Patients
The Institutional Review Board of Shanghai Ninth People’s Hospital approved this retrospective study, and the requirement for informed consent was waived. The following criteria were adopted for patient selection: 1) primary thyroid tumor; 2) patients underwent both conventional DWI and ultrasound scan before treatment; 3) masses with short axis ≥10 mm; 4) magnetic resonance (MR) images could be acquired and interpreted. Through a comprehensive search of our institutional medical report database from July 2017 to January 2019, we identified 100 patients (mean age, 49 years; range, 23–79 years) with 137 nodules (mean short axis, 18 mm; range, 5–76 mm). The final diagnoses based on histopathological results in 137 nodules, and the diagnostic results of DWI and ultrasound were compared.
Image acquisition
DWI examination
All MR imaging (MRI) examinations were performed on a 3.0 T scanner (Philips Ingenia 3.0T; Amsterdam, the Netherlands). The head and neck coils were placed over the thyroid surface. Patients were placed in a supine position with their neck, back, shoulders relaxed and instructed to breathe smoothly and avoid swallowing.
The MRI acquisition parameters were: T1WI turbo spin echo (TSE) (repetition time [TR]=450 ms, echo time [TE]=20 ms, thickness=3 mm,gap=1 mm, field of view [FOV]=240 mm × 240 mm, matrix=300 × 240; T2WI DIXON-TSE (TR=2500 ms, TE=100 ms, thickness=3 mm,gap=1 mm, FOV=240 mm × 240 mm, matrix=300 × 240); DWI (TR=400 ms, TE=70 ms, thickness=3 mm,gap=1 mm, FOV=240 mm × 240 mm, matrix=220 × 180). The b values were 0 and 1000 s/mm2.
Ultrasound examination
All ultrasound examinations were performed on a ultrasound scanner (Toshiba-Aplio 400; Tokyo, Japan). The probe frequency was 5-12 MHz. During examination, the patient was in a supine position, with the head slightly backward to fully expose the neck. The probe was placed over the thyroid region. The nodule boundary, echo, blood flow, calcification, and peripheral lymph node enlargement were observed.
Image analysis
Apparent diffusion coefficient (ADC) measurements were made by two radiologists with 3 and 7 years of experience in head and neck imaging, who were blinded to the clinical information and diagnosis. DWI image analysis was performed on a Philips post-processing workstation to measure the average ADC value of each nodule (b value 0, 1000 s/mm2) and the SIRs on T1WI and T2WI. For the ADC value, a region of interest (ROI) of the same size on different sections was selected for multi-point measurement, and the average value was obtained. The ROIs were selected while avoiding cystic degeneration, hemorrhage, and necrosis as much as possible. The SIR was calculated for each sequence as a ratio of signal intensity of the thyroid nodule to that of the paraspinal muscle.
Ultrasound examination was performed by a radiologist with 7 years of experience in head and neck imaging, who was blinded to clinical information and diagnosis. The Thyroid Imaging Reporting AND Date System (TI-RADS) classification method was used in the ultrasound diagnosis report, which stipulated that grade 1–3a was benign and grade 3b–5 was malignant. Finally, each nodule was given a grade and qualitative diagnosis.
Statistical analysis
SPSS 20.0 software (IBM Corp., Armonk, NY) was used for statistical analysis. Differences in ADC, T1SIR, and T2SIR in patients with benign and malignant thyroid nodules were evaluated by independent sample t tests. Difference were considered statistically significant when P < 0.05. The ADC thresholds for differentiating benign and malignant thyroid nodules were obtained from receiver operating characteristic (ROC) curves. Finally, the diagnostic values of ultrasound and DWI were compared by paired chi-square tests.