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Abstract
Background

RNA binding proteins (RBPs), especially cell-speci�c RBPs are involved in critical processes such as
alternative splicing of messenger RNAs and translational control, leading to the expression of cell-speci�c
functional proteins. However, the expression pattern of RBPs in different cells of rheumatoid arthritis and
their associated aberrant regulation remain largely unexplored.

Methods

We collected 2141 RNA binding protein genes (RBPs) from literature and identi�ed cell populations
present in rheumatoid arthritis and osteoarthritis control samples using single-cell data. We compared the
changes in the relative proportions of cell classes between them and analyzed RBP expression patterns
speci�c to different cell types. We investigated �broblast cell populations and their cellular
communication with different immune cells. Additionally, we used bulk RNA-seq data from rheumatoid
arthritis and osteoarthritis samples to identify highly conserved variable splicing events and established a
co-variation network of RBPs and these splicing events.

Results

We observed a greater number of down-regulated RBPs in each cell type, except for �broblasts,
endothelial cells, and macrophages, where the number of up-regulated genes was much higher. In
�broblasts from RA and OA patients, we identi�ed 105 upregulated RBPs and 133 downregulated RBPs.
These RBPs were co-expressed with genes enriched in various functional pathways, including
extracellular matrix organization, cell adhesion, collagen �bril organization, and cytokine signaling.
Cellular communication analysis demonstrated enhanced signaling pathways, like CXCL12-CXCR4,
between �broblasts and macrophages in RA. We identi�ed a total of 715 differentially variable splicing
events in our study, and alternative 5' and 3' splicing were the most prevalent. Some RBPs, such as
MBNL2 in endothelial cells and U2AF1, SF3B6, and SF3B14 in �broblast cells, may play a role in the
pathogenesis of RA through splicing regulation.

Conclusion

In this study, we analyzed single-cell datasets to identify the inherent characteristics and abnormal
expression patterns of RBPs in different cell types of patients with RA. Our �ndings revealed that certain
cell-speci�c RBPs were associated with in�ammatory signaling pathways and splicing regulation in RA.
These �ndings suggest that the dysregulation of RBPs may contribute to the development of RA and
highlight potential pathways for therapeutic interventions.

1 Introduction
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Rheumatoid Arthritis (RA) is an autoimmune disease characterized by long-lasting joint in�ammation,
causing in�ammation and eventual deformity, leading to a severe decline in daily activities, work
performance, and overall quality of life(1). Synovial tissue in RA patients is a mixture of various cell
types, including T cells, B cells, monocytes, and �broblasts. Speci�cally, the RA �broblast-like synovial
cells (FLS) play a major part in starting and perpetuating the NF-κB pathway, which causes in�ammation,
excessive multiplying of cells, and the invasion of cartilage(2). A thorough understanding of the role
these cells play and the underlying mechanisms is essential to develop effective treatments and identify
new targets for RA therapy.

Over the past years, several studies have utilized single-cell transcriptome sequencing to analyze and
interpret the interactions between different RA synovial tissue subpopulations of cells. This has enabled
researchers to assess the impacts of treatment on RA and identify new potential targets for therapy (3, 4).
Despite these advances, the triggers that cause in�ammation in RA remain largely unknown. Therefore, a
deeper understanding of the complex molecular mechanisms and cellular processes involved in RA is
crucial to progress towards developing new and effective therapeutic options.

As essential regulators of gene expression, RNA binding proteins (RBPs) have a critical role in dictating
the development and fate of speci�c RNA substrates (5). RBPs contribute to several aspects of RNA
regulation, including but not limited to, mRNA splicing, RNA cleavage and polyadenylation, RNA
localization, RNA stability and editing, and RNA translation (6). RBPs play a crucial role in maintaining
cellular homeostasis by recognizing and regulating hundreds of transcripts. Dysfunctions in RBPs have
been implicated in various diseases(7, 8), including immune-based disorders(9–12). Importantly, cell-
speci�c RBPs are involved in critical processes such as alternative splicing of messenger RNAs and
translational control, leading to the expression of cell-speci�c functional proteins. Aberrant regulation of
RBPs can lead to dysfunctional cellular functions, which is associated with many clinical disorders,
including rheumatoid arthritis(13). While recent studies have explored the function and mechanisms of
RBPs in individual cells(14–16), the expression pattern of RBPs in different cells of rheumatoid arthritis
and their associated aberrant regulation remain largely unexplored.

The introduction of single-cell transcriptome sequencing technology has enabled the identi�cation of
gene expression levels in individual cells within a population, thereby underscoring the presence of
intercellular heterogeneity. Over the last few years, multiple research studies have implemented the single-
cell RNA sequencing (scRNA-seq) approach to unveil the gene expression patterns characteristic of
individual cells during the development and progression of RA. The transcriptional datasets collected
from individual cells provide valuable understanding into the fundamental mechanisms of the disease,
ultimately paving the way for the creation of novel, more precise therapeutic interventions. By examining
these datasets, we aim to discover the inherent characteristics and atypical expression patterns of RBPs
in different cell types affected by RA, thereby providing insight into the potential key involvement of RBPs
in the disease's development.

2 Materials and methods
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2.1 Retrieval and process of scRNA-seq data
For retrieving and processing the scRNA-seq data, we obtained the count matrix of unique molecular
identi�ers (UMI) for the scRNA-seq data from three OA and four RA samples, which were downloaded
from GSE152805 and GSE200815 respectively. After conversion of this UMI count matrix into a Seurat
object (17) using the R package Seurat (version 4.0.4), cells with UMI counts below 1000, genes detected
in fewer than 500 cells, and UMI counts derived from mitochondrial genes exceeding 15% were treated as
low-quality cells and removed from further analysis. Finally, genes detected in fewer than �ve cells were
also removed from downstream analyses.

2.2 Retrieval and process of bulkRNA-seq data
We downloaded publicly available sequence data �les for �ve rheumatoid arthritis tissue and �ve
osteoarthritis tissue samples (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89408) from the
Sequence Read Archive (SRA). Using the NCBI SRA Tool, fastq-dump, we converted the SRA run �les to
fastq format. We trimmed out low-quality bases from the raw reads using the FASTX-Toolkit (v.0.0.13)
(http://hannonlab.cshl.edu/fastx_toolkit/), and performed quality evaluation of the resulting clean reads
with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc).

2.3 Reads alignment and differentially expressed gene
(DEG) analysis
The RNA-seq data sequencing was analyzed as follows: First, the clean reads were aligned to the human
GRCh38 genome using HISAT2 (v.2.2.1) (18). Uniquely mapped reads were then selected for further
analysis, and the reads located on each gene were counted. The expression levels of the genes were
estimated using FPKM (fragments per kilobase of exon per million fragments mapped). The DESeq2
software (version 1.30.1) was utilized to carry out differential gene expression analysis on the reads
count �le (19). For the differential expression analysis, DESeq2 was also used to determine the Fold
Change (FC) and False Discovery Rate (FDR) between two or more samples to identify differentially
expressed genes. The signi�cant differential expression criteria were as follows: FC values more than or
equal to 2 or lower than or equal to 0.5, with an FDR of lower than or equal to 0.05.

2.4 Alternative splicing analysis
The SUVA (v2.0) pipeline was utilized to quantify and de�ne regulatory alternative splicing events (RAS)
(20). The different splicing patterns for each group of alternative splicing events (ASEs) were analyzed,
followed by the calculation of the pSAR (proportion of reads supporting each ASE event) for each SUV
ASE event.
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2.5 RBP-RAS Co-expression analysis
Initially, a comprehensive catalog of RBPs was compiled, consisting of 2,141 RBPs from four previous
reports (6, 21–23). These RBPs were overlapped with the set of Regulatory Alternative Splicing (RAS)
events (pSAR ≥ 50%), and co-expression analysis of RBP-RAS was conducted. To assess the relationship
between the expression levels of each RBP and RAS, the Pearson correlation coe�cient was used. RBP-
RAS pairs with an absolute correlation coe�cient greater than or equal to 0.6 and a p-value less than or
equal to 0.01 were identi�ed and selected for downstream analyses.

2.6 scRNA-seq data preprocessing and quality control
After performing quality control of the UMI count matrix, the data underwent log normalization.
Subsequently, the top 2000 variable genes were used to create potential anchors with the
FindIntegrationAnchors function of Seurat. To further reduce the dimensionality of the scRNA-Seq
dataset, principal component analysis (PCA) was applied to the integrated data matrix. The top 50 PCs
were then selected for downstream analyses using the Elbowplot function of Seurat. Main cell clusters
were identi�ed using the FindClusters function of Seurat with the default resolution setting (res = 0.6). A
total of 18 major cell types were then identi�ed and visualized using tSNE or UMAP plots. Cell types were
annotated using ScTypetools (24), which identi�ed gene markers for each cell cluster using the
"FindMarkers" function in the Seurat package (v4.0.4). Additionally, pre-existing marker genes of
osteoarthritis (25) were also used for this cell type annotation.

2.7 scRNA-seq Differential gene expression analysis
To identify the DEGs, the Seurat package FindMarkers/FindAllMarkers function was utilized with a one-
tailed Wilcoxon rank-sum test, and the p-values were adjusted for multiple testing using the Bonferroni
correction. In computing DEGs, we ensured that the expression difference of all genes on a natural log
scale was at least 0.5, with a difference in the percentage of detected cells of at least 0.15. Furthermore,
the adjusted p-value was set to less than 0.05, ensuring that the results obtained were statistically
signi�cant.

2.8 RBP genes analysis
We �rst compiled a comprehensive catalog of 2,141 RBPs from four prior reports [5–8]. Then, we utilized
the UMI count matrix of RBPs as input for Seurat to perform cell clustering. Using the "FindAllMarkers"
function of the Seurat package, we selected differentially activated RBPs. To identify co-expression
associations between differential RBP and targeted genes, we employed the "grn" algorithm from the
SCENIC (6) python work�ow (version 0.11.2) with the default parameters (http://scenic.aertslab.org). The
networks of the modules consisting of differential RBP and their target genes were visualized using
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Cytoscape (v3.9.1) (https://cytoscape.org/). Additionally, through co-expression analysis by extracting
the differential RBP from �broblasts, we could identify co-expression associations between differential
RBP and their targeted genes.

2.9 Functional enrichment analysis
To determine the functional roles of the studied genes, KOBAS2.0 (26) was used to identify Gene
Ontology (GO) terms and KEGG pathways. Enriched categories were detected through the hypergeometric
test and signi�cance of each term was assessed using the Benjamini-Hochberg FDR controlling
procedure. This ensured the statistical signi�cance of the enriched GO terms and KEGG pathways,
providing meaningful insights into the function of the target genes.

2.10 Cell–cell communication
The determination of cell-to-cell interactions in different cell types, based on the expression of known
ligand-receptor pairs, was carried out using CellChat (27) (v1.0.0). To identify potential communication
networks that could be disrupted or induced in intervertebral disc degeneration, we followed the o�cial
work�ow and inputted the normalized counts into CellChat. Preprocessing functions, such as
identifyOverExpressedGenes, identifyOverExpressedInteractions, and projectData, were applied with
standard parameters. We used the human protein-protein interactions database as a priori network
information. Core functions such as computeCommunProb, computeCommunProbPathway, and
aggregateNet were applied using standard parameters and �xed randomization seeds for the main
analysis. The function netAnalysis_signallingRole was applied on the netP dataslot to identify the
senders and receivers in the network. The results obtained provide signi�cant insights into the potential
cell-to-cell communication networks involved in intervertebral disc degeneration.

2.11 Other statistical analysis
To showcase the sample clustering using the �rst two components, we conducted PCA using the R
package factoextra (https://cloud.r-project.org/package=factoextra). The clustering was based on the
PCA results using Euclidean distance, and performed using the R package pheatmap (https://cran.r-
project.org/web/packages/pheatmap/index.html). Additionally, to compare two groups of replicates, we
utilized the R package speckle (version: 0.0.3) (28). The analysis results provide valuable insights into the
sample clustering and comparisons between replicate groups, contributing to a better understanding of
the underlying factors in the experiment.

3 Results
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3.1 ScRNA-seq analysis of synoviocytes samples from
patients with osteoarthritis and rheumatoid arthritis
identi�ed different cell types.
In this study, we obtained synovial tissue single-cell transcriptome data from the published dataset
GSE200815 for RA patients (4 cases) and selected synovial tissue single-cell transcriptome data from
GSE152805 for OA patients (3 cases) as a control for integration analysis. We then utilized RBP for
single-cell subclustering to analyze the mechanisms of RBP regulation at the single-cell level that differed
between rheumatoid arthritis and OA. Moreover, we collected bulk RNA-seq data from the GSE89408
dataset, and analyzed variable splicing events that were signi�cantly regulated in RA compared to OA
controls using the newly published SUVA software. We constructed a co-variant regulatory network of
RBP and variable splicing events, as illustrated in Fig. 1A. The analyses offered signi�cant insights into
the unique mechanisms of RBP regulation and variable splicing that differentiate RA and OA. These
insights contribute to a deeper understanding of the underlying factors of RA.

Following rigorous data quality control, a total of 33,226 single cells were included in the transcriptome
pro�le analysis. Following normalization of the transcriptomic expression of these cells, principal
component downsizing analysis was applied, and the top 50 principal components were selected for
UMAP (Uniform Manifold Approximation and Projection) downsizing and visualization. Through
unbiased cluster analysis, we identi�ed 17 cell subgroups (Fig. 1B, Figure S1A-1B). Based on the
characteristic expressed genes of the clusters, combined with previously reported synovial cell marker
genes, we identi�ed 9 different cell types (Fig. 1C-D).

We proceeded to compare the relative abundance of cell subtypes across all sample groups, and found
that the RA and OA groups exhibited notably more pronounced alterations. In the RA group, we observed
marked increases in proportions of cells including C2, C12, C7: Endothelial, C6: T, and C14: B, comparing
to the OA group. Conversely, proportions of cells such as C15: Mastcells, C8, C4, and C0: Fibroblasts were
found to decrease (Fig. 1E-F). Gene ontology enrichment analysis showed that up-regulated and down-
regulated genes of each cell type in two comparison groups were enrich in several biological processes
(Figure S1C-1D). We conducted a differential expression analysis between RA and OA groups for each
cell type separately, and Fig. 1G shows the number of genes and differentially expressed RBPs in each
cell type. Our analysis revealed that in each cell type, the count of down-regulated RBPs exceeded that of
up-regulated ones. Nonetheless, when it came to �broblasts, endothelial cells, and macrophages, the
overall number of up-regulated genes vastly outnumbered that of down-regulated genes. Furthermore, In
Fig. 1H, it can be observed that the overall AUC levels of RBPs were comparatively lower in the RA group
as opposed to the OA group, suggesting reduced RBP activity in the RA group, which may affect
transcriptional and post-transcriptional gene regulation. Collectively, these results provide a
comprehensive understanding of the changes in cell composition and changes in rheumatoid arthritis
and OA control synovial cells.
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3.2 ScRNA-seq analysis identi�ed heterogeneity and
regulatory module of cellular speci�c RBP expression
module.
Our aim was to investigate changes in RBP expression patterns in both the OA control group and the RA
group. We conducted unsupervised clustering using Seurat based on the expression of 2,141 reported
RBP genes. We observed that the resulting clusters of RBP expression (referred to as RBP-expressing cell
clusters) were highly cell-type speci�c and correlated with disease status (Fig. 2A, Figure S2A-B). By
analyzing the composition of RBP-expressing cellular taxa in different cell types, we found that for most
cell types, the pattern of RBP expression was highly speci�c to that particular cell type, with an
overwhelmingly dominant RBP-expressing cellular taxon (Fig. 2B). These �ndings provide evidence for
cell type-speci�c RBP expression patterns in both disease states and control groups. Gene ontology
enrichment analysis showed that these RBPs were enrich in several biological processes (Figure S2C). By
shedding light on the function of RBPs, our �ndings help advance the comprehension of their role in
synovial tissue during rheumatoid arthritis and osteoarthritis.

In addition, we found that the composition of RBP expression taxa changed signi�cantly between the RA
and OA groups for almost all cell types. For example, the main RBP expression taxon in the RA group was
R1 for endothelial cells, whereas it was R13 for the OA group (Fig. 2B). This result suggests that different
cell types have speci�c RBP expression patterns that are highly correlated with disease status.
Speci�cally, different RBP expression taxa have speci�c marker RBP genes, and we demonstrated the
expression of these RBPs in different sample subgroups and cell types (Fig. 2C). For instance,
osteoglycine (OGN) and Filamin B (FLNB) is one of the markers of RBPs of R2, and we observed that
these genes are mainly highly expressed in �broblasts (Fig. 2D, Figure S2D). On the other hand,
Muscleblind-like splicing regulator 2 (MBNL2) is one of the markers of RBPs of R1 and is predominantly
expressed in endothelial cells of the RA group (Fig. 2E).

3.3 Functional RBPs are largely regulated in Fibroblasts
cells between RA and OA samples
In particular, �broblast-like synoviocyte (FLS) in RA have been identi�ed as key actors in both the
activation and maintenance of the RA-induced NF-κB pathway, which in turn promotes local proliferation,
production of pro-in�ammatory cytokines, and cartilage invasion. To better understand the potential
functions of RBPs, which are key regulators of transcriptional and post-transcriptional processes, we
isolated �broblast cell classes and conducted secondary clustering and analysis using RBP-Genes. The
resulting RBP-expressing cell classes differed signi�cantly between the OA and RA groups. Speci�cally,
the RA group primarily expressed FR1, FR3, FR4, FR5, FR5, FR6, and FR7, while the OA group mainly
expressed FR0, FR2, FR8, and FR9. These observations indicate that the expression pattern of RBPs
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differs considerably between RA and OA and may have signi�cant implications for the transcriptional
and post-transcriptional regulation of �broblasts (Fig. 3A-B, Figure S3A-B).

In our analysis comparing �broblasts from RA and OA patients, we identi�ed 105 upregulated RBPs and
133 downregulated RBPs. Figure 3C displays the top 20 upregulated and downregulated RBPs. These
differentially expressed RBPs were co-expressed with genes enriched in various functional pathways,
such as extracellular matrix organization, cell adhesion, collagen �bril organization, and cytokine
signaling. These pathways suggest potential roles for RBPs in regulating �broblast proliferation, antigen
presentation, and pro-in�ammatory responses (Fig. 3D-E, Figure S3C). Our study also revealed speci�c
RBPs associated with important cellular pathways in RA, such as YBX3 and EIF4A1 (Fig. 3F-G).
Additionally, we identi�ed signi�cant differences in the expression of important splicing factors, including
U2AF1, SF3B6, and SF3B14, between RA and OA groups (Figure S3D, Figure S2E). These observations
suggest that variations in splicing regulation may contribute to the disease pathology of RA.

3.4 RBP‐mediated �broblasts subpopulations contributed
to the aberrant activation of signaling pathways with
immune cells during rheumatoid arthritis.
scRNA-seq has been applied successfully to predict potential LR interactions, revealing the importance of
crosstalk between different cell types in various disease mechanisms. To investigate further the potential
role of RBPs in the interactions between �broblasts and immune cells, we performed cellular
communication analysis of different RBP-expressing cell populations of �broblasts and immune cells.
Based on our research, we discovered that the level of interconnection and strength between �broblasts
and immune cells was noticeably higher in the RA group when compared to the OA group (Fig. 4A). In
addition, �broblasts and macrophages displayed the highest communication strength among the
different immune cells (Fig. 4B). We then identi�ed several signaling pathways, such as CXCL12-CXCR4,
that were enhanced in RA and known to be associated with the disease (Fig. 4C-D). Lastly, changes in
ligand expression levels of these key signaling pathways could be regulated by RBPs (Fig. 4E).

3.5 Identi�cation of highly conserved RA-associated AS
events co-disturbed with differentially expressed RBPs in
RA and OA patients.
Disruption of normal RBP function can lead to cellular dysfunction by affecting post-transcriptional
processes, such as variable splicing of RNA. To explore further the role of RBPs associated with RA in
variable splicing regulation, we downloaded bulk RNA-seq data from the GSE89408 dataset, which
included �ve RA and �ve OA samples as controls. Given the complex nature of human variable splicing,
we utilized the SUVA software tool, which is a recently developed tool, to identify signi�cant differences in
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variable splicing events between OA controls and RA. Our analysis using SUVA identi�ed 715 differential
variable splicing events, mainly alternative 5' and 3' splicing (Fig. 5A). Among the SUVA-identi�ed splice
events, alternative 5' splice site, cassette exon, exon skipping, and alternative 3' splice site were the most
frequently detected differentially variable splicing events (Fig. 5B).

A single splicing event usually encompasses two transcripts, which make up only a small portion of the
overall gene expression. To identify the leading transcripts where splicing occurs, we screened out 556
splicing events (pSAR > = 50%) that accounted for the dominant transcripts for further analysis (Fig. 5D).
PCA analysis based on the splicing ratio of these dominant transcripts clearly separated the two sample
sets, suggesting that the RNA splicing landscape is closely associated with the development of
rheumatoid arthritis (Fig. 5D). These 556 transcripts hosting the identi�ed splicing events are enriched in
multiple functional pathways, including cytoskeleton organization, GTPase activation (which is
associated with cellular processes such as programmed cell death regulation), and damage repair (Fig.
5E).

RBPs have been identi�ed as crucial regulators of variable splicing. To predict the potential regulatory
relationship between RBPs and variable splicing during rheumatoid arthritis development, Initially, we
identi�ed genes that exhibited a signi�cant difference in expression levels between RA and OA controls.
Our �ndings indicated that a large number of genes were activated during disease progression, with 2183
genes showing up-regulation and 823 genes showing down-regulation, as illustrated in Fig. 5F. Out of
these genes, 209 RBPs showed up-regulation, while 232 were down-regulated, as shown in Fig. 5G-H. We
then overlapped the differential RBPs obtained from scRNA-seq and bulk RNA-seq to identify conserved
regulated RBP genes, �nding three co-up-regulated (SYNE2, S100A9, IFIT3) and four co-down-regulated
genes (RNASE1, GRN, FN1, SORBS2) (Fig. 5G, H, I). To predict the potential regulatory role of RBPs on
variable splicing, we performed a co-variation analysis using these co-regulated RBPs and RAS. After
screening (|correlation| >= 0.6, p-value < = 0.01), we identi�ed RASs that were signi�cantly associated with
these RBPs (Fig. 5J).

4 Discussion
In this study, we utilized single-cell data to identify and annotate cell populations from samples of RA and
OA groups. According to our results, the number of down-regulated RBPs was higher than that of up-
regulated RBPs in each cell type, except for �broblasts, endothelial cells, and macrophages. We observed
distinct expression patterns of RBP genes speci�c to different cell types along with changes between the
OA and RA groups. Speci�cally, we focused on the �broblast cell population and analyzed the RBP genes
speci�cally expressed in the RA group. Our results revealed that RBP‐mediated �broblast subpopulations
contributed to the aberrant activation of signaling pathways with immune cells during rheumatoid
arthritis. Furthermore, we identi�ed 556 transcripts hosting the identi�ed splicing events that were
enriched in multiple functional pathways, including cytoskeleton organization, GTPase activation, and
damage repair in RA patients. The �ndings obtained in our study offer novel perspectives on the intricate
regulatory mechanisms of RBPs in the pathogenesis of RA.
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In recent times, a variety of evidence has emerged that highlights the crucial role played by RBPs in
controlling posttranscriptional regulatory mechanisms that in�uence the immune system in both healthy
and pathological conditions. These regulatory mechanisms impact protein expression patterns by directly
controlling mRNA through processes like pre-mRNA splicing and maturation, mRNA transport to the
cytoplasm, and management of mRNA stability, storage, and translation. According to our results, the
number of down-regulated RBPs was higher than that of up-regulated RBPs in each cell type. These
�ndings are in agreement with previous reports. By employing silencing protocols, studies conducted
both in vitro and in vivo showed that the downregulation of RBPs can signi�cantly impact key regulatory
mechanisms contributing to the pathogenesis of arthritis (29, 30).

Autoimmune diseases arise from an imbalance between immune response activation and suppression.
The dysregulation is the result of overproduction of pro-in�ammatory cytokines, particularly IL-6 and TNF.
The expression of pro-in�ammatory mediator genes is tightly regulated at the post-transcriptional level,
which is mediated by immune-associated RBPs. In the context of RA, decreased levels of RBP activity
suggest that the post-transcriptional regulation of pro-in�ammatory mediator genes may be
compromised. TTP is a well-researched RNA-binding protein that plays a signi�cant role in destabilizing
the mRNA of pro-in�ammatory cytokines. Given its ability to target and reduce the mRNA levels of several
in�ammatory cytokines, including TNF-a, it is generally considered to play a crucial function in the
development of RA pathology (31). This �nding is supported by the research of Yang et al. (32), whose
study reported decreased levels of TTP mRNA in PBMCs collected from patients with RA. Additionally, the
authors identi�ed an association between a SNP (rs3746083) located in the gene encoding for TTP and
RA susceptibility in Chinese RA patients.

We observed a noteworthy �nding that speci�c RBP expression pro�les are highly associated with the
disease state. For instance, Osteoglycin (OGN) is actively involved in regulating various cellular
processes, for instance, cell growth, differentiation, and adhesion. It belongs to the SLRP (small leucine-
rich proteoglycan) family of proteins (33–35). OGN has been implicated in a range of physiological and
pathological processes, including skeletal development (36), tissue in�ammation, cardiovascular disease
(37), and cancer (38, 39). Furthermore, OGN has been shown to modulate collagen �bril organization and
maturation, thereby in�uencing connective tissue integrity. Our analysis revealed that OGN is
predominantly expressed in �broblasts, indicating its potential role in regulating �broblast-speci�c
functions. In addition, MBNL2 is an essential regulator of alternative splicing, and its expression has been
linked to the regulation of endothelial cell differentiation (40–42). Our analysis revealed that MBNL2 is
mainly expressed in endothelial cells of the RA group (Fig. 2E), indicating its possible involvement in the
pathogenesis of RA via its role in splicing regulation in endothelial cells.

Fibroblasts, which are a crucial cell type in the synovium of RA patients, are well-documented to play a
pivotal role in driving the disease process. Through our analysis of �broblasts derived from RA and OA
patients, we identi�ed a total of 105 upregulated RBPs and 133 downregulated RBPs. These differentially
expressed RBPs were found to be co-expressed with genes involved in various functional pathways,
including those related to extracellular matrix organization, cell adhesion, collagen �bril organization, and
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cytokine signaling. Moreover, our study identi�ed speci�c RBPs that were associated with critical cellular
pathways. Our study revealed that certain RBPs were signi�cantly enriched in RA patients, including YBX3
and eIF4A1. YBX3 is classi�ed under RBP, which plays a signi�cant part in the post-transcriptional
regulation of mRNA stability and translation (43). It has been instrumental in a wide variety of biological
processes, including spermatogenesis, development, as well as cellular differentiation and proliferation
(44). On the other hand, eIF4A1, which is a DEAD-box RNA helicase, functions in two major reactions
during translation initiation. Firstly, the loading of mRNA onto the 43S pre-initiation complex is dependent
on the activity of eIF4A1. Secondly, by unwinding RNA secondary structures, eIF4A1 allows the
translocation of the PIC along the 5'UTR of the mRNA that has high structural content (45). These results
suggest that dysregulated expression of RBPs such as YBX3 and eIF4A1 may contribute to the
pathogenesis of RA and highlight their potential as therapeutic targets for this debilitating disease.

The process of alternative splicing plays a crucial role in regulating gene expression across eukaryotic
organisms. This particular process enables the creation of several unique mRNA species from a single
gene. Alternative splicing exhibits a varied range of mechanisms, including exons skipping (removal of
speci�c cassette exons), mutual exclusive exon choice, alternative splicing events (affecting the
boundaries between introns and exons, leading to variations in transcript diversity), and intron retention.
The alternates splicing phenomena can result in mRNAs with varying untranslated regions (UTRs) or
coding sequences, which further impact mRNA stability, translation, and localization. Moreover, variations
in the reading frame due to alternative splicing can produce diverse protein isoforms serving distinct
functions and localizations (46). Dysregulation of this process can lead to changes in gene expression
and alterations in protein function, contributing to various disease states. In our study, we identi�ed a
total of 715 splicing events that were differentially variable, with alternative 5' and 3' splicing being the
most prevalent. Among these splicing events, alternative 5' splice site, cassette exon, exon skipping, and
alternative 3' splice site were the most commonly detected. Interestingly, our analysis revealed that 556
transcripts that host the identi�ed splicing events were enriched in various functional pathways, including
cytoskeleton organization, GTPase activation (associated with programmed cell death regulation), and
damage repair. These �ndings suggest that dysregulated alternative splicing may contribute to the
pathogenesis of RA and highlight potential pathways for therapeutic intervention.

RNA-binding proteins have a vital role to play in the process of alternative splicing, where they take up
binding in pre-mRNA transcripts and facilitate splicing. Acting either as activators or repressors of
splicing events, RBPs can in�uence the inclusion of particular exons in the �nal mRNA transcript either by
promoting or inhibiting the same. Some RBPs can also interact with splice sites or splicing factors to
modulate the splicing process. Dysregulated expression or function of RBPs can lead to aberrant
alternative splicing patterns, which can be attributed to the development and progression of several
disorders, including some cancer (47) and neurodegenerative disorders (48). In our study, we found that
MBNL2 was predominantly expressed in endothelial cells of the RA group, indicating its potential
involvement in the pathogenesis of RA through splicing regulation in endothelial cells. Additionally, we
observed signi�cant differences in the expression of key splicing factors, including U2AF1, SF3B6, and
SF3B14, in �broblast cells between the RA and osteoarthritis (OA) groups. U2AF1 is an RNA-binding
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protein that plays a crucial role in the recognition of the 3' splice site during pre-mRNA splicing. U2AF1 is
essential for initiating U2 small nuclear ribonucleoprotein particle (snRNP) recruitment to the splice site
(49). Several studies have suggested that cells expressing mutant U2AF1 exhibit changes in alternative
splicing patterns. Mutations in U2AF1 may affect the binding a�nity of the protein to RNA, leading to
aberrant splicing patterns and contributing to the development of various diseases, including
myelodysplastic syndromes (50, 51) and lung cancer (52). The SF3b complex is an essential part of the
spliceosome and is a predominant component of U2 and U11/U12 snRNPs (53). It plays a crucial role in
recognizing the branch-point sequence (BPS), stabilizing the U2snRNA/BPS duplex, and preventing any
untimely transesteri�cation (54). SF3b6, a distinctive feature of SF3b in humans, contains an RNA
recognition motif (RRM) that directly interacts with the branch-point adenine. However, studies
demonstrate the lack of speci�city of SF3b6 for the BPS, as it does not differentiate between adenosine
monophosphate, adenine, or single-stranded RNA over double-stranded RNA/DNA (55). Structural
analysis of SF3b6 reveals that its RNA binding region in RRM is obstructed by its own helix α3, the C-
terminal tail, and an interacting region from SF3b1. SF3b14, also known as SAP130, is a subunit of the
SF3b complex. SF3b14 is a critical player in the identi�cation of the BPS during the processing of pre-
mRNAs. It works in conjunction with the other subunits of the SF3b complex and aids in stabilizing the
U2snRNA/BPS duplex, which is crucial for the formation of the spliceosome. This stabilization
mechanism is essential for the proper splicing of pre-mRNAs and ensures a high-quality end product (57).
These �ndings underscore the critical role of RBPs in regulating alternative splicing and highlight their
potential as therapeutic targets for diseases related to aberrant splicing.

In conclusion, we analyzed single-cell RNA sequencing datasets to identify the inherent characteristics
and abnormal expression patterns of RBPs in different cell types of patients with RA. Our �ndings
revealed that certain cell-speci�c RBPs were associated with in�ammatory signaling pathways and
splicing regulation, highlighting their potential role in the pathogenesis of RA. These results suggest the
dysregulation of RBPs may contribute to RA and provide a basis for identifying potential pathways for
therapeutic intervention in the treatment of RA. Additionally, there were certain limitations to our study
that should be considered. For instance, our results were primarily based on data from public databases,
and we did not have cellular or animal experimental results to validate our �ndings. Therefore, further
research is required to fully comprehend the speci�c role and mechanism of certain RPB in the
development and progression of RA.
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Figure 1

ScRNA-seq analysis of synoviocytes samples from patients with osteoarthritis and rheumatoid arthritis
identi�ed different cell types.

A. Schematic illustration of scRNA-seq and bulk RNA-seq data processing.

B-C. UMAP plot of composite single-cell transcriptomic pro�les from all 7 samples from RA and OA.
Colors indicate cell clusters along with annotations.

D. Dot plots showing the expression of representative genes annotated by cell types in each cell type.
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E. Bar plot comparing the proportions of cell populations of each cell type within each sample group.The
P-value were calculated in the speckle R package (version: 0.0.3). *P ≤ 0.05, **≤ 0.01, ***≤0.001.

F. Rank order based on decreasing values of the relative frequency ratio between RA and OA groups.

G. The barplot showing the number of up-regulated and down-regulated DEG and RBP in each cell type
comparing RA and OA samples.

H. The boxplot depicts activation of RBPs in each cell types inferred by SCENIC-calculated AUCell scores.
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Figure 2

ScRNA-seq analysis identi�ed heterogeneity and regulatory module of cellular speci�c RBP expression
module.

A. UMAP plot of scRNA-seq pro�le. Cells are colored according to cell clusters based on RBP-Genes
expression module.
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B. Stacked bar plot comparing the proportions of cell populations of each RBP expression module within
each sample group for different cell types.

C. Unsupervised clustering heatmap showing relative expression (z score, column scaled) levels of RBP
markers of each RBP expression module in single-cell dataset according to different clinical variables
containing cell types, and sample groups.

D. Gene expression level of OGN were represented in the UMAP plot split by different sample groups.

E. Gene expression level of MBNL2 were represented in the UMAP plot split by different sample groups.
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Figure 3

Functional RBPs are largely regulated in Fibroblasts cells between RA and OA samples.

A. UMAP plot of scRNA-seq pro�le. Fibroblasts cells are colored according to cell clusters based on RBP-
Genes expression module.
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B. UMAP displays the distribution of �broblasts cells. The color indicates the RA and OA group.

C. Unsupervised clustering heatmap showing relative expression (z score, row scaled) levels of top20 up-
regulated and down-regulated RBP between RA and OA.

D. Cytoscape shows the co-expression networks comprising up and down regulated DERBP in C. Edges
connect DERBP-target gene pairs while nodes represent genes. DERBP are displayed in larger font size
and red color. Co-expression associations of DERBP and target genes in �broblasts were built by the “grn”
algorithm from SCENIC.

E. Gene ontology enrichment analysis of biological processes of differential RBP co-expressed �broblasts
genes. Top 3 terms were selected for each cluster and heatmap shows the enrichment q-value of these
terms (scaled by column).

F. Gene expression level of YBX3 were represented in the UMAP plot split by different sample groups.

G. Gene expression level of EIF4A1 were represented in the UMAP plot split by different sample groups.
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Figure 4

RBP‐mediated �broblasts subpopulations contributed to the aberrant activation of signaling pathways
with immune cells during rheumatoid arthritis.

A. The number and strength of interactions in RA and OA.
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B. Comparing the interaction number among RBP-Genes expression module of �broblasts and Immune
cells in RA and OA samples.

C. Scatter plot displaying up-regulated ligand-receptor pairs in RA sample group from �broblasts cells to
immune cells comparing with OA samples.

D. Cytoscape shows the co-expression networks comprising RBP. Edges connect RBP- ligand gene pairs
while nodes represent genes. RBP are displayed in larger font size and red color. Co-expression
associations of RBP and ligand genes were built by the “grn” algorithm from SCENIC.

E. Violin plot of CXCL12 and CXCR4 in each cell type split by different sample groups.

Figure 5
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Identi�cation of highly conserved RA-associated AS events co-disturbed with differentially expressed
RBPs in RA and OA patients.

A. Bar plot showing number of regulated AS (RAS) detected by SUVA comparing RA with OA samples.

B. Splice junction constituting RAS events detected by SUVA was annotated to classical AS event types.
And the number of each classical AS event types were showed with bar plot.

C. Bar plot showing RAS with different pSAR. RAS which pSAR (Reads proportion of SUVA AS event) ≥
50% were labeled.

D. Principal component analysis (PCA) based on splicing ratio of RAS with pSAR ≥ 50%. The ellipse for
each group is the con�dence ellipse.

E. Bar plot showing the most enriched GO biological process results of RAS (PSAR ≥ 50%).

F. Volcano plots presenting all DEGs between RA and OA samples with DESeq2. FDR ≤ 0.05 and FC (fold
change) ≥ 2 or ≤ 1/2.

G-H. Venn diagram showing the overlap of DE RBPs from bulk RNA-seq and ScRNA-seq dataset.

I. The heatmap diagram showing the FPKM of 7 overlapped DERBP.

J. The co-disturbed network among expression of co-regulated RBPs showed in C, and splicing ratio of
RAS events (pSAR>=50%) was constructed. |Pearson’s correlation| >=0.6 and pvalue <=0.01 were retained
for RBP and RAS correlation. Ellipses represent RBP. Squares in around indicate RAS.
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