · · · , aM}),31

we consider the structure S as a geometrical arrangement32

of M local structures. Each local structure consists of a33

central atom, its neighboring atoms, and their arrange-34

ment around the central atom. To determine the neigh-35

boring atoms and segment each material structure into36

local structures, we employ the definition of O’Keeffe34,3537

instead of the assumption about chemical bonds between38

the atoms in the structure. According to O’Keeffe’s defi-39

nition, all atoms at these atomic sites share Voronoi poly-40

hedron faces with the atomic site of an atom under con-41

sideration (the central atom of the local structure) and42

are regarded as neighboring atoms. Subsequently, the lo-43

cal structures of the neighboring atoms are referred to as44

the neighboring local structures. Using the information45

from the Voronoi polyhedron faces, we assess the geomet-46

rical influences of neighboring atoms on the central atoms47

for conveying the structural information of structure S to48

SCANNet for learning the appropriate representation of49

S.50

For each atom ai in the structure S, by using the51

Voronoi tessellation, we can determine Ni (⊂ AS), which52

contains N atoms whose atomic sites share Voronoi poly-53

hedron faces with an atomic site of ai. Subsequently, the54

geometrical influence of a neighboring atom aj(∈ Ni) on55

atom ai is represented by a vector gij ∈ R
h, which is de-56

fined by the element-wise multiplication of the Euclidean57

distance dij and Voronoi weight35 wij between the atoms58

as follows:59

gij = DE(dij)× wij (1 ≤ j ̸= i ≤ M), (4)

where DE(dij) is a distance embedding layer representing60

the distance dij as an h-dimensional vector (Supplemen-61

tary Section II B). As a result, for each atom ai, we obtain62

a matrix GNi
= [gij ]aj∈Ni

representing the geometrical63

influences of the neighboring atoms of atom ai. Each row64

of the matrix consists of a vector gij that represents the65

geometrical influence of atom aj on atom ai.66

B. Local structure representation67

Similar to other DL architectures, SCANNet employs68

an embedding layer (Supplementary Section II A) to ex-69

press the atomic information of each atom ai in S as an70

h-dimensional vector c0i (∈ R
h). Through training, the71

vector representation c0i is updated and refined to repre-72

sent the atom more appropriately for accurately predict-73

ing property yS of material structure S.74

To learn representations for local structures in ma-75

terial structure S, a local attention layer that uti-76

lizes the atomic and geometrical arrangement of atomic77

sites is proposed. The design of the local attention78

layer is based on the dot-product key-query attention16,79

Attention(q,K) = softmax(q⊤K)K, where q ∈ R
h and80

K ∈ R
h×h denote the query vector and key matrix, re-81

spectively. In addition, SCANNet consists of multiple82

local attention layers to iteratively update the represen-83

tation of local structures in a layer-wise manner; the84

(l + 1)
th

local attention layer uses the representations of85

local structures constructed from the lth layer as inputs.86

As a result, this design enables SCANNet to efficiently87

capture information on long-range interaction between88

local structures in the material structure.89

For instance, the representation cl+1
i (∈ R

h) of local90

structure {ai,Ni} at the (l + 1)
th

local attention layer91

is derived from the representation vectors in the preced-92

ing layer of itself (cli), its neighboring local structures93

(Cl
Ni

= [clj ]aj∈Ni
), and the geometrical influence of the94

neighboring atoms Ni on atom ai (GNi
) as follows:95

cl+1
i = LocalAttentionl+1(cli,C

l
Ni

×GNi
) (5)

= Attention(ql
i,K

l
Ni

) + ql
i,

where ql
i = cliW

l
q and Kl

Ni
= (Cl

Ni
× GNi

)Wl
k;96

Wl
k,W

l
q ∈ R

h×h are learnable parameters of the local97

attention layer and are shared between local structures.98

The detailed implementation of the local attention layer99

is described in Supplementary Section II C.100

Owing to the application of multiple local attention101

layers, the attention information regarding a target prop-102

erty between local structures in a material structure S103

can be passed through the attention relationships be-104

tween neighboring local structures. In the experiments105

described herein, a DL architecture including L local at-106

tention layers is employed. Consequently, we preserve107
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the structural information of S from the representations1

of all its local structures obtained from the final local2

attention layer, to produce CL, where CL = [cLi ]ai∈AS
.3

C. Material structure representation4

To represent a material structure S, simple operators,5

such as the sum or pooling operator, are typically ap-6

plied to integrate the representations of all local struc-7

tures in S. However, such operators consider that ei-8

ther the contribution of each local structure to the fi-9

nal structure representation is equal (sum and average-10

pooling operator)14,15,25,36 or that the property depends11

on only the specific local structures in the material struc-12

ture whereas the others have zero impact (max- and min-13

pooling operators)37–39. Therefore, designing appropri-14

ate combination operators for specific target properties15

is challenging and requires prior hypotheses regarding the16

structure–property relationships. To overcome this prob-17

lem, SCANNet again utilizes the dot-product key-query18

attention16 to coherently learn the representation of local19

structures and integrate them into the representation of20

material structure in a target-dependent manner.21

An attention mechanism-based layer, called the global22

attention layer, is proposed to quantitatively model the23

attention distribution required across each constituent24

local structure. This layer aims to obtain a more ap-25

propriate representation for the entire structure S. The26

global attention layer is designed to learn an optimal rep-27

resentation of structure S from data, which subsequently28

facilitates the construction of a highly accurate predic-29

tive model for the target property yS . The representation30

vector xS of the structure S is formulated by aggregating31

the representations of all the constituent local structures32

according to the obtained global attention (GA) scores,33

as follows:34

xS = GlobalAttention(CL) = ρ(A)Kg

= α
gKg =

M∑

i=1

αg
i k

g
i , (6)

where A = Qg⊤Kg ∈ R
M×M , which Qg = CLWg

q and35

Kg = CLWg
k are the query and key matrices, respec-36

tively; further, Wg
k,W

g
q ∈ R

h×h are the learnable pa-37

rameters of the global attention layer. A weighting func-38

tion ρ(.) is applied to the attention matrix A to evalu-39

ate the GA scores paid to the local structures. As a re-40

sult, we obtain ρ(A) = softmax([s1, s2, ..., sM ]), in which41

sj =
∑M

i=1[A(1−I)]i,j is the sum of each column j within42

the attention matrix A (the identity matrix is denoted43

as I).44

The function ρ(.) is designed based on the assump-45

tion that heightened attention should be allocated to lo-46

cal structures whose representations are crucial for accu-47

rately representing the other local structures in S. This48

attention allocation enables the precise prediction of tar-49

get property yS . In essence, a local structure that garners50

higher cumulative attention scores from all the other local51

structures should be prioritized when representing mate-52

rial structure S. As a result, the degree of attention to53

a local structure {ai,Ni} in S is quantitatively modeled54

by summing all the attention received from other local55

structures. For a detailed implementation of the global56

attention layer, please refer to Supplementary Section II57

D.58

Consequently, the physical property yS of the material59

structure S can be predicted from the learned represen-60

tation xS , as follows:61

ŷS = FS(xS), (7)

where Fs : R
h → R

1 is represented by two fully connected62

(FC) layers. The weight matrices and bias vectors of the63

network are learned by training the prediction model.64

Furthermore, the GA scores α
g = [αg

1, α
g
2, ..., α

g
M ] ,65

which describe the degree of attention given to the corre-66

sponding local structures for representing S, are used to67

reveal critical aspects that help interpret the structure–68

property relationship of interest. It is important to note69

that the attention to local structures discussed here sig-70

nifies the amount of information these local structures71

contribute to appropriately represent S for accurately72

predicting yS .73

D. Model training74

The training of the DL model using the proposed ar-75

chitecture begins with the initialization of all learnable76

parameters. All weighting matrices such as Wl
q, Wl

k,77

Wg
q, and Wg

k are initialized to random matrices using78

Glorot Uniform40, while the entries of all bias vectors79

are initialized to zero. The dropout layer and attention80

dropout16 are applied in the local attention layers with81

a rate of 0.1 for better regularization.82

In the training process, all parameters of the proposed83

DL model are updated by minimizing a loss function us-84

ing Adam optimization41 with a scheduled learning rate85

decay ranging from 5 × 10–4 to 10−4. To predict the86

physical property yS of a material structure S in train-87

ing dataset D, the loss function is defined as follows:88

L =
1

|D|

∑

S∈D

(yS − ŷS)
2. (8)

E. Dataset information89

QM96: This computational dataset comprises of data90

of 133,885 drug-like organic molecules composed of C, H,91

O, N, and F. However, 3054 files were removed due to the92

questionable geometric stability14 that 130,831 molecules93

remained were used for the experiments. Five physi-94

cal properties from the QM9 dataset are used as targets95

for evaluating the predictive capability of the SCANNet96

models. These properties include the energy of the high-97

est occupied molecular orbital (EHOMO), the energy of98

the lowest unoccupied molecular orbital (ELUMO), the99

gap between the energies (Egap = ELUMO − EHOMO),100
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the isotropic polarizability (α), and the heat capacity at1

298 K (Cv). In the experiment, the predictive capability2

of the SCANNet models is compared with that of recent3

state-of-the-art DL models14,24–26.4

Fullerene-MD22: This is an in-house-developed com-5

putational material dataset that comprises the data of6

three well-known fullerene molecules, viz. C60 (Ih), C707

(D5h), and C72 (D6h). It includes optimized struc-8

tures and 3000 deformed structures obtained from molec-9

ular dynamics simulations (1000 structures for each10

molecule). The HOMO (EHOMO) and LUMO (ELUMO)11

energies of these structures are determined using DFT12

calculations, similar to the approach used in the QM913

dataset. Experiments are performed on this dataset to14

evaluate the predictive capability of the SCANNet mod-15

els for HOMO and LUMO energies and to assess the in-16

terpretability of the models’ predictions for these proper-17

ties. A distinctive feature of all structures in this dataset18

is that they only contain carbon atoms. Furthermore,19

due to the symmetric nature of fullerene molecules, the20

local structures within each molecule are highly similar21

with only minor differences. Therefore, this dataset al-22

lows for a precise evaluation of the interpretability of the23

SCANNet model. In the evaluation experiment using24

this dataset, SCANNet models pre-trained on the QM925

dataset are applied to train the prediction models for the26

HOMO and LUMO energies of the fullerene molecules.27

Pt/graphene-MD22: This dataset is also an in-28

house-developed computational material dataset repre-29

senting a system composed of a platinum atom adsorbed30

on a graphene flake terminated by hydrogen atoms42,43.31

It consists of data of approximately 21,000 optimized32

and deformed structures generated through molecular33

dynamics simulations. The adsorption energies of these34

structures are determined using DFT calculations, sim-35

ilar to the approach used in the QM9 dataset. The36

purpose of the experiments conducted on this dataset37

is twofold: to evaluate the predictive performance of38

the SCANNet models for deformation energies of the39

structures (∆U) and to assess the interpretability of the40

models’ predictions for these deformation energies. The41

unique structural characteristic of this dataset is the pres-42

ence of a two-dimensional honeycomb network of carbon43

atoms forming the graphene flake. Although the local44

structures of each carbon atom in the system exhibit45

slight distortions from the ideal sp2 hybridization struc-46

ture43, this dataset allows for the quantitative evaluation47

of the interpretability of the SCANNet models in terms of48

the distortion of the honeycomb network on the graphene49

surface.50

SmFe12-CD23: This dataset is an in-house-developed51

computational material dataset containing the data of52

crystalline magnetic materials. It comprises the data of53

3307 optimized structures of SmFe12-based compounds,54

along with their corresponding formation energies (∆E)55

as the target properties. The dataset was generated by56

introducing partial substitutions of Mo, Zn, Co, Cu, Ti,57

Al, and Ga into the iron sites of the original SmFe1258

structure, which exhibits notable magnetic properties.59

Subsequently, the structures were optimized, and their60

formation energies were assessed using DFT calculations.61

Further details regarding the DFT calculation method62

used to create this dataset can be found in a previous63

work23. Using this dataset, the predictive capability of64

the SCANNet models for the formation energies of the65

structures (∆E) and the interpretability of the models66

are quantitatively evaluated to investigate the structural67

stability of the SmFe12-based structures.68
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