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Abstract This work examines the void growth and coalescence in isotropic porous elastoplastic solids with
sigmoidal material hardening via finite element three-dimensional unit cell calculations. The investigations
are carried out for various combinations of stress triaxiality ratio (T ) and Lode parameter (L) and considers
a wide range of sigmoidal hardening behaviors with effective hardening rates spanning two decades. The
effect of L is considered in the presence and in the absence of imposed shear stress. Our findings reveal
that depending on the rate of sigmoidal hardening the cell stress-strain responses may exhibit two distinct
transitions with respect to stress triaxiality T . Further, the sigmoidal hardening rate also influences poros-
ity evolution which may show stagnation before a runaway growth up to final failure. For a given T -L
combination, an imposed shear stress exacerbates the onset of coalescence relative to its counterpart with
no imposed shear stress. We find that the residual cell ductility beyond the onset of coalescence is strongly
influenced by the effective material hardening rate at high triaxiality levels.

Keywords First keyword · Second keyword · More

Mathematics Subject Classification (2020) MSC code1 · MSC code2 · more

1 Introduction

Strain hardening in elastoplastic materials has important consequences in ductile failure. In power-law
hardening materials, the stress triaxiality ahead of a crack tip increases rapidly with the strain hardening
exponent (n), which can have implications on material failure by cleavage or void growth [1]. On the other
hand, higher values of n delay void growth under a constant stress state [2,3], thus creating a competitive
scenario for ductile failure. While much work has been carried out to study void growth and coalescence
in power-law hardening materials, the role of other material hardening characteristics has not been as well
studied. Among those are materials exhibiting sigmoidal hardening, which is observed in some hexagonal
close-packed metals (e.g., magnesium [4]), polymers [5], and even shape memory alloys [6]. Figure 1 shows
illustrative sigmoidal stress-strain curves from polycrystal simulations of magnesium (Mg) alloys [7], which
occurs because of profuse deformation twinning. While the underlying deformation mechanisms causing
sigmoidal hardening may depend on the material, the broader stress-strain features include a two-stage
hardening response characterized by an initial yield stress followed by an S-shaped curve culminating into
a saturation-type behavior at large strains.

Showren Datta
Department of Mechanical Engineering
University of Houston

Shailendra P. Joshi
Department of Mechanical Engineering
University of Houston
Tel.: +1-713-743-6930
E-mail: shailendra@uh.edu



2 Showren Datta, Shailendra P. Joshi

(a) (b)

Fig. 1 Sigmoidal stress-strain responses of polycrystalline magnesium alloys with different initial textures (cases A-I).
Panel (a) illustrates scenarios with similar hardening rates but different saturation stresses and (b) shows scenarios with

similar saturation stress but different hardening rates. Data re-plotted from [7]

A recent work [8] investigated void growth and coalescence in isotropic porous elastoplastic solids
showing sigmoidal material hardening. Those calculations were performed for axisymmetric tensile stress
states characterized by a constant stress triaxiality ratio, T = Σm/Σeq where Σm and Σeq are respectively
the mean normal stress and the equivalent stress. Thus, the salient observations did not account for the
intermediate principal stress (Σ2), which samples stress states between purely axisymmetric and shear-
dominant. To consider the effect of Σ2, the Lode parameter is introduced: L = (2Σ2−Σ1−Σ3)/(Σ1−Σ3)
where Σ1 ≥ Σ2 ≥ Σ3 are the principal stresses. The effect of T , at fixed L, on ductility (characterized by
strain-to-failure, Ec) is well-known - an exponentially decreasing Ec with increasing T . By way of contrast,
the Ec − L relationship at fixed T is not particularly well characterized even for conventional power-law
hardening materials [9], let alone sigmoidally hardening materials. In power-law hardening materials, it
appears that Ec is non-monotonic with L with the minimum occurring in the regime −1.0 ≲ L ≲ 0 [10,11,
12,13], although there is equally compelling evidence of monotonically increasing Ec with increasing L [14,
15]. Recent micromechanical analysis [16] indicates that these trends are influenced by the initial porosity
f0 and T . A more recent computational study reveals that imposed boundary conditions also play a crucial
role in the way Ec − L relations manifest at fixed T [9].

With this background, we focus on three aspects pertaining to sigmoidal hardening materials. First,
we investigate a wider and more realistic range of sigmoidal hardening parameters than those considered
in Ref. [8]. Second, we assess the void growth and coalescence trends for these materials over a range of
T − L combinations. Third, we consider the T − L combinations without (ρxy = 0) and with (ρxy ̸= 0) an
imposed shear stress.

2 Problem Formulation

In contrast to the axisymmetric finite element simulations in [8], we adopt a three-dimensional unit cell
to model combined tensile and shear loading, Fig. 2. The computational setup comprises a cubic unit cell
(initial dimension, L0) with a spherical void (initial radius, R0) at its center. Thus, the initial porosity is
f0 = (4πR3

0/3L
3
0). We define ligament parameters χx = rx/Lx and χz = rz/Lz where ri(i = x, z) is the

current void dimension in the ith direction and Li is the corresponding cell dimension. The unit cell is
constrained by periodic kinematic boundary conditions. The unit cell faces are under traction via elastic
springs connected to prescribed velocity boundary conditions to maintain a constant macroscopic triaxial
stress state described by Σ = Σxxex ⊗ ex +Σyyey ⊗ ey +Σzzez ⊗ ez +Σxyex ⊗ ey in the lab frame (x,y,z).
The macroscopic Cauchy stress components (Σij) are volume-averaged quantities computed from the local

(at each Gauss point) stress components (σij) as Σij =
1

V

∫

V
σijdV where V is the current unit cell volume.

Likewise, the volume-averaged macroscopic strains (Eij) are Eij =
1

V

∫

V
eijdV where eij is a logarithmic

strain component at each Gauss point. The macroscopic mean stress is Σm = (1/3)tr Σ and the macrosopic
equivalent stress is Σeq =

√

(3/2)Σ′ : Σ′. Likewise, the macroscopic effective strain is Eeq =
√

(2/3)E′ : E′.
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Fig. 2 The finite element unit cell with an initial void volume fraction of 0.01. The model contains ∼ 28, 850 linear brick
elements (C3D8 in ABAQUS).

Here, given a second-order tensor A, we write its deviatoric part as A′ = A : J with J = I− (1/3)I⊗ I
with I and I being the fourth-order and second-order identity tensors, respectively.

With the y-axis as the primary tensile loading direction, the stress triaxiality (T ) and Lode parameter
(L) are given by [17]:

T =

√
2(1 + ρxx + ρzz)

3
√

(1− ρxx)2 + (1− ρzz)2 + (ρxx − ρzz)2 + 6ρ2xy
sign(Σyy) (1a)

L = − (1 + ρxx − 2ρzz)
√

(1− ρxx)2 + 4ρ2xy
sign(Σyy); (1b)

where ρxx = Σxx/Σyy, ρzz = Σzz/Σyy, and ρxy = Σxy/Σyy are the stress ratios.

Fig. 3 shows the uniaxial material hardening curves considered in the present study. These hardening
behaviors are described by the Boltzmann function, which mimics the sigmoidal behaviors (e.g., Fig. 1):

σ̄ = σf +
σi − σf

1 + exp (k)
; k =

ε̄− nε0
dε

(2)

where σ̄ and ε̄ are respectively the equivalent stress and equivalent plastic strain. In Eq. 2, σi is the lower
saturation stress, σf the upper saturation stress, ε0 ≡ (1/2)(εi + εf ) and dε ≡ (1/4)(εf − εi) with εi and
εf being the strains corresponding to σi and σf , respectively. The factor n (set equal to 1.75) ensures that
the (σ̄)yield ≡ σi for the range of material investigated here.
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(a) (b)

Fig. 3 Different sigmoidal hardening scenarios considered in this work: (a) Constant ŝ, varying εf , and (b) Constant ê,
varying σf .

Using Eq. 2, we define a non-dimensional parameter ĥ = ŝ/ê indicating an effective material hardening
rate where ŝ = (σf − σi)/σf and ê = (nεf − εi). In this work, we consider ŝ ∈ {0.5, 0.8, 0.9} and ê ∈
{0.046, 0.125, 0.475, 1.0}, which samples a wide range of material hardening rates 0.5 ≲ ĥ ≲ 20. Very
roughly, ê = 0.046 would resemble a material with Voce-type hardening while ê = 1.0 would mimic a
power-law hardening material, cf. Fig. 3b. Of course, these semblances will depend on (σf − σi). For
discussion purposes, we refer to ê ∈ {0.046, 0.125} as rapid hardening (RH), ê = 0.475 as intermediate

hardening (IH), and ê = 1.0 as slow hardening (SH) materials. For all the cases, we set σi = 10 MPa and
εi = 0.05. The material is assumed to be elastically isotropic with Young’s modulus E = 210 GPa and
Poisson’s ratio ν = 0.3.

3 Results

In what follows, we discuss illustrative results that highlight key trends for 0.75 ≤ T ≤ 3.0 and −1.0 ≤
L ≤ 1.0. The bounds for T characterize stress states ranging in specimens with blunt notches ahead to
those ahead of crack tips and those for L range from generalized tension (L = −1.0) to generalized shear
(L = 0), and generalized compression (L = 1.0). The results for porous unit cells under uniaxial tension
(T = 1/3) are not included for brevity as they are indistinguishable from their pristine counterparts.

To identify the onset of coalescence, we adopt the strain-based criterion [18], which identifies coalescence
onset as the critical equivalent strain, Ec, at which the cell straining transitions from a triaxial to uniaxial
mode. Further, we define failure strain, Ef , as the equivalent strain at which one or both the ligament
parameters χi reach a critical value χf . In theory, failure occurs when χ = 1, however from a numerical
standpoint we set χf = 0.95. In situations where Ef occurs before Ec, we take Ec = Ef .

3.1 Macroscopic responses in the absence of applied shear stress

For brevity, we present the results for ŝ = {0.5, 0.8} and ê = {0.046, 0.125, 0.475, 1.0} for a range of T -L
combinations. Fig. 1 summarizes the stress ratios for the T -L combinations keeping ρxy = 0. Fig. 4 shows
the cell responses of materials with ŝ = 0.5 but varying ê values. The results for L = 1 are not shown here
to avoid overcrowding as the strains accumulated in those cases are much larger and rapid failure may not
occur. At a fixed T , L = −1 presents the most severe scenario insofar as the porosity evolution is concerned,
which in turn governs stress softening and hence, Ec. Beyond this expected trend at this level of f0 [16],
sigmoidal hardening produces a rich suite of responses that intimately depend on T and whose qualitative
features are persistent across the range of L.
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Table 1 Stress ratios for T -L combination for tensile loading.

L = −1.0 L = −0.5 L = 0.0 L = 0.5 L = 1.0

ρxx ρzz ρxx ρzz ρxx ρzz ρxx ρzz ρxx ρzz

T = 0.75 0.29 0.29 0.21 0.41 0.13 0.57 0.085 0.77 0.077 1.00

T = 1.0 0.40 0.40 0.33 0.50 0.27 0.63 0.24 0.81 0.25 1.00

T = 2.0 0.63 0.63 0.58 0.69 0.55 0.78 0.55 0.89 0.57 1.00

T = 3.0 0.73 0.73 0.70 0.77 0.68 0.84 0.68 0.92 0.70 1.00

(a) ê = 0.046 (b) ê = 0.125 (c) ê = 0.475 (d) ê = 1.0

(e) ê = 0.046 (f) ê = 0.125 (g) ê = 0.475 (h) ê = 1.0

Fig. 4 For ρxy = 0, effects of T ,L, and ê on (a-d) normalized equivalent stress-strain responses and (e-h) normalized
porosity (f/f0) evolution for ŝ = 0.5. The “×” represents Ec and “◦” represents Ef .

Consider RH materials first (Fig. 4a and 4b). Under moderate T levels (≲ 1.0) the strain (Epeak)
corresponding to the peak stress is approximately equal to the material saturation strain (εf ), i.e., Epeak ≈
εf . By way of comparison, Ec, (marked by x) is much larger, i.e., Ec ≫ Epeak. With increasing L the gap
between Epeak and Ec increases at these T levels. At higher T levels the effect of L is diminished such that
at T = 3.0, Ec ≈ Epeak.

In IH materials (Fig. 4c) the gap between Epeak and Ec is smaller compared to RH materials at T ≲ 1.0.
Interestingly, at T = 2.0 the cell responses exhibit strain hardening leading up to the coalescence onset;
i.e., Ec ≈ Epeak. In contrast, at T = 3.0 gradual stress softening occurs immediately following the initial
yield with no evidence of sigmoidal hardening and Ec ≫ Epeak.

In SH materials (Fig. 4d), Ec ≈ Epeak for T ≲ 1.0 with a strain hardening response leading up to the
coalescence onset. For T ≳ 2.0 the responses are qualitatively similar to those of IH materials at T = 3.0
together with Ec ≫ Epeak.

The porosity evolution in RH, IH, and SH materials (Fig. 4e-4h) is largely insensitive to L up to Epeak.
Beyond that, it shows sensitivity to L for T ≲ 2.0. Note that, at a given L the critical porosity (fc) at Ec

is relatively insensitive to ê at moderate triaxiality levels (T ≲ 1.0) but depends strongly on T at higher T
levels.
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(a) ê = 0.046 (b) ê = 0.125 (c) ê = 0.475 (d) ê = 1.0

(e) ê = 0.046 (f) ê = 0.125 (g) ê = 0.475 (h) ê = 1.0

Fig. 5 For ρxy = 0, effects of T ,L, and ê on (a-d) normalized equivalent stress-strain responses and (e-h) normalized
porosity (f/f0) evolution for ŝ = 0.5. The “×” represents Ec and “◦” represents Ef .

Fig. 5 collates the results for ŝ = 0.8. While the broad trends are similar to those seen in ŝ = 0.5 at
T ≤ 1.0, important differences can be spotted at higher T levels. Unlike ŝ = 0.5, only one transition is
seen as a function of T . For a given ê, the cell response transitions from Ec ≫ Epeak at moderate T levels
(T ≲ 1.0) to a response characterized by Ec ≈ Epeak at high T levels ≳ 2.0. Moreover, at T ≳ 2.0 the
initial yield continues to occur at σi (i.e., Σ̄eq = 1) unlike in the case of ŝ = 0.5 where Σ̄eq < 1.

In Fig. 5e-5h, the porosity appears to follow an exponential evolution. However, a closer look (Fig. 6)
reveals that porosity initially begins to increase, then stagnates (or slows down) over an extended strain
range, and then increases rapidly again, see RH responses Fig. 6a and 6b. [8] observed similar responses in
RH materials for L = −1.0 and found that they occurred due to large differences in the magnitude of the
flow stresses between the polar and the equatorial regions of the void as a result of the sigmoidal material
hardening. What is interesting to note here is that it prevails over a much wider range of ŝ and ê values
(Fig. 6c) and over a broader range of T across the entire range of L. In comparison, the stagnation tendency
is much less in SH materials (Fig. 5h).

(a) ê = 0.046 (b) ê = 0.125 (c) ê = 0.475

Fig. 6 Early stages of porosity evolution for ŝ = 0.8, ρxy = 0.

Fig. 7 illustrates the evolution of the ligament parameters (χx and χz) for ŝ = 0.8. Note that χ is
indicative of ligament thinning between adjacent voids. As expected, at L = −1.0 the lateral void growth
is symmetric (χx = χz) irrespective of T . For L = 0, initially χz > χx but with progressive deformation
χx increases rapidly and overtakes χz. This occurs because, while rx < rz at all times, with deformation
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Lx ≪ Lz owing to the Poisson’s effect combined with ρxx ≪ ρzz. As seen in Fig. 7b, all combinations of T
and ê show this behavior but the effect is most discernible for T = 1 and ê = 1.0. In such scenarios, Ef

occurs when χx = χf . Another notable characteristic evident in RH materials is that, for both values of
L the χ evolution is markedly slowed down in the regime between the initial yield and the second stage
hardening. It coincides with the slowing down of the porosity evolution, cf. Fig. 6. This behavior is similar
to the evolution of χ isotropic cases at L = −1.0 [8].

(a) L = −1.0 (b) L = 0.0

Fig. 7 Effect of ê and T ligament parameter (χi) evolution at (a) L = −1.0 and (b) L = 0.
ŝ = 0.8, ρxy = 0. × indicates value at Ec and the dashed horizontal line indicates χf .

We note in passing that ŝ = 0.9 shows similar characteristics as ŝ = 0.8.

Fig. 8a-8c shows the effect of the Lode parameter on Ec for the RH, IH, and SH material types with
varying ŝ values at different T levels. Results corresponding to L = 1.0 are not included as in all the
cases, Ec is attained when χ = χcrit, which occurs at very large values of Eeq. As seen, L plays a role
in Ec at T = 0.75 and T = 1.0 in RH (Fig. 8a) and IH (Fig. 8b) materials. In fact, the range of Ec for
−1.0 ≤ L ≤ +0.5 is the same for RH and IH materials. In contrast, Ec of SH materials is much less sensitive
to L, particularly at T ≥ 1.0 but increases with increasing ŝ, Fig. 8c. For a fixed T − L combination, a
higher ŝ (at a fixed ê) results in higher Ec. Fig. 8d-8i capture the ligament parameter values corresponding
to Ec. For any T , L = −1.0 gives χx

c = χz
c, as expected. Interestingly, while χx

c increases with increasing
L, the changes in χz

c are relatively modest (Fig. 8g-8i). As a result, for L > −1.0, χx
c > χz

c despite the
fact that ρzz > ρxx. As can be seen, this trend prevails over the range of material parameters (ŝ, ê) and
triaxiality levels considered here.

3.2 Macroscopic responses in the presence of applied shear stress

In this section, we present illustrative results with ρxy ̸= 0 for ŝ = 0.8 for varying ê and compare them
against the corresponding cases with ρxy = 0. Fig. 2 summarizes the applied stress ratios for particular
T -L combinations. In the present work, we adopt the stress ratios such that Σyy ≥ {Σxx, Σzz}. Note that
the angle φ between the primary loading direction and the direction of the maximum principal stress varies
for each case, which is different from the problem of constant φ considered by [11] and [13] but similar to
the work of [17].

Table 2 Stress ratios for T -L combination for combined tension and shear loading. φ denotes the angle between the
loading axis and the maximum principal stress direction.

L = −1.0 L = −0.5 L = 0.0 L = 0.5 L = 1.0

ρxx ρzz ρxy φ ρxx ρzz ρxy φ ρxx ρzz ρxy φ ρxx ρzz ρxy φ ρxx ρzz ρxy φ

T = 0.75 0.5 0.34 0.33 26.2 0.35 0.45 0.30 21.5 0.25 0.63 -0.30 19.4 0.15 0.82 -0.23 14.4 0.08 1.0 -0.05 3.2

T = 2.0 0.7 0.65 -0.13 20.1 0.7 0.74 -0.17 24.1 0.59 0.80 -0.10 13.4 0.60 0.92 -0.12 15.4 0.58 1.0 0.03 4.2
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(a) ê = 0.125 (b) ê = 0.475 (c) ê = 1.0

(d) ê = 0.125 (e) ê = 0.475 (f) ê = 1.0

(g) ê = 0.125 (h) ê = 0.475 (i) ê = 1.0

Fig. 8 Effects of T , L, and ŝ on (a-d) Ec, (e-h) χx
c , and (g-i) χz

c for varying ê. ρxy = 0.

Fig. 9a, 9c, and 9e collate the cell responses at T = 0.75 for RH (ê = 0.125), IH (ê = 0.475), and SH
(ê = 1.0) materials. Note that the peak stress in RH and SH materials is nearly the same as the peak
stress for the pristine matrix material. In comparison, the SH material exhibits lower peak stress, an effect
of the rate of sigmoidal hardening dictated solely by ê (as ŝ is constant) and is agnostic to ρxy. While the
broad trends for ρxy ̸= 0 are similar to ρxy = 0, some important differences are seen. For all three material
types, ρxy has no effect on the cell responses at L = 1.0. With decreasing L, however, imposing shear stress
expedites the rapid porosity evolution and hence, lowers Ec.

At T = 2.0 (Fig. 9b, 9d, and 9f) the same materials exhibit different qualitative features compared to
T = 0.75, particularly for L ∈ {−1.0, 0.0}. For the RH (Fig. 9b) and IH (Fig. 9d) materials, the difference
in Ec without and with shear stress is practically indistinguishable. Notwithstanding this, beyond the onset
of coalescence, the stress softening and porosity evolution show a more gradual evolution in the presence
of shear stress. The slower porosity evolution could result in a delayed final failure thereby improving
the overall material resistance. In comparison, the SH material (Fig. 9f) shows a somewhat higher Ec for
ρxy ̸= 0 than for ρxy = 0 in contrast to the lower triaxiality case (cf. Fig. 9e). These differences in Ec can
be important at such high T levels.
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(a) T = 0.75, ê = 0.125 (b) T = 2.0, ê = 0.125

(c) T = 0.75, ê = 0.475 (d) T = 2.0, ê = 0.475

(e) T = 0.75, ê = 1.0 (f) T = 2.0, ê = 1.0

Fig. 9 Effect of imposed shear stress (solid lines) on macroscopic cell responses under prescribed T − L combinations in
(a-b) RH, (c-d) IH, and (e-f) SH materials. Dashed lines are the corresponding results with ρxy = 0. The results are

shown for ŝ = 0.8.

The overall trends of Ec and χi
c, are similar to those in Fig. 8 and are discussed in the context of

sigmoidal material parameters in the next section.

4 Discussion

In the preceding section, we consider the Lode parameter effect on the porous response of sigmoidally
hardening materials in the absence or presence of imposed shear stress. In the latter case, the angle φ made
by the loading axis with the major principal stress direction comes into play (cf. Fig. 2). Generally (but
not always), a fixed value of φ is chosen such that Ec is minimized for a particular T -L combination [11]
and is obtained by trial and error [13]. Here, we have not performed such a study.

Another aspect pertains to material ductility. In theory, ductility (failure strain) is the strain at which
stress drops to zero, which coincides with vanishing inter-void ligament, i.e., χ = 1. As alluded to earlier, Ec
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indicates the strain at which the process of coalescence initiates and is often adopted as a ductility criterion.
A recent computational study [9] shows that the trends of ductility with L can significantly vary depending
on the choice of ductility criterion and unit cell boundary conditions, and therefore, material ductility is
open to interpretation. This is in addition to the dependence of ductility on the initial porosity [16,19].
Recently, Benzerga and colleagues [20,21,22,19] have introduced the concept of unhomogeneous yielding
(UY). For axisymmetric stress states, the strain corresponding to UY is identical to Ec. On the other hand,
for stress states that deviate from axisymmetry, the strain associated with the first occurrence of UY may
be different from Ec. While UY onset appears to be a useful indicator, an unambiguous representation of
ductility under general proportional loading states seems to be an open question.

With these caveats, we discuss material failure trends from the viewpoint of material hardening (ŝ and
ê).

(a) L = −1.0 (b) L = 0

Fig. 10 Effect of ê on the strain to coalescence (Ec) for illustrative cases of L. ρxy = 0

Fig. 10 collates the combined role of loading and material parameters on Ec for ρxy = 0. Details
aside, these results indicate that Ec depends on the nature of sigmoidal hardening rather than the effective
sigmoidal hardening rate ĥ = ŝ/ê. In other words, ĥ does not serve as a unique descriptor of the sigmoidal
material hardening. That is, two materials with different {ŝ, ê} combinations giving the same ĥ will not
give the same Ec. The calculations suggest that in such a scenario, a material with higher ê and ŝ values
tends to show better ductility than its counterpart with a lower ê and ŝ values.

Fig. 11 illustrates how ê affect Ec for ŝ = 0.8. When ρxy = 0, Ec increases with ê for T = 0.75 (and
T = 1.0, not shown). While not shown here, at T = 3.0 the trend of Ec depends on ŝ. For ŝ = 0.5, Ec is
insensitive to ê while for ŝ = 0.9 Ec increases with ê. The case of ŝ = 0.8 demonstrates an intermediate
trend in that Ec increases with ê but saturates beyond ê ∼ 0.475. The increase in Ec gets progressively
larger for higher ŝ values.

When a shear stress is imposed (ρxy ̸= 0), the Ec − ê trends follow those for ρxy = 0. Over the range
of ê, the effect of L is as follows. At T = 0.75, Ec values at L = −1.0 (Fig. 11a) and L = 0 (Fig. 11b) are
lower than their corresponding values for ρxy = 0 but ρxy has no effect on Ec for L = 0.5 (Fig. 11c). On
the other hand, at T = 2.0 is unaffected by L. Over the range of L, the relative increase in Ec with ê at
T = 0.75 is ∼ 25%. On the other hand, at T = 2.0 the relative increase is ∼ 100% over the same range of ê.
That is, for a fixed ŝ an SH material exhibits an improvement in Ec compared to an RH material and this
improvement increases with increasing T . Notably, these relative improvements Ec with ê are independent
of L and ρxy.

Fig. 11d-11f shows the corresponding plots of Ef defined earlier. The trends are identical to Ec. At first
glance, it appears that there is no perceptible quantitative difference between Ec and Ef . However, the

difference becomes clearer in Fig. 12 where we plot the relative cell ductility defined as Êcell = (Ef −Ec)/Ec

versus ĥ = ŝ/ê. For T = 0.75, and 1.0, Êcell is insensitive to ĥ. At higher T levels though, Êcell shows a
non-monotonic trend. As seen, for a given L, Êcell is the largest for ĥ ≪ 1 and tends to be the lowest for
ĥ ∼ 1 (IH materials). In other words, for IH materials, ultimate failure occurs soon after the coalescence
process begins. By way of contrast, for ĥ ≪ 1 (SH materials) or ĥ ≫ 1 (RH materials) ultimate failure can
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(a) L = −1.0 (b) L = 0 (c) L = +0.5

(d) L = −1.0 (e) L = 0 (f) L = +0.5

Fig. 11 Effect of ê on the (a-c) strain to the onset of coalescence (Ec), (d-f) failure strain (Ef), with ρxy ̸= 0 (solid lines)
and ρxy = 0 (dashed lines) for ŝ = 0.8.

be delayed, particularly at high T levels. This behavior is asymmetric with respect to ĥ and the largest
gains (for a fixed L) are seen for ĥ ≪ 1. Given that the trends of Ec and Ef are agnostic to ρxy (at least

the shear ratios considered here), the Êcell trends are also unaffected by ρxy.

5 Conclusions

In this work, we numerically investigate the void growth and coalescence in plastically isotropic materials
exhibiting sigmoidal stress-strain responses. The results extend well beyond those presented in a recent
work [8] in two respects - (i) a wider and more realistic range of material hardening characteristics are
considered, and (ii) the effect of intermediate principal stress is explored. Several important conclusions are
drawn:

1. The cell responses of the three material types (RH, IH, and SH) may be described in terms of two
distinct transitions as a function of T . For T ≤ Tlow, a sigmoidal hardening response is observed, with
Ec ≫ Epeak. This is followed by a response characterized by strain hardening, with Ec ≈ Epeak in
the regime Tlow < T ≤ Thigh. Finally at T > Thigh, the strain hardening response is replaced by a
lack of strain hardening and Ec ≫ Epeak. The occurrence of both transitions (i.e., Tlow and Thigh) is
determined by the sigmoidal hardening rate. RH materials only exhibit the first transition, while SH
materials lack the first transition at least in the regime of T considered here. IH materials demonstrate
both transitions.

2. In the absence of an imposed shear stress, porosity evolution exhibits stagnation, which coincides with
the stagnation in the thinning of lateral ligaments. In RH materials, it is observed over the entire range
of T investigated in this work whereas in IH materials the behavior tends to be tempered at high T
values. SH materials do not show any perceptible stagnation.

3. The broad trends of the stress-strain responses and porosity evolution in the presence of shear stress
are similar to those in its absence. With decreasing L, the presence of a shear stress lowers Ec at
moderate levels of triaxiality. At high triaxiality levels, SH materials exhibit substantial improvement
in Ec relative to RH materials irrespective of whether a shear stress is imposed or not. A much lower
improvement is observed at lower triaxiality levels.

4. At high triaxiality levels, the relative cell ductility shows an improvement in the values of the effective
material hardening rates that are either smaller or larger than unity. While this does not indicate a
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(a) L = −1.0 (b) L = −0.5

(c) L = 0.0 (d) L = +0.5

Fig. 12 Relative cell ductility as a function of the effective material hardening rate (ĥ) for ρxy = 0.

high overall ductility, it suggests that such materials can sustain non-negligible strains beyond those
that correspond to the onset of the coalescence process. The largest improvement in the relative cell
ductility is seen for RH materials.
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