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Abstract
Contributions of brain glutamate to conscious emotion are not well understood.  Here we evaluate the
relationship of experimentally-induced change in neocortical glutamate (△Glu) and subjective states in
well individuals.  Drug challenge with d-amphetamine (AMP; 20 mg oral), methamphetamine (MA;
Desoxyn®, 20 mg oral), and placebo (PBO) was conducted on three separate test days in a within-
subjects double blind design.  Proton magnetic resonance spectroscopy (MRS) quanti�ed
neurometabolites in the right dorsal anterior cingulate cortex (dACC) 140-150 m post-drug and PBO.
Subjective states were assessed at half hour intervals over 5.5-hours on each session, yielding 3,792
responses per participant (91,008 responses overall, N=24 participants).  Self-reports were reduced by
principal components analysis to a single factor score of AMP- and MA-induced Positive Agency (△PA) in
each participant.  We found drug-induced △Glu related positively with △PA (△GluMA r=+.44, p<.05, N=21),
with large effects in females (△GluMA r=+.52, p<.05; △GluAMP r=+.61, p<.05, N=11).  States related to
△Glu in females included rise in subjective stimulation, vigor, friendliness, elation, positive mood, positive
affect (r’s=+.51 to +.74, p<.05), and alleviation of anxiety (r=-.61, p<.05, N=11).  Self-reports correlated
with DGlu to the extent they loaded on △PA (r=.95 AMP, p=5x10-10; r=.63 MA, p=.0015, N=11), indicating
coherence of △Glu effects.  Timing data indicated Glu shaped emotion both concurrently and
prospectively, with no relationship to pre-MRS emotion (△GluAMP r=+.59 to +.65, p’s<.05; △GluMA r=+.53,
p<.05, N=11).  Together these �ndings indicate substantive, mechanistic contributions of neocortical Glu
to positive agentic states in healthy individuals, most readily observed in women. 

INTRODUCTION
Glutamate (Glu) is an ancient compound that likely shapes conscious experience, well-being, and agency
in everyday life. It is well established that Glu mediates excitatory neurotransmission, learning, memory,
motor activity, is under homeostatic control and is excitotoxic when dysregulated (Magi et al, 2019). This
scope would seem to argue against additional major, undiscovered roles for Glu in the brain. The
evolutionary history of Glu, however, reveals rich diversity. Phylogenetically, Glu occurs at high
concentrations in species that are extraordinarily distant - such as bacteria and humans - evidencing
biologic roles predating divergence of prokaryotes and eukaryotes 2.7 billion years ago (Commichau et al,
2008; Cooper, 2000). Glu-like receptors occur in plants and animals, indicating common ancestry ~ 
1.6 billion years ago (Chiu et al, 1999; Meyerowitz, 1999; Wang et al, 1999). Glu is thus ancient and
ubiquitous, providing ample time and material for the evolution of multiple, overlapping functions in
living systems. This history suggests additional undiscovered roles for Glu in healthy organisms, where
rapid homeostasis readily obscures functional processes in vivo. Indeed, science over the last nine
decades has repeatedly underestimated the functional diversity of Glu (Danbolt, 2021; Watkins and Jane,
2006). Glu thus very likely has further, unanticipated roles in health and well-being.

Emerging work in clinical neuroscience indicates neocortical Glu shapes the etiology and treatment of
disorders of mood, motivation, and behavior. Glx, a combination of Glu and glutamate (Gln), is reduced in
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frontal brain in major depressive disorder (MDD) and is elevated in bipolar disorder (BPD) (Moriguchi et
al, 2019; Scotti-Muzzi et al, 2021). Effective treatments for MDD such as electroconvulsive therapy,
repetitive transcranial magnetic stimulation (rTMS), ketamine, and citalopram are associated with
increase in Glx, Glu and Gln in frontal and temporal cortex, tracking MDD improvement (Gonsalves et al,
2022; Lener et al, 2017; Michael et al, 2003a, b; Milak et al, 2016; P�eiderer et al, 2003). Moreover, rTMS
with adjunctive D-cycloserine (100mg oral), a partial NMDA receptor agonist, yields greater alleviation of
depressive symptoms than rTMS with placebo, indicating a role of Glu in recovery of positive affect (Cole
et al, 2022). Euthymic states also correspond to heightened Glx, Glu and Gln in the ACC, and mood
stabilizers alter Glu and Gln (Scotti-Muzzi et al, 2021; Soeiro-de-Souza et al, 2018). Further, individuals
recovering from stimulant dependence report depressive symptoms that coincide with reduction in Glx in
inferior frontal cortex (Bakhshinezhad et al, 2022; O'Neill et al, 2014). These data suggest contributions of
neocortical glutamate to agentic states and amelioration of aversive states in clinical disorder.

Further insight is provided by drug challenge studies in healthy individuals, where phasic perturbation of
neocortical Glu alters conscious experience. Here, single doses (30–40 mg oral) of memantine, an NMDA
receptor antagonist, increase volunteers’ reports of feeling high, stimulated, forgetful, contented,
lightheaded, detached, unreal, slow-motion, “buzzed”, and dizzy (Bisaga and Evans, 2004; Jackson et al,
2009). Single doses of D-cycloserine (50 mg oral) increase volunteers’ ratings of stimulation (Nesic et al,
2011). Low-doses of ketamine, a noncompetitive NMDA receptor antagonist, increase Gln in the ACC and
reports of time distortion, dissociation, emotional blunting, cognitive disruption, excitement, and somatic
activation (Coull et al, 2011; Krystal et al, 2005; Rowland et al, 2005). Conversely, the anesthetic propofol
reduces Glu in motor cortex, sensory cortex, and thalamus alongside its effects on sedation (Zhang et al,
2009). These data suggest mechanistic contribution of neocortical Glu to visceral sensations, subjective
states, and feelings of connection, attachment, and engagement.

Motivated by the above data and history, we here investigate contributions of neocortical glutamate to
conscious experience using drug challenge in healthy volunteers. This method provides experimental
manipulation of neocortical Glu in individuals who are medically and psychiatrically well (White and
Gonsalves, 2020; White et al, 2018). Toward this end, d-amphetamine (AMP), methamphetamine (MA)
and placebo (PBO) were administered on three separate test days to healthy participants using a within-
subjects, counterbalanced, double-blinded design, with each participant serving as their own control.
Using this approach, we �nd AMP and MA produce phasic rise in dACC Glu, an effect most apparent in
females (White et al, 2018). Informed by this �nding and our prior work on drug effects and positive
emotion (Grodin and White, 2015; Morrone et al, 2000; Weyandt et al, 2018; White, 2011, 2017; White et al,
2020; White and Gonsalves, 2021a; White et al, 2023; White et al, 2007; White et al, 2006), we here
evaluate the relationship of dACC Glu and participants’ conscious experience, assessed by a large battery
of validated self-report (SR) measures of subjective states at half hour intervals over the 5.5-hour period
on each session (Fig. 1). This approach provides detailed information on conscious states, mood,
emotion, metacognition, and visceral/somatic sensations in each participant, suitable for evaluation with
phasic change in dACC Glu.
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Our hypotheses were two-fold. First, we expected drug-induced change in neocortical Glu to predict the
magnitude of drug-induced change in conscious states with motivational component, i.e., perceived and
reported states of subjective stimulation, excitement, enthusiasm, and vigor. Second, we expected these
effects to be more readily observed in female participants, due to their heightened glutamatergic
response and increased vulnerability to stimulant dependence compared to males (White et al, 2018). The
study thus provides new information on experimentally-induced change in neocortical Glu and its impact
on subjective experience in well individuals.

METHODS AND MATERIALS

Procedures
This study was approved by the Institutional Review Board for research with human subjects at Brown
University and the Memorial Hospital of Rhode Island and all participants provided informed consent.
Procedures for recruitment, drug administration, MR structural imaging, MRS acquisition and metabolite
quanti�cation are published (details in Supplemental Methods, (White et al, 2021b; White et al, 2018).
Drug effects on neurometabolites (White et al, 2018) and relationships among trait emotion and
neurometabolites on PBO are published (White et al, 2021b). No adverse events were found for either of
the drugs or PBO.

Participants
Twenty-four participants completed MRS (N = 24, 12 female; (White et al, 2018)). Participants were 18–28
years of age (mean = 22.50 years, SD = 3.18, N = 24) and of normal body weight (mean BMI = 23.20, SD = 
2.94; mean body weight = 144.91 pounds, SD = 18.12; mean height = 66.45 inches, SD = 4.06). Racial
composition was 79% White, 17% Asian, and 4% African American. Ethnicity was 78% non-Hispanic and
22% Latino/Hispanic. Participants were well educated, with 8% reporting a high school diploma, 54%
reporting some college education and 38% reporting a bachelor’s degree or beyond.

Study Design, Drugs and Dosing
d-amphetamine sulfate (AMP, 20 mg oral), methamphetamine hydrochloride (MA; Desoxyn®, 20 mg oral),
and placebo (PBO, dextrose) were administered in a counterbalanced, double blind, within-subjects
crossover design. MRS imaging was conducted 140–150 m post-drug and PBO (Fig. 1, Supplemental
Methods, White et al, 2018).

Subjective Measures
Subjective states were assessed by six self-report instruments: the Positive and Negative Affect Schedule
(Watson et al, 1988), Positive Activation Rating Scale (Morrone et al, 2000), Negative Activation Rating
Scale (Weyandt et al, 2018), Visual Analogue Scales (Wewers and Lowe, 1990), Addiction Research
Center Inventory (Haertzen, 1966), and Pro�le of Mood States (McNair and Droppleman, 1971). These
self-report instruments provide information on subjective mood, valenced emotional states, psychoactive
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drug effects, visceral/somatic sensations, and metacognition at half-hour intervals across a 5.5-hour
period on each session (Fig. 1; full details in Supplemental Methods) and have not been evaluated
previously with dACC Glu (White et al, 2021b; White et al, 2018).

MRS Quality Control and Analysis
Quality control entailed four steps. (a) MRS spectra from each session in each participant was �t using
LCModel (Provencher, 1993), and visually inspected for quality (Fig. 1). (b) MRS voxels (placed by visual
location on the right dACC, Fig. 1) were reconstructed in each anatomical scan and segmented using
SPM12 and Gannet, providing information on voxel localization and segmentation (Ashburner and
Friston, 2005; Harris et al, 2015). (c) MRS data were corrected for partial volume effects per formula
[*1/(1- fCSF)] (Brandt et al, 2016; Larsen et al, 2016; Maltezos et al, 2014). (d) Data for individual
metabolites were excluded where CRLB exceeded 20% SD. (e) Self-reports were evaluated for missing
data (none missing). The procedures indicated self-report and MRS data were of high quality, yielding N = 
24 for analysis of subjective states and N = 18–21 for analyses of neurometabolites.

Statistical Analyses

Reduction of Self-report Data
Subjective states were evaluated by 158 self-report items assessed on eight time points per session in
each participant (AMP, MA, PBO; design in Fig. 1), yielding 3,792 item-level responses per participant
(91,008 responses overall, N = 24). These data were reduced in four steps (Fig. 2; full details in
Supplemental Methods). (1) Raw data were scored using standard methods of each instrument, yielding
scored measures at each time point. (2) Area under the curve (AUC) values were calculated using the
trapezoidal method across the eight time points of assessment on each session (AUCAMP, AUCMA,
AUCPBO) (Leventhal et al, 2017). (3) Within-subject drug effects were calculated as AUCAMP=AUCAMP

minus AUCPBO, and AUCMA=AUCMA minus AUCPBO. (4) Last, principal components analysis (PCA) of 
AUCAMP and AUCMA values were conducted, yielding a primary factor of subjective response to AMP
and to MA (eigenvalue > 6.0, Figure S1). This factor (Factor I) summarizes participants’ subjective
response to each drug, interpreted based on loadings greater than |.35|.

Statistical Tests of Hypotheses
Glu effects on Positive Agency. Relationship of change in Glu and subjective states were evaluated using
a correlation approach, with delta (Δ) scores of drug-induced changes in Glu entered as the predictor and
Factor I score (z-score) of drug-induced change in Positive Agency entered as the dependent measure.

Contributions of biological sex. Sex differences in the direction and magnitude of relationships were
assessed by Fisher r-to-z transformation.

Follow-up Analyses were conducted to determine speci�city, phenomenology, coherence, and timing of
signi�cant effects, as described below.

△

△ △

△
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Speci�city. Relationships with change in Glx, Gln and Factor I response was evaluated jointly and
separately by sex, to provide information on speci�city of relationships with neurometabolites.

Phenomenology. Relationship of ΔGlu and ΔAUC values (18 measures loading >|.35| on AMP and MA
Factor I, Table 1) were evaluated using a correlation approach, providing information on speci�c
subjective states related to Glu. This analysis was restricted to females, who accounted for signi�cant
effects at the group level.
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Table 1
Principal Components Factor I

AUC Self-Report Measures
Positive Agency

AMP

Positive Agency

MA

PANAS: Positive Affect .91 .94

PANAS: Negative Affect .08 − .09

PARS: Positive Activation .46 .51

NARS: Negative Activation − .01 .02

ARCI: PCAG − .88 − .90

ARCI: Benezedrine .85 .92

ARCI: Amphetamine .57 .79

ARCI: MBG .69 .87

ARCI: LSD − .63 − .12

ARCI: Marijuana − .14 .41

POMS: Anxiety − .57 − .27

POMS: Depression − .61 − .43

POMS: Anger − .51 − .04

POMS: Vigor .87 .89

POMS: Fatigue − .78 − .72

POMS: Confusion − .80 − .65

POMS: Friendliness .86 .90

POMS: Elation .87 .94

POMS: Arousal .91 .85

POMS: Positive Mood .93 .94

VAS: Stimulated .70 .69

VAS: Interested .81 .75

VAS: Queasy − .12 − .11

VAS: Content .75 .61

VAS: Drowsy − .33 − .51

VAS: Anxious .03 − .33

△
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AUC Self-Report Measures
Positive Agency

AMP

Positive Agency

MA

VAS: Elated .56 .65

VAS: Nauseated − .25 − .16

VAS: Sedated − .29 − .02

VAS: Hungry .19 .04

VAS: Want Alcohol .17 .62

Legend:  Factor I loadings greater than |0.35| are in bold.  Measures loading greater than |0.35| on both
factors are in gray. AUC calculated as the area under the curve (AUC) on the drug session minus AUC on
the PBO session (details in methods).  
 Positive Agency = PCA Factor I response to AMP and MA, respectively.  
AMP = d-amphetamine, MA = methamphetamine (Desoxyn®).  
N = 24 healthy volunteers.  

Coherence. Strength of ΔAUC measures’ relationships with Glu (correlation coe�cients with Glu) and
with ΔPA (loadings on Factor I) were evaluated using a correlation approach. Analysis included measures
loading >|.35| on Factor I to AMP and MA (Table 1) and was restricted to females (per signi�cance
criteria). This analysis provides information on coherence of Glu effects on self-reports.

Timing. Measures with signi�cant drug x time interaction effects (POMS Vigor, POMS Friendliness, Table
S3) were evaluated for time-dependent effects of Glu. This analysis was restricted to females (per
signi�cance). AUC values were calculated for timepoints (TP) prior to MRS (TP1 to 2), contiguous with
MRS (TP3 to 4), and following MRS (TP4 to 8). Each binned response was evaluated with Glu using a
correlation approach, to inform timing of Glu effects on emotion.

Manipulation and Validity Checks
Four sets of manipulation and validity checks were conducted to verify the e�cacy of the study drugs,
validity of participants’ self-reports, and validity of the follow-up timing bins calculations and analysis.

(1) Drug effects on scored self-reports were assessed by within-subjects, repeated-measures ANOVAs
with two levels of drug (drug, PBO) and eight levels of time (TP1-8, Fig. 1). The analysis provides data on
magnitude, direction, and timing of drug effects on self-report measures, with attention to loadings > |.35|
(Table 1). (2) Drug Effects on AUC values (Table 1) were assessed by t-tests (1-tailed). Positive t-values
indicate greater AUC under drug than PBO; negative t-values indicate lesser AUC under drug than
PBO; t-values of zero indicate no difference. We expected increased AUC (i.e., drug-induced rise; positive
t-values vs. PBO) for measures of positive activated emotion, somatic sensations, and arousal; and
reduced AUC (i.e., drug-induced reduction; negative t-values vs. PBO) for measures of inattention,
negative affect, and sluggishness. (3) Sex differences in self-reports and summary scores ( AUC values,

△

△

△

△

△

△

△

△

△ △

△

△

△
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PCA Factor I) were evaluated by independent samples t-tests (2-tailed). (4) Timing bins’ AUC scores
were compared by paired-samples t-tests, with AUC responses expected to rise over time (1-tailed).

Power and Effect Size Estimation
Power analyses were conducted in G*Power 3.1.9 using an alpha of .05 (Cohen, 1988; Faul et al, 2009).
Effect sizes (Cohen’s d) were calculated using the formula ((mean-0)/SD), with Cohen’s d values of .2
interpreted as small effects, .5 as medium effects, and .8 as large effects. Pearson correlations of .1 were
interpreted as small effects, .3 as medium effects, and .5 as large effects (Cohen, 1988, 1992).

RESULTS

PCA Results
Factor I: Positive Agency. Principal components analysis (PCA) of AUCAMP and AUCMA produced a
primary factor of response to AMP and MA (Factor I; eigenvalue > 6.0, Figure S1), and interpreted based
on loadings > |.35| (Table 1, below).

AMP. Factor I to AMP had high positive loadings from POMS Positive Mood; PANAS Positive Affect;
POMS Arousal, Elation, Vigor, Friendliness; ARCI Benzedrine Group; VAS Interested, Content, Stimulated;
ARCI MBG, Amphetamine; VAS Elated; and PARS PA. There were high negative loadings from ARCI PCAG;
POMS Confusion, Fatigue; ARCI LSD; POMS Depression, Anxiety, and Anger. The factor thus represents
AMP-induced Positive Agency (ΔPAAMP), with an increase in positively valenced states incentive
motivation (elation, vigor, positive mood, arousal, and interest) and a decrease in aversive and
demotivated states (sedation, fatigue, depression, and anxiety) compared to PBO (Table 1).

MA. Factor I to MA had high positive loadings from POMS Positive Mood; PANAS Positive Affect; POMS
Elation; ARCI BG; POMS Friendliness, Vigor; ARCI MBG; POMS Arousal; ARCI A; VAS Interested, Stimulated,
Elated, Want Alcohol, Content; and PARS PA, with moderate positive loading from ARCI M. There were
high negative loadings from ARCI PCAG; POMS Fatigue, Confusion; and VAS Drowsy, with moderate
negative loading from POMS Depression. The factor thus represents MA-induced Positive Agency
(ΔPAMA), with an increase in positively valenced states of incentive motivation (positive emotion, arousal,
vigor, interest, elation, positive mood) and a decrease in aversive and demotivated states (sedation,
anxiety, depression, and fatigue) compared to PBO (Table 1).

Cross-drug effects. Loadings were similar across drugs, with 18 measures loading greater than |.35| on
ΔPAAMP and ΔPAMA (Table 1). Factor I scores for AMP and MA were positively correlated (ΔPAAMP,
ΔPAMAr = + 0.61, 1-tailed p = 0.001, N = 24), indicating reproducibility of response and factor structure
across the study drugs.

Hypothesis Tests

△

△

△ △
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Glu Effects on Positive Agency. MA. ΔGluMA and ΔGlxMA related positively to ΔPAMA in females and in the
full sample (large, medium effects; Table 2, Fig. 3, Table S1). Findings in males were not signi�cant
(Table 2, Figure S2). AMP. ΔGluAMP related positively to ΔPAAMP in females, a large effect (Table 2, Fig. 3).
ΔGluAMP and ΔGlxAMP �ndings in males and combined sample were not signi�cant (Table 2, Table S1,
Figure S2). These data indicate large effects of ΔGlu on ΔPA in females, accounting for effects at the
sample level.

Table 2

Glu Effects on Positive Agency

A. Positive Agency (AMP) Positive Agency

(MA)

Glu (f)
.61* .52*

Glu (m)
− .03 .31

Glu (m + f)
.27 .44*

 

B. Vigor

( AUCAMP, MA)

Friendliness

( AUCAMP, MA)

Elation

( AUCAMP, MA)

Positive Mood

( AUCAMP, MA)

GluAMP (f)
.59* .68** .52* .56*

GluMA (f)
.51* .55* .63* .61*

 

△

△

△

△

△ △ △ △

△

△
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C. Vigor 1

(
AUCBin1)

Vigor 2

(
AUCBin2)

Vigor 3

(
AUCBin3)

Friendliness
1

( AUCBin1)

Friendliness
2

( AUCBin2)

Friendliness
3

( AUCBin3)

GluAMP

(f)

.28 .59* .59*b,c .48 .65* .61*∞

GluMA

(f)

.51 .46 .33a .29 .44 .53*

Legend.

2A. Relationship of change in Glu and Positive Agency (Factor I), N = 11 females, N = 9,10 males for
AMP, MA, respectively; combined sample N = 20,21 for AMP, MA, respectively.

2B. Consistency in Glu Effects on self-report measures (details in SI). N = 11 females.

2C. Rise in Glu Effects on self-reports over time. N = 11 females.

Abbreviations: AMP = d-amphetamine.  MA= methamphetamine (Desoxyn®).  

f = females.  m = males.   m+f = males and females. 

△AUC = difference in area under the curve (AUC) for self-reports on the drug session minus the AUC for
self-reports on PBO session. 
△GluAMP = AMP-induced change in glutamate vs. PBO.  

△GluMA = MA-induced change in glutamate vs. PBO.  

Bin 1= timepoints prior to MRS (timepoints 1-3, Figure 1).  

Bin 2= timepoints contemporaneous with MRS (timepoints 3-4, Figure 1).  

Bin 3= timepoints following MRS (timepoints 4-8, Figure 1).  

Signi�cant �ndings are in bold.  

**p ≤.01, *p ≤05.

ap < .005 Bin 1 vs. Bin 3, bp < .05 Bin 1 vs. Bin 3, cp < .05 Bin 2 vs. Bin 3 
¥p < .10 Bin 1 vs. Bin 3.

Contributions of Biological Sex. Magnitude and direction of relationships of ΔGlu and ΔPA did not differ
signi�cantly between males and females (ΔGlxMA and ΔPAMA: zobserved=.91, p = .18, n.s.; ΔGluMA and

△ △ △
△ △ △

△

△

△

△
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ΔPAMA: zobserved=.47, p = .32, n.s.; ΔGluAMP and ΔPAAMP: zobserved=1.37, p = .085, n.s.), indicating a lack of
sexual dimorphism in ΔGlu effects on ΔPA.

Follow-up Tests
Speci�city. ΔGlnMA and ΔGlnAMP were unrelated to ΔPAMA and ΔPAAMP, respectively (Table S1), indicating
speci�city of effects to Glu rather than Gln.

Phenomenology. AMP. GluAMP related positively to rise in POMS Elation, Positive Mood, Friendliness,
Arousal, and Vigor; VAS Elated; and PANAS Positive Affect (r’s from + .52 to + .74, p < .05), and negatively
to POMS Confusion, Anxiety, and ARCI LSD; all large effects (r’s from − .56 to − .69, p≤.05 to .005; Table 2,
Table S2). MA. GluMA related positively to rise in POMS Elation, Positive Mood, Friendliness, and Vigor;
ARCI A, M, BG, and MBG, all large effects (r’s from + .51 to + .72, p≤.05 to .01; AUCMA in Table 2B, Table
S2). Together these data indicate Glu effects on elation, positive mood, friendliness, and vigor, with
replication across AMP and MA.

Coherence. Measures’ strength of relationship to Factor I (i.e., loadings on Factor I) predicted their
strength of relationship to Glu, a large effect ( GluAMPr = 0.95, p = 5x10− 10 (1-tailed); GluMAr = 0.63,
p = .0015 (1-tailed)). Self-report measures thus related to ΔGlu to the extent they loaded on PA (Fig. 3F-G),
evidence of coherence of Glu effects across self-report instruments.

Timing. AMP.    GluAMP correlated positively to bin2 and bin3 Vigor and Friendliness (r’s from + .59 to
+ .65, p < .05). There was no relationship to bin1 (Table 2). These data indicate GluAMP predicted current
and subsequent emotion (Fig. 1; Figure S3). MA. GluMA correlated positively to bin 3 Friendliness (r = 
+ .53, p < .05). There was no relationship to bins1 or 2 (Table 2). These data indicate GluMA predicted
subsequent emotion (Fig. 1; Figure S3).

Manipulation & Validity Checks
Drug e�cacy. Drug effects on self-reports and summary scores (i.e., scored measures, AUC values,
Factor I scores) were highly signi�cant. These data indicate e�cacy of the study drugs and validity of
summary score calculations, quality control and data reduction procedures (Supplemental Results,
Tables S3-S4).

Subjective responses & timing bins.    AUC values differed by bin, with rise in value over time
(Supplemental Results, Figure S3). AUC and PCA Factor I responses did not differ by sex
(Supplemental Results, Table S5). These data indicate feasibility of time-dependent prediction of emotion
by Glu, and an overall lack of sex differences in the subjective response to AMP and MA.

Statistical Power. The sample of 24 had high power (1-β = .96) to detect large effects (d = .80), adequate
power (1-β = .80) to detect medium effects (d ≥ .60), and low power (1-β = .16) to detect small effects (d 
= .20). There was high power (1-β = .83) to detect large correlations (r ≥ .5) and low power (1-β ≤ .42) to
detect small to medium correlations (r ≤ .3).

△

△

△

△

△ △ △

△

△

△

△

△

△

△

△

△
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DISCUSSION
There were six sets of �ndings.   Experimentally-induced change in neocortical Glu was positively related
to rise in reports of positive agentic states in the sample.  These effects were speci�c to Glu and
unrelated to Gln, evidence of speci�city.  Effects were signi�cant in females, who accounted for results at
the sample level.   Further, self-reports related to DGlu to the extent they loaded on agency (DPA, Factor I),
indicating cohesion across measures.   Follow-up analyses indicated DGlu speci�cally related to rise in
subjective stimulation, vigor, friendliness, elation, positive mood, positive affect, and alleviation of
anxiety.   Timing analyses indicated Glu predicted current and later emotion.  Together these results
indicate acute rise in neocortical Glu relates to rise in positively valenced agentic emotion, with capacity
for concurrent and prospective prediction.   Potential mechanisms and implications are below.  

Our main �nding was a robust positive relationship of experimentally-induced DGlu and positive agentic
emotion in females (Table 2, Figure 3).  This effect was large in size and occurred for AMP and MA,
indicating reproducibility across study drugs and test days (Figure 3).  Induced emotion was independent
of Gln (Table S1), indicating speci�city of glutamate.   Effects in females accounted for patterns at the
group level.  Thus our major �nding was the strong, speci�c, reproducible, positive relationship of rise in
neocortical Glu and positive agentic states in females.

This �nding is consistent with prior work indicating pharmacologic- and recovery-related reduction in Glu
relates to reduction in agentic phenomena.  For instance, in rodents pharmacologic blockade of
glutamatergic receptors - via microinjection of mGlu2/3 antagonist LY341495 to the nucleus accumbens -
reduces behavioral markers of appetitive motivation and reward ‘liking’ (Richard and Berridge, 2011).  In
adults recovering from stimulant dependence, early drug abstinence is characterized by increased
depression and reduced Glx and Glu in posterior cingulate, precuneus, and right inferior frontal
cortex (O'Neill et al, 2014).  Our �ndings complement and extend this work, indicating acute increase in
neocortical Glu precedes and contributes to positive agentic states in healthy individuals.    

While Glu-emotion effects were signi�cant in females, relationships did not differ in magnitude or
direction as a function of biological sex.   This indicates a lack of sexual dimorphism in subjective effects
of Glu.  Females’ larger glutamatergic response to AMP and MA compared to males (White et al,
2018) provides a larger predictable range of experimentally-induced Glu in females.  Similarly, truncated
or mixed Glu response in males (White et al, 2018) reduces predictable range and statistical signi�cance
of relationships in males.  Given the small sample size of males and females in the present design,
investigation of gender differences in larger samples is warranted.   

Follow-up tests indicated Glu affected speci�c emotional states.  Rise in Glu related to increase in
subjective stimulation, vigor, friendliness, elation, positive mood, positive affect (r’s=+.51 to +.74, all
p<.05) and alleviation of anxiety (r=-.61, p<.05).  Vigor, friendliness, elation, and positive mood were
associated with AMP- and MA-induced DGlu (Table 2, Table S2), evidence of replicability.  In
addition DGlu predicted self-reports to the extent these measures loaded on the factor of agency (Factor I;
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r=.95, p=5x10-10 for AMP; r=.63, p=.0015 for MA; Figure 3).  Thus DGlu related to self-reports to the extent
they involved an incentive motivational component (i.e., a positive agentic response).  These data
demonstrate coherence of Glu effects on subjective states, with �ndings generalizable across study
conditions (AMP, MA), measures (vigor, friendliness, elation, positive mood), and data reduction
approaches (Factor 1, AUC; Figure 2).

Effect timing was informative, with drug-induced change in Glu shaping both concurrent and later reports
of positive emotion (DGlu r=+.59 to +.65, p’s<.05 with AMP; DGlu r=+.53, p<.05 with MA).  Change in
neocortical Glu preceded or co-occurred with self-reports (timing in Figure 1), indicating contribution of
Glu to current and subsequent emotion.  Positive emotions stayed higher throughout the period of testing,
lasting �ve hours post-drug and 2.5 hours post-Glu assessment (Figure 1, Table 2, Figure S3).   This
duration of effects has therapeutic implications, as Glu may provide a marker to target and personalize
interventions in MDD, substance use disorder, and to improve overall well-being during periods of health.
 The �ndings are also consistent with prior work indicating drug-induced Glu predicts extent and
magnitude of drug high and drug liking, and the positive relationship of dACC Glu and trait measures of
positive agency at rest (White et al, 2021b; White et al, 2018).

Together these �ndings are consistent with clinical and preclinical literature that demonstrate heightened
vulnerability to psychostimulants in females.   In animal studies, females show enhanced behavioral
sensitization to psychostimulants compared to males (McCormick et al, 2005; Van Swearingen et al,
2013). In human studies, drug users who are female develop psychostimulant dependence more rapidly
and to greater extent than males (Anker and Carroll, 2011).  National epidemiologic data further indicate
females’ earlier chronological age of �rst use of cocaine and amphetamine, and females’ more rapid
progression from initial use to drug dependence compared to males (Becker and Hu, 2008).  Responses
to psychostimulants are thus modulated by biological sex in ways that facilitate females’ rapid
acquisition and persistence of drug dependence.  Our �ndings indicate a role of neocortical glutamate in
subjective experience after drug ingestion, with pronounced effects in females.  These subjective effects
may shape both the etiology and trajectory of stimulant dependence and MDD.  Heightened glutamate-
mediated learning of contextual cues, drug-cue associations, and glutamate-mediated reward processing
in females would contribute to more rapid acquisition and severity of drug dependence in females
compared to males.  In the context of MDD, our �ndings advance Glu as a novel treatment target for
medication and adjunctive treatment for positive emotion recovery (Cole et al, 2022).

            The present study has both strengths and weaknesses.  Strengths include use of a within-subjects,
placebo-controlled crossover drug challenge design; assessment of subjective states through multiple
self-report instruments at eight time points on three test sessions per participant; and rigorous procedures
for data quality and data reduction.  Use of within-subjects, repeated-measures assessment of states
provide deep phenotyping of subjective states, emotion, visceral and somatic sensations, and
metacognition suitable for analysis with experimentally-induced change in Glu.  
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            Limitations included the modest sample size, low statistical power to detect sexual dimorphism in
Glu effects on emotion, and relatively high CRLB uncertainty for Gln due to the PRESS acquisition.  While
relative CRLBs are common practice in reporting MRS data quality and 20% is a common threshold, this
threshold is likely overly conservative for Glu and Gln (Kreis, 2016).  As Gln is di�cult to distinguish from
Glu at the present TE at 3T, future studies should implement acquisition parameters that more effectively
differentiate Gln from Glu.  The present measures of Glx, Glu and Gln include both metabolic pools and
neurotransmitter levels of Glu and Gln, as MRS supplies data on the total tissue metabolite within the
voxel.  Future work can utilize larger samples, assess ovarian, testicular, and adrenal hormones;
epigenetics; sex-dependent gene expression; and social constructions of gender.   

            In summary, we here identify a robust positive relationship of acute rise in dACC glutamate and
positive agentic subjective states in healthy females.  Timing was concurrent and prospective, with no
relationship to pre-MRS emotion.  To our knowledge, this is the �rst demonstration that acute change in
glutamatergic compounds in human cortex alters a broad range of positive agentic states in well
individuals.  The study thus indicates a substantive, mechanistic contribution of neocortical Glu to
positive agentic emotion that is readily observed in females.
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Figure 1

Experimental Approach

Legend
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(A) Experimental design and timing of test sessions. Sessions were 5.5 hours in duration (340 min total).
X-axis denotes time relative to administration of the blinded study capsule at time 0 (black arrow).
Participants entered the scanner 90 minutes after administration of the study capsule and structural MRI
scan was conducted (denoted in gray shading). MR spectroscopy was conducted 140 to 150 minutes
post-capsule (denoted in burgundy shading). Mood data were collected at half hour intervals (8
timepoints, TP) outside the scanner to assess subjective drug effects (open arrows, see methods for
details). Participant arrival and departure times are indicated (start, stop symbols).

(B) Voxel placement in dorsal anterior cingulate cortex (dACC). Left: axial; middle: sagittal; right: coronal
views, respectively. Images are in neurological orientation (R=R). (C) Example MRS spectra with labeled
peaks. The solid red curve overlay is the �tted spectrum from LCModel, and the raw data shown in light
gray.  Labeled peaks: Glu = glutamate, Gln = glutamine.   

Figure 2

Data Reduction

Legend

Data reduction procedure for within-subject self-report measures. AUC = area under the curve. △AUC =
AUC on drug session minus AUC on placebo session. PCA = principal components analysis. AMP = d-
amphetamine. MA= methamphetamine (Desoxyn®).
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Figure 3

△ Glu Effects on Positive Agency

Legend

Relationship of Change in Glx and Glu with PCA Factor I and subcomponents.



Page 23/23

(A) MA-induced △Glx and Positive Agency, N=21 males and females, p<.05

(B) MA-induced △Glu and Positive Agency,  N=21 males and females, p<.05.

(C) MA-induced △Glx and Positive Agency, N=11 females, p<.05.

(D) MA-induced △Glu and Positive Agency, N=11 females, p<.05.

(E) AMP-induced △Glu and Positive Agency, N=11 females, p<.05.

(F)  Factor I loadings predict relationships with AMP-induced

Glu, r = .95, p=5x10-10.  The �nding explains 91% of the variance in relationships of self-report measures
and △Glu, R2 = .91.  

(G) Factor I loadings predict relationships with MA-induced

Glu, r = .63, p = .0015.  The �nding explains 40% of the variance in the relationships of self-report
measures and △Glu, R2 = .40.  

Summary.  Panels A - E indicate positive relationship of drug-induced Glu, as assessed by change in Glx
and Glu compared to PBO, and induced Positive Agency (Factor I scores).  This effect was due to large
effects in females (panels C - E).  Panels F - G indicate the relationship of self-report measures and drug-
induced change in glutamate.  Individual self-report measures correlated with Glu to the extent they
loaded on Factor 1 (Positive Agency).
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