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Muhammad Junaid-U-Rehman1,∗, Grzegorz Kudra1, Jan Awrejcewicz1

Abstract

Nonlinear chains of atoms(NCA) are complex systems with rich dynamics, influ-
encing various scientific disciplines. Lie symmetry approach is considered to analyze
the NCA. The Lie symmetry method is a powerful mathematical tool for analyz-
ing and solving differential equations with symmetries, facilitating the reduction of
complexity and obtaining solutions. After getting the entire vector field by using the
Lie scheme, we find the optimal system of symmetries. Using the optimal system
we have converted assumed PDE into nonlinear ODE. The new auxiliary scheme in-
troduces novel approaches to complement existing techniques, enhancing accuracy
and simplifying computations. Travelling wave solutions describe wave-like prop-
agation in systems, while graphical behavior visually represents relationships and
patterns in data or mathematical models. The multiplier method enables the iden-
tification of conservation laws, fundamental principles in physics that assert certain
quantities remain constant over time. Understanding these concepts contributes to
a deeper comprehension of nonlinear chains of atoms and their dynamics, fostering
advancements in related fields.
Keywords: Nonlinear chains of atoms, Lie symmetry approach, Multiplier scheme,
Conserved vectors, New auxiliary method.
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1 Introduction

The Lie symmetry analysis approach [1–8] has many applications in different fields, in-
cluding physics, engineering, and mathematical modeling. It can be used to study a wide
range of nonlinear PDEs, including those that are difficult to solve using other meth-
ods. Additionally, this approach provides a powerful tool for developing new theories
and models that improve our understanding of complex physical systems. Overall, the

1



Lie symmetry analysis approach is a valuable tool for studying nonlinear PDEs and has
many significant applications in different branches of science and engineering.

The Lie symmetry analysis approach [12–22] is a powerful method used in the study
of nonlinear PDEs. It is based on the concept of Lie groups and Lie algebras, which
are mathematical structures that describe the symmetries of a system. The Lie symme-
try analysis approach involves transforming a given PDE into an equivalent system of
ODEs using a Lie group transformation. This transformation is constructed from a set
of symmetry generators that preserve the form of the original PDE. Once the PDE is
transformed into an equivalent system of ODEs, it is possible to use various analytical
and numerical methods to solve the system and obtain the solution to the original PDE.
Additionally, the Lie symmetry analysis approach can be used to identify the conservation
laws that govern the physical behavior of the system under study. These conservation
laws provide important insights into the underlying physical mechanisms responsible for
the observed behavior of the system.

Nonlinear PDEs [23–26] play a critical role in mechanical engineering by modeling
complex phenomena such as stress and deformation in materials, fluid flow, and heat
transfer. Unlike linear PDEs, which can be solved analytically in many cases, nonlinear
PDEs require numerical or approximate methods to solve due to their complex nature.
The use of nonlinear PDEs is essential in the design and optimization of mechanical
systems such as turbines, engines, and aircraft. They also provide a framework for pre-
dicting the behavior of materials under different conditions, such as high temperatures,
high pressure, and rapid deformation. By incorporating nonlinear PDEs into mechanical
engineering models, engineers can improve the accuracy of their designs and ensure that
their systems are safe, reliable, and efficient.

Nonlinear chains of atoms [27–33] have a wide range of applications in mechanical
engineering, particularly in the study of materials science and solid mechanics. These
models provide valuable insights into the behavior of materials at the atomic level, en-
abling the design of high-performance materials for various applications. Applications
of nonlinear chains of atoms include the study of thermal conductivity in materials, in-
vestigating the deformation and fracture mechanisms of materials under various loading
conditions, and studying the dynamics of crystals, such as the propagation of waves and
the formation of defects. Nonlinear chains of atoms models are crucial in understanding
the behavior of materials under extreme conditions and can inform the design of materi-
als for high-performance applications, leading to the development of new materials with
enhanced mechanical and thermal properties.

The new auxiliary method [10,11] is a recently proposed method for solving challenging
nonlinear PDEs. This method involves introducing an auxiliary variable and constructing
a system of coupled equations involving both the original variables and the auxiliary
variable. The resulting system of equations can be solved using numerical methods to
obtain the solution to the original PDE. The new auxiliary method can handle highly
nonlinear PDEs that are difficult to solve using other numerical methods, such as the finite
difference approach or the finite element scheme. Additionally, this method can be used
to obtain exact solutions to certain types of nonlinear PDEs, reducing the computational
cost required to solve some types of nonlinear PDEs. Overall, the new auxiliary method
is a promising tool for solving challenging nonlinear PDEs in various fields, including
physics, engineering, and mathematical modeling.

Conservation laws of nonlinear PDEs [36–39] are essential concepts that relate to the
principle of conservation of physical quantities like mass, energy, and momentum. These

2



laws are expressed in terms of PDEs and have crucial importance in various fields, in-
cluding engineering, physics, and mathematical modeling. They provide a mathematical
framework to predict the behavior of complex physical systems accurately and develop
new theories and models to improve our understanding of the underlying physical mech-
anisms. Furthermore, conservation laws play a vital role in the design and analysis of
physical systems and the development of numerical methods for solving challenging non-
linear PDEs, making them fundamental concepts in the study of nonlinear PDEs.

2 Formation of model

The Hamiltonian of the system is Foroutan et al. [34],

H =
∑

n

{

∑

l ̸=n

V(|Un − Ul|) +
1

2
mU .2

n

}

, (1)

where m is the mass of the atom, V(|Un − Ul|) stands for nonlinear potential and dot
indicates for derivative w.r.t time. We consider l = 1± n and the subsequent potential:

V(hnl) =
1

4
βih

4
nl +

1

3
αih

3
nl +

1

2
γih

2
nl, (2)

where hnl is relative displacement among l − th atom and n − th. The index i shows
the distinct interactions via the particles. We omit our focus on the first and second
neighbors. From Eqs. (1) and (2) through Hamiltonian equations which are

∂H

∂Un

= −P .
n,

∂H

∂P .
n

=
∂Un

∂τ
= U .

n,

which gives us the equation of motion;

d2Un

dτ 2
=γ1

(

Un+1 − 2Un + Un−1

)

+ γ2
(

Un+2 − 2Un + Un−2

)

+ α1

{

(

Un+1 − Un

)2 −
(

Un − Un−1

)2
}

+ α2

{

(

Un+2 − Un

)2 −
(

Un − Un−2

)2
}

+ β1

{

(

Un+1 − Un

)2 −
(

Un − Un−1

)2
}

+ β2

{

(

Un+2 − Un

)2 −
(

Un − Un−2

)2
}

.

(3)

In Hamiltonian’s equations, P .
n stands for generalized momentum. Assuming that the

δ(inter-atom spacing) is small enough so that the continuum limit is reached, we substi-
tute δn → χ. Then

Un±1 = U ± δUχ +
1

2
δ2Uχχ ±

1

6
δ3Uχχχ +

1

24
δ4Uχχχχ + . . . (4)

and

Un±2 = U ± 2δUχ +
4

2
δ2Uχχ ±

8

6
δ3Uχχχ +

16

24
δ4Uχχχχ + . . . , (5)
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hence, Eq.(3) can be supposed as Foroutan et al. [35]

∂2U
∂τ 2

= δ2o
∂2U
∂χ2

+ po
∂U
∂χ

∂2U
∂χ2

+ qo

(

∂U
∂χ

)2
∂2U
∂χ2

+ r
∂4U
∂χ4

, (6)

with the subsequent constants;

δ2o =
δ2

m

(

γ1 + 4γ2
)

, po =
2δ3

m

(

γ1 + 8α2

)

, qo =
3δ4

m

(

β1 + 16β2

)

, r =
δ4

12m

(

γ1 + 16γ2
)

.

(7)

Here in this paper, we will find out ...... for nonlinear Eq.(6) with the use of appropriate
transformation method.

3 Preliminaries

3.1 New auxiliary approach

Assuming the general form of partial PDE is of the form:

F(U ,Uτ ,Uχ,Uχχ, ...) = 0, (8)

where τ is the time part and χ is the spatial part and U = U(χ, τ) is the dependent
variable. We will follow the following steps.
Step 1: Suppose the new similarity variables or transformation is of the form

U(χ, τ) = H(ϱ), where ϱ = k(χ+ cτ), (9)

where k and c both are actual parameters for equation (8). Putting the Eq.(9) into
Eq. (8) and we get the new ODE below.

P(H,H′,H′′, ...) = 0. (10)

Step 2: Assume the general solution for Eq.(10) is of the form

H(ϱ) =
N
∑

i=0

CiF
iq(ϱ), (11)

in the above solution, the Ci’s are constants and we will fine later and the 1st ODE
satisfied q(ϱ).

q′(ϱ) =
1

ln(F)
{B2F

−q(ϱ) +B1 +B3F
q(ϱ)}, F > 0, F ̸= 1. (12)

Step 3: In this step, we will use the balancing scheme to execute the value of N . For
this, we have to compare the highest order linear and nonlinear terms to find the value
of N .
Step 4: Getting the coefficients of the powers of Fq(ϱ) (i = 0, 1, 2, 3..) by Eqs.(11), (12),
and (8). Then collecting the same powers terms and put it equal to zero which gives us
system of algebraic equations. After solving these system of euations by Maple.
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Step 5: Finally we will get the different family of solutions for Eq.(12) of the form:
Case 1: When B1

2 −B2B3 < 0 and B3 ̸= 0

Fq(ϱ) =
−B1

B3

+

√

−(B1
2 −B2B3)

B3

tan

(

√

−(B1
2 −B2B3)

2
ϱ

)

, (13)

Fq(ϱ) =
−B1

B3

+

√

−(B1
2 −B2B3)

B3

cot

(

√

−(B1
2 −B2B3)

2
ϱ

)

. (14)

Case 2: When B1
2 −B2B3 > 0 and B3 ̸= 0

Fq(ϱ) =
−B1

B3

+

√

(B1
2 −B2B3)

B3

tanh

(

√

(B1
2 −B2B3)

2
ϱ

)

, (15)

Fq(ϱ) =
−B1

B3

−
√

(B1
2 −B2B3)

B3

coth

(

√

(B1
2 −B2B3)

2
ϱ

)

. (16)

Case 3: When B1
2 +B2B3 > 0 and B3 ̸= 0 and B3 ̸= −B2

Fq(ϱ) =
B1

B3

+

√

(B1
2 +B2

2)

B3

tanh

(

√

(B1
2 +B2

2)

2
ϱ

)

, (17)

Fq(ϱ) =
B1

B3

+

√

(B1
2 +B2

2)

B3

coth

(

√

(B1
2 +B2

2)

2
ϱ

)

. (18)

Case 4: When B1
2 +B2B3 < 0, B3 ̸= 0 and B3 ̸= −B2

Fq(ϱ) =
B1

B3

+

√

−(B1
2 +B2

2)

B3

tan

(

√

−(B1
2 +B2

2)

2
ϱ

)

, (19)

Fq(ϱ) =
B1

B3

+

√

−(B1
2 +B2

2)

B3

cot

(

√

−(B1
2 +B2

2)

2
ϱ

)

. (20)

Case 5: When B1
2 −B2

2 < 0 and B3 ̸= −B2

Fq(ϱ) =
−B1

B3

+

√

−(B1
2 −B2

2)

B3

tan

(

√

−(B1
2 −B2

2)

2
ϱ

)

, (21)

Fq(ϱ) =
−B1

B3

+

√

−(B1
2 −B2

2)

B3

cot

(

√

−(B1
2 −B2

2)

2
ϱ

)

. (22)

Case 6: When B1
2 −B2

2 > 0 and B3 ̸= −B2

Fq(ϱ) =
−B1

B3

+

√

(B1
2 −B2

2)

B3

tanh

(

√

(B1
2 −B2

2)

2
ϱ

)

, (23)

Fq(ϱ) =
−B1

B3

+

√

(B1
2 −B2

2)

B3

coth

(

√

(B1
2 −B2

2)

2
ϱ

)

. (24)

Case 7: When B2B3 > 0, B3 ̸= 0 and B1 = 0

Fq(ϱ) =

√

−B2

B3

tanh

(
√
−B2B3

2
ϱ

)

, (25)
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Fq(ϱ) =

√

−B2

B3

coth

(
√
−B2B3

2
ϱ

)

. (26)

Case 8: When B1 = 0 and B2 = −B3

Fq(ϱ) =
−(1 + e2B2ϱ)±

√

2(1 + e2B2ϱ)

e2B2ϱ − 1
. (27)

Case 9: When B1
2 = B2B3

Fq(ϱ) =
−B2(B1ϱ+ 2)

B1
2ϱ

. (28)

Case 10: When B1 = k, B2 = 2k and B3 = 0

Fq(ϱ) = eϱ − 1. (29)

Case 11: When B1 = k, B3 = 2k and B2 = 0

Fq(ϱ) =
eϱ

1− eϱ
. (30)

Case 12: When 2B1 = B2 +B3

Fq(ϱ) =
1 +B2e

1

2
(B2−B3)ϱ

1 +B3e
1

2
(B2−B3)ϱ

. (31)

Case 13: When −2B1 = B2 +B3

Fq(ϱ) =
B2 +B2e

1

2
(B2−B3)ϱ

B3 +B3e
1

2
(B2−B3)ϱ

. (32)

Case 14: When B2 = 0

Fq(ϱ) =
B1e

B1ϱ

1 + B3

2
eB1ϱ

. (33)

Case 15: When B2 = B1 = B3 ̸= 0

Fq(ϱ) =
−(B2ϱ+ 2)

B2ϱ
. (34)

Case 16: When B2 = B3, B1 = 0

Fq(ϱ) = tan

(

B2ϱ+ c

2

)

. (35)

Case 17: When B3 = 0

Fq(ϱ) = eB1ϱ − B2

2B1

. (36)
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3.2 Multiplier approach

Supposing the Eq.(8) and applying the following steps below:
1). Definig the total differential as:

Di =
∂

∂χi
+ Ui

∂

∂U + Uij

∂

∂Uj

+ ..., i = 1, 2, 3...m, (37)

2). Defining the Euler operator as below:

δ

δU =
∂

∂U −Di

∂

∂Ui

+Dij

∂

∂Uij

−Dijk

∂

∂Uijk

+ ... , (38)

3). Let us define n-tuple f = (f1, f2, f3, ..., fm), i = 1, 2, ...m,

Dif
i = 0, (39)

eq.(39) is said to be the conservation laws and it is fulfils the all results of Eq. (8).
4). The purpose of Λ(χ, τ,U) of the Eq. (8):

Dif
i = Λ(χ, τ,U)H, (40)

for some function U(µ1, µ2, ..., µm).
5).We will obtain the determining equations for Λ(χ, τ,U) after calculating the derivative
of Λ(χ, τ,U) in Eq.(40):

δ

δU (Λ(χ, τ,U)H) = 0. (41)

Eq. (41) depends for some function U(µ1, µ2, ..., µm). Finally, when we calculate the
Λ(X, t,U) with use of Eq. (41), the conservation laws can be acquired by Eq. (40).

4 Lie group analysis of Eq. (6)

Here, we are supposing the Lie approach for assumed Eq.(6). Now, suppose the one-
parameter Lie group of infinitesimal transformations on (τ, χ,U) given by

τ̄ = τ + ε ζ1(τ, χ,U) +O(ε2),

χ̄ = χ+ ε ζ2(τ, χ,U) +O(ε2),

Ū = u+ ε η(τ, χ,U) +O(ε2),

and ε ≪ 1 is a Small parameter. The associated Lie algebra of infinitesimal symmetries
is generated by vector fields

X =ζ1(τ, χ,U)∂τ + ζ2(τ, χ,U)∂χ + η(τ, χ,U)∂U . (42)

Eq. (42) creates a symmetry of Eq. (6), and X satisfy the Lie group conditions

Pr(4)X

(

∂2U
∂τ 2

= δ2o
∂2U
∂χ2

+ po
∂U
∂χ

∂2U
∂χ2

+ qo

(

∂U
∂χ

)2
∂2U
∂χ2

+ r
∂4U
∂χ4

)

|Eq.(6)=0 = 0.
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The Pr(4)X for X can be written as:

Pr(4)X =X+ ηχ
∂

∂Uχ

+ ηττ
∂

∂Uττ

+ ηχχ
∂

∂Uχχ

+ ηχχχχ
∂

∂Uχχχχ

, (43)

furthermore, we have































ηχ = Dχ(η)− UχDχ(ζ
1)− UτDχ(ζ

2),

ηχχ = Dχ(η
χ)− UχχDχ(ζ

1)− UτχDχ(ζ
2),

ητ = Dτ (η)− UχDt(ζ
1)− UτDτ (ζ

2),

ηττ = Dτ (η
τ )− UττDτ (ζ

1)− UχτDt(ζ
2),

ηχχχ = Dχ(η
χχ)− UχχχDχ(ζ

1)− UτχχDχ(ζ
2).

(44)

Let (x1, x2) = (χ, τ), where Di can be written as:

Di =
∂

∂χi
+ Ui

∂

∂U + Uij

∂

∂Uj

+ ..., i = 1, 2.

Substituting the values of ηi which gives us the following vectors:

X1 =
∂

∂χ
, X2 =

∂

∂τ
, X3 =

∂

∂U , X4 = τ
∂

∂U . (45)

We see that
[Xi,Xj] = 0, where i, j = 1, 2, 3.

5 Optimal system

In this section, we observe that from the obtained vector field Eq. (45), the X = {X1,X2}
forms an abelian algebra. So we can use the (42) and get:

£1 = < X1 >,

£2 = < X1 + k1X2 > .
(46)

5.1 Similarity reduction of Eq. (6)

Here, we will find the similarity variables and analytical results for Eq.(6).

5.1.1 £1 =< X1 >

Using the vector £1, we get the new variable

u(τ, χ) = H(ϱ), where ϱ = χ, (47)

putting the (47) into Eq. (6), which gives us

U(τ, χ) = m1τ +m2 (48)

where m1 and m2 are integration constants.
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5.1.2 £2 =< X1 + k1X2

Using the vector £2, we get the new variable

u(τ, χ) = H(ϱ), where ϱ = χ+ k1τ, (49)

putting the (49) into Eq. (6), which gives us

6(k2
1 − δ2o)H′ − 3po(H′)2 − 2qo(H′)3 − 3rH′′′ = 0. (50)

5.2 Application of new auxiliary method

Here, our aim is to construct the wave patterns for Eq.(6) from Eq.(50) with use of
proposed technique. Using the balancing method and we obtain N = 1. Using the value
of N = 1 in (11) and we have

H(ϱ) = Co + C1F
q(ϱ). (51)

We have to put Eq.(51) into Eq.(50) and we get the system of equation after comparing
the coefficients of Fq(ϱ). With the use of Maple, we have solved the obtained system of
equations and get the following results.

C0 = V1, C1 = −12rB3

po
, k1 = ±

√

rB2
1 − 4rB2B3 + δ2o . (52)

Using Eq.(52) into Eq.(51) and which gives us the following set of solutions.

U(χ, τ) = V1 −
12rB3

po
Fq(ϱ), where ϱ = χ±

√

rB2
1 − 4rB2B3 + δ2o τ (53)

where V1 is orbitraryconstant.
Case:1 When B1

2 −B2U3 < 0 and B3 ̸= 0

U1(χ, τ) = V1 −
12rB3

po

{−B1

B3

+

√

−(B1
2 −B2B3)

B3

tan

(

√

−(B1
2 −B2B3)

2
ϱ

)}

, (54)

U2(χ, τ) = V1 −
12rB3

po

{−B1

B3

+

√

−(B1
2 −B2B3)

B3

cot

(

√

−(B1
2 −B2B3)

2
ϱ

)}

. (55)

Case:2 When B1
2 −B2B3 > 0 and B3 ̸= 0

U3(χ, τ) = V1 −
12rB3

po

{−B1

B3

+

√

(B1
2 −B2B3)

B3

tanh

(

√

(B1
2 −B2B3)

2
ϱ

)}

, (56)

U4(χ, τ) = V1 −
12rB3

po

{−B1

B3

−
√

(B1
2 −B2B3)

B3

coth

(

√

(B1
2 −B2B3)

2
ϱ

)}

. (57)

Case:3 When B1
2 +B2B3 > 0 and B3 ̸= 0 and B3 ̸= −B2

U5(χ, τ) = V1 −
12rB3

po

{

B1

B3

+

√

(B1
2 +B2

2)

B3

tanh

(

√

(B1
2 +B2

2)

2
ϱ

)}

, (58)

U6(χ, τ) = V1 −
12rB3

po

{

B1

B3

+

√

(B1
2 +B2

2)

B3

coth

(

√

(B1
2 +B2

2)

2
ϱ

)}

. (59)
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Case: 4 When B1
2 +B2B3 < 0, B3 ̸= 0 and B3 ̸= −B2

U7(χ, τ) = V1 −
12rB3

po

{

B1

B3

+

√

−(B1
2 +B2

2)

B3

tan

(

√

−(B1
2 +B2

2)

2
ϱ

)}

, (60)

U8(χ, τ) = V1 −
12rB3

po

{

B1

B3

+

√

−(B1
2 +B2

2)

B3

cot

(

√

−(B1
2 +B2

2)

2
ϱ

)}

. (61)

Case: 5 When B1
2 −B2

2 < 0 and B3 ̸= −B2

U9(χ, τ) = V1 −
12rB3

po

{−B1

B3

+

√

−(B1
2 −B2

2)

B3

tan

(

√

−(B1
2 −B2

2)

2
ϱ

)}

, (62)

U10(χ, τ) = V1 −
12rB3

po

{−B1

B3

+

√

−(B1
2 −B2

2)

B3

cot

(

√

−(B1
2 −B2

2)

2
ϱ

)}

. (63)

Case: 6 When B1
2 −B2

2 > 0 and B3 ̸= −B2

U11(χ, τ) = V1 −
12rB3

po

{−B1

B3

+

√

(B1
2 −B2

2)

B3

tanh

(

√

(B1
2 −B2

2)

2
ϱ

)}

, (64)

U12(χ, τ) = V1 −
12rB3

po

{−B1

B3

+

√

(B1
2 −B2

2)

B3

coth

(

√

(B1
2 −B2

2)

2
ϱ

)}

. (65)

Case: 7 When B2B3 > 0, B3 ̸= 0 and B1 = 0

U13(χ, τ) = V1 −
12rB3

po

{

√

−B2

B3

tanh

(
√
−B2B3

2
ϱ

)}

, (66)

U14(χ, τ) = V1 −
12rB3

po

{

√

−B2

B3

coth

(
√
−B2B3

2
ϱ

)}

. (67)

Case: 8 When B1 = 0 and B2 = −B3

U15(χ, τ) = V1 −
12rB3

po

{−(1 + e2B2ϱ)±
√

2(1 + e2B2ϱ)

e2B2ϱ − 1

}

. (68)

Case: 9 When B1
2 = B2B3

U16(χ, τ) = V1 −
12rB3

po

{−B2(B1ϱ+ 2)

B1
2ϱ

}

. (69)

Case: 10 When B1 = k, B2 = 2k and B3 = 0

U17(χ, τ) = V1 −
12rB3

po

{

eϱ − 1

}

. (70)

Case: 11 When B1 = k, B3 = 2k and B2 = 0

U18(χ, τ) = V1 −
12rB3

po

{

eϱ

1− eϱ

}

. (71)
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Case: 12 When 2B1 = B2 +B3

U19(χ, τ) = V1 −
12rB3

po

{

1 +B2e
1

2
(B2−B3)ϱ

1 +B3e
1

2
(B2−B3)ϱ

}

. (72)

Case: 13 When −2B1 = B2 +B3

U20(χ, τ) = V1 −
12rB3

po

{

B2 +B2e
1

2
(B2−B3)ϱ

B3 +B3e
1

2
(B2−B3)ϱ

}

. (73)

Case: 14 When B2 = 0

U21(χ, τ) = V1 −
12rB3

po

{

B1e
B1ϱ

1 + B3

2
eB1ϱ

}

. (74)

Case: 15 When B2 = B1 = B3 ̸= 0

U22(χ, τ) = V1 −
12rB3

po

{−(B2ϱ+ 2)

B2ϱ

}

. (75)

Case: 16 When B2 = B3, B1 = 0

U23(χ, τ) = V1 −
12rB3

po

{

tan

(

B2ϱ+ c

2

)}

. (76)

Case: 17 When B3 = 0

U24(χ, τ) = V1 −
12rB3

po

{

eB1ϱ − B2

2B1

}

. (77)

Where ϱ = χ±
√

rB2
1 − 4rB2B3 + δ2o τ is given according to.

(a) 3D (b) 2D

Figure 1: Graphics of u1(χ, τ) for the choice of parameters δo = 1, r = 2, po = 3, B1 = 2,
B2 = 1,B3 = 2, τ = 1.
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(a) 3D (b) 2D

Figure 2: Graphics of u2(χ, τ) for the choice of parameters δo = 2, r = 1, po = 1, B1 = 3,
B2 = 2,B3 = 1, τ = 2.

(a) 3D (b) 2D

Figure 3: Graphics of u3(χ, τ) for the choice of parameters δo = 1.5, r = 1, po = 4,
B1 = 4, B2 = 3,B3 = 5, τ = 2.

(a) 3D (b) 2D

Figure 4: Graphics of u4(χ, τ) for the choice of parameters δo = 5, r = 0.5, po = 3.5,
B1 = 1.5, B2 = 3.5,B3 = 2.5, τ = 3.
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(a) 3D (b) 2D

Figure 5: Graphics of u19(χ, τ) for the choice of parameters δo = 6, r = 3, po = 5, B1 = 1,
B2 = 3,B3 = 5, τ = 5.

6 Graphics and discussion

Graphical representation of obtained solutions is discussed here in this section. By using
the new auxiliary method we have constructed the analytical behaviour of considered
model in the form of trigonometric functions, hyperbolic trigonometric functions, expo-
nential, and algebraic type results. The graph of the tangent function is periodic with a
period of Π and has vertical asymptotes at odd multiples of Pi

2
. As χ approaches these

vertical asymptotes, the tangent function approaches positive or negative infinity depend-
ing on the direction of approach. The graph of the cotangent function is also periodic
with a period of Π and has horizontal asymptotes at even multiples of Π. As χ approaches
these horizontal asymptotes, the cotangent function approaches zero. We have plotted
the behaviour of some obtained results. Fig.(1) shows the graphical behavior of u1(χ, τ)
for the choice of parameters δo = 1, r = 2, po = 3, B1 = 2, B2 = 1,B3 = 2, τ = 1. Fig.
(2) represent the behaviour of u2(χ, τ) for the choice of parameters δo = 2, r = 1, po = 1,
B1 = 3, B2 = 2,B3 = 1, τ = 2. Fig. (3) shows the Graphics of u3(χ, τ) for the choice
of parameters δo = 1.5, r = 1, po = 4, B1 = 4, B2 = 3,B3 = 5, τ = 2. Fig. (4) shows
the Graphics of u4(χ, τ) for the choice of parameters δo = 5, r = 0.5, po = 3.5, B1 = 1.5,
B2 = 3.5,B3 = 2.5, τ = 3. Fig. (5) represent the behaviour of u19(χ, τ) for the choice of
parameters δo = 6, r = 3, po = 5, B1 = 1, B2 = 3,B3 = 5, τ = 5.

7 Conservation laws

In this portion, we will construct the conservation laws by multiplier approach for Eq.(6).
We obtain the determinant equation for Λ(X, t, u) by Eq. (41).

δ

δU

[

Λ

(

∂2U
∂τ 2

− δ2o
∂2U
∂χ2

− po
∂U
∂χ

∂2U
∂χ2

− qo

(

∂U
∂χ

)2
∂2U
∂χ2

− r
∂4U
∂χ4

)]

= 0. (78)

Using Eq.(38), we can write the Euler operator is of the form

δ

δU =
∂

∂U −Dτ

∂

∂Uτ

−Dχ

∂

∂Uχ

+D2
τ

∂

∂Uττ

+D2
χ

∂

∂Uχχ

+DχDτ

∂

∂Uτχ

− ..., (79)
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defining the total derivative operators Dτ and Dχ from Eq. (37).

Dτ =
∂

∂τ
+ Uτ

∂

∂U + Uττ

∂

∂Uτ

+ Uτχ

∂

∂Uχ

...,

Dχ =
∂

∂χ
+ Uχ

∂

∂U + Uχχ

∂

∂Uχ

+ Uτχ

∂

∂Uτ

...,

(80)

computing Eq. (78) and we obtain the following multipliers and conservation laws as:

Λ = C1τ + C2, (81)

by Eqs. (40) and (81), The following conservation laws are found.

T τ =Uτ (C1τ + C2)− C1U ,

T χ =(C1τ + C2)

(−1

3
U3
χqo −

1

2
U2
χpo − Uχδ

2
o − rUχχχ

)

.
(82)

Using Eq. (82) and we get the following two cases of conservation laws.
Case1 : For C1 = 1, C2 = 0, then Λ1 = τ , we get the following fluxes:

T τ
1 = τUτ − U ,

T χ
1 =

−1

3
U3
χτqo −

1

2
U2
χτpo − Uχτδ

2
o − rUχχχτ.

(83)

Case2 : For C1 = 0, C2 = 1, then Λ1 = 1, we get the following fluxes:

T τ
2 = Uτ ,

T χ
2 =

−1

3
U3
χqo −

1

2
U2
χpo − Uχδ

2
o − rUχχχ.

(84)

8 Conclusion

In this research, nonlinear chains of atoms(NCA) are studied. NCA are complex sys-
tems that exhibit rich dynamics and phenomena, making their study crucial in various
scientific fields. The Lie symmetry method provides a powerful mathematical tool for
analyzing and solving differential equations with symmetries, reducing complexity and
obtaining exact or approximate solutions. The introduction of a new auxiliary scheme
enhances existing techniques, offering additional insights, improved accuracy, or simpli-
fied computations. Travelling wave solutions describe wave-like behavior propagating
through systems, while graphical behavior provides visual representations of relation-
ships and patterns in data or mathematical models. The multiplier method allows for
the identification of conservation laws, which are fundamental principles in physics that
state certain quantities remain constant over time. Understanding conservation laws and
utilizing mathematical techniques such as the Lie symmetry method, travelling wave so-
lutions, and graphical analysis contributes to a deeper understanding of nonlinear chains
of atoms and their dynamics.
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