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Abstract
The increasing availability of data and computing power has made machine learning (ML) a viable
approach to faster, more e�cient healthcare delivery. To exploit the potential of data-driven technologies,
further integration of arti�cial intelligence (AI) into healthcare systems is warranted. A systematic
literature review (SLR) of published SLRs evaluated evidence of ML applications in healthcare settings
published in PubMed, IEEE Xplore, Scopus, Web of Science, EBSCO, and the Cochrane Library up to March
2023. Studies were classi�ed based on the disease area and the type of ML algorithm used. In total, 220
SLRs covering 10,462 ML algorithms were identi�ed, the majority of which aimed at solutions towards
clinical prediction, categorisation, and disease prognosis in oncology and neurology primarily using
imaging data. Accuracy, speci�city, and sensitivity were 56%, 28%, and 25%, respectively. Internal
validation was reported in 53% of the ML algorithms and external validation in below 1%. The most
common modelling approach was neural networks (2,454 ML algorithms), followed by support vector
machine and random forest/decision trees (1,578 and 1,522 ML algorithms, respectively). The review
indicated that there is potential for greater adoption of AI in healthcare, with 10,462 ML algorithms
identi�ed compared to 523 approved by the Food and Drug Administration (FDA). However, the
considerable reporting gaps call for more effort towards internal and external validation. Greater
accessibility to healthcare data for developers can ensure the faster adoption of ML algorithms.  

Introduction
Along with other sectors, medicine has become a prominent bene�ciary of arti�cial intelligence (AI)-driven
innovations, owing to the growing availability of data. The transformation of healthcare began with the
widespread adoption of electronic health records (EHRs) in the early 1990s, with up to 93% of primary
care doctors using EHR across 24 OECD countries in 2021 (1).

The growing number of new data sources such as sensors, wearables, and mobile applications is
transforming healthcare. The digital footprint of a patient’s journey produces new insights that inform
decision-making processes and makes them readily available for developing machine learning (ML)
algorithms.

Therefore, the abundance of data can help healthcare organisations develop a more comprehensive
picture of a patient's health over time and also introduce e�ciency gains with new data-driven
technologies.

As AI's potential to improve health outcomes and increase physician e�ciency has been realised, the tech
industry is a key player, alongside pharma and medtech, in the healthcare sector.

Several experts claim that medicine is already moving from the past decade that focused on ML
development to the subsequent decade, driven by the challenges of ensuring ML algorithm deployment in
clinical settings (2).
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Although the International Medical Device Regulators Forum (IMDRF) introduced the terms “software as a
medical device” (SaMD) and “software in a medical device” in 2013, there have been limited efforts thus
far to introduce ML algorithms in healthcare �nancing system similarly as medical devices and
pharmaceuticals.

To understand the state-of-the-art regarding the availability of AI solutions in healthcare, we conducted a
review of systematic literature reviews (SLRs) covering ML algorithms developed for medical purposes.
The objectives of our research were twofold: First, to describe the number of ML solutions already
available in healthcare. Second, we assessed the types of data commonly reported in scienti�c
publications on ML algorithms. Based on our review, we recommend actions for developers and
healthcare payers to facilitate AI integration into medicine.

Methodology
This review was unregistered, and a formal protocol was not prepared. Following the inclusion criteria
“SRL” and “ML” were used with additional key terms such as outcome prediction, diagnosis, screening
and/or treatment of any disease. Only publications reporting the use of ML in healthcare, written in
English and published in peer-reviewed journals until 27 March 2023 were included. Searches were
conducted in PubMed (Pubmed. ncbi. nlm. nih. gov), IEEE Xplore (ieeexplore.ieee.org), Scopus
(www.scopus.com), Web of Science (www.webofknowledge.com), EBSCO (www.ebsco.com), and the
Cochrane Library (www.cochranelibrary.com). 

Four researchers (hereafter referred to as reviewers) performed the initial review in three steps. 

1. Identi�cation: The titles, keywords, and abstracts of all identi�ed publications were independently
screened for relevance by two reviewers. Each reviewer decided whether the publication was relevant
for further review, and consensus resulted in inclusion or exclusion. Any remaining con�ict was
resolved through dialogue.

2. Full-text screening: The full texts of all publications proceeding to this step were obtained and read
independently by two reviewers. Each reviewer decided whether a publication was relevant for
inclusion in the review or for data extraction. A consensus resulted in inclusion or exclusion at this
step and any remaining con�icts were resolved through dialogue.

3. Data extraction: Data were extracted from each SLR in two phases. First, two recent checklists were
analysed to de�ne the set of review criteria (3, 4). Second, a random sample of 30 SLRs was
analysed to assess the most commonly reported information across the included publications. 

All identi�ed publications were entered into the Covidence systematic review software for the remainder
of the review. The PRISMA guidelines for reporting systematic reviews were followed (5).

Data extraction was initiated after the initial process. Each SLR was reviewed for basic descriptive
statistics, including quality assessment and reporting methods, along with an assignment to one of the
three categories.
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1. Categorization (classi�cation of data into categories or clusters) 

2. Prediction (making predictions regarding outputs providing historical data)

3. Discovery (analysis of the structure of data)

ICD-10 codes were used to analyse the therapeutic area covered by the SLRs, and basic statistics such as
the sources of data, accuracy, speci�city, and sensitivity were extracted from the included SLRs for each
publication included separately along with the methods of validation and handling missing data. Details
regarding the external validation with respect to the comparison of AI against humans were also
extracted and reviewed, not only from systematic literature reviews but also from primary studies. The
details of the types of ML techniques were also extracted, and the number of primary studies reporting
the use of different ML algorithm typologies was determined for each SLR included.

Results
A total of 2,342 SLRs were identi�ed. Based on the title and abstract reviews, 1,233 hits were removed
during the identi�cation phase. A total of 686 duplicates were identi�ed (Figure 1). The screening phase
included 423 publications. After full-text analysis, 220 articles (6-226) covering 10,462 ML algorithms
were �nally included in the review (Figure 1).

The number of studies covered by each SLR varied from 4 (166) to 921 (83) articles (Table 1).
Approximately 88% of these articles were published between 2020–2021. In total, 74% of studies
employed PRISMA or other methods to report their SLR. A quality assessment was not conducted in 117
of the 220 included studies (Table 1). A review of the ICD codes revealed that neoplasms (Chapter II) were
the most frequently studied clinical areas, followed by diseases of the nervous system (Chapter VI) (Table
2). As far as the data sources used are concerned, imaging was used most frequently with clinical notes
and lab tests following as the second frequently used (Table 2).

Considerable variations were observed across the included publications in terms of ML accuracy,
speci�city, and sensitivity. ICD-10 Chapters III and XVIII reported the lowest results, while some ML
algorithms for ICD-10 II and VI reported 100% accuracy for all three parameters (Appendix 1). In total, 231
of 10,963studies (7 of 220 SLR) provided information about the accuracy, speci�city, and sensitivity of all
included studies. A total of 3,164 studies (51 SLRs) did not report any results across the three dimensions
(Table 3).

Four thousand nine hundred ninety-two of the 10,963studies (103 of 220 SLRs) conducted internal
validation procedures. The most common approach was the k-fold cross-validation (1,325 studies),
followed by leave-one-out cross-validation (205 cases) (Appendix 2). 

Regarding external validation, a comparison of ML with a human comparator was mentioned in 90 of the
10,963studies (Table 4) (227-313). In total, 50 cases provided evidence of comparable performance, 33
(four) publications con�rmed the superiority (inferiority) of ML over clinicians and three did not indicate
any results. The median number of clinical experts included in the validation was six ( range, 1–511).
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The methodological approach to the missing data was discussed in 144 studies, with the most common
being imputation (Table 5).

In total, over 10,000 ML algorithms were used for the included SLRs (Table 6). The most common
modelling approach was neural networks ( 2,454 studies), followed by SVM and RF/decision trees ( 1,578
and 1,522 studies, respectively).

Discussion
To the best of our knowledge, this is the �rst attempt at systematically studying the integration of ML
algorithms in healthcare.

The key �nding was the low reporting quality of publications dedicated to the development and
adaptation of ML algorithms in clinical practice. There was a signi�cant share of studies without data on
accuracy (44%), sensitivity (72%), and speci�city (75%), as well as internal (65%) and external (99%)
validations. Additionally, 10, 819 of the 10, 963 studies (98%) did not report a methodological approach
for missing data.

The majority of publications across the 220 SLRs aimed at ML solutions towards clinical prediction and
categorisation challenges as well as disease prognosis in oncology and neurology using mainly imaging
data. Natural language processing (NLP) was employed mainly in the SLR reporting applications in
Chapter XXI, in which clinicians’ notes were more likely to be used as data sources. This is consistent with
a recent study that revealed that 189 (85%) of 222 FDA-approved medical devices were intended for use
by healthcare professionals, while 33 (15%) were intended for use by patients (314).

However, the most frequently published type of ML is the arti�cial neural network (ANN). ANNs can detect
complex nonlinear relationships and interactions between the dependent and independent variables
(universal approximators). Deep learning (DL) methods are primarily used in oncological or respiratory
disease studies. The increasing use of DL has been observed during the COVID-19 pandemic. A
systematic literature review of 34 studies indicated that ML can enhance the sensitivity and speci�city of
radiographic images compared with radiologists’ diagnoses.

Our review indicated that apart from neural networks, SVM is the most frequently used after deep neural
networks. The highly similar performance of SVM, particularly in terms of classi�cation accuracy, makes
them rank among the most popular ML classi�ers. In addition to deep networks and SVM, RF is most
often used. It is an ensemble bagging technique whereby numerous decision trees are combined to
obtain the results. This process combines bootstrapping and aggregation. The key advantage of this
approach is that it can be used for classi�cation and regression problems; hence, this is likely one of the
reasons it is used in cardiology. Although RF can provide higher diagnostic accuracy and reduce variance
without increasing bias, the operating time might be extensive in clinical situations. However, boosted
methods known to improve the performance of the corresponding methods have not been extensively
encountered.
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This study has several limitations. First, our review was limited to literature reviews; consequently, certain
information might have been misunderstood if it had not been presented in a given SLR. There may have
been some over-counting of the number of ML algorithms identi�ed. We did not have su�cient details to
understand whether any of the publications used the same data source. Second, we did not review
studies that were missed in any SLR; hence, we could have a biased picture of the utilisation of ML in
healthcare. Third, we restricted the review to studies published in English, thus potentially introducing a
selection bias towards particular countries. Finally, publication bias cannot be excluded, as reports of
unsatisfactory/unsuccessful ML applications are rarely encountered; thus, the actual performance of ML
could be overestimated. Several techniques may be reported differently and may be missed or incorrectly
categorised. For example, principal component analysis (PCA) was also reported in the included SLRs,
despite not being strictly an ML algorithm but a dimensionality reduction technique.

Finally, the main focus in evaluating ML performance was accuracy/sensitivity/speci�city, which is
relevant in classi�cation problems such as disease diagnosis; however, prediction models such as length
of stay (LoS) can be evaluated through other parameters such as residual mean square error (RMSE) or
the coe�cient of determination (R2).

Despite these limitations, this review provides important insights into the current state of AI integration in
the healthcare sector. This indicates that over 10,000 ML algorithms have been developed for healthcare
systems. This is not surprising, considering that AI is becoming a major driver of innovation in healthcare.
For example, the number of patents granted solely for digital communication or medical technologies will
almost double that for drugs by 2022 in Europe (315). A rough comparison indicates that fewer than 60
drugs and over 100 ML/AI-enabled medical devices have been approved annually by the FDA since 2019
(up to 523 until the end of January 2023) (316).

There is an evident gap between the development and utilisation of ML algorithms in healthcare,
prompting us to elicit recommendations for both developers and payers.

Recommendations for ML developers in healthcare
With respect to accuracy, speci�city, and sensitivity, the results of our review appear promising at �rst
glance. It must be considered an impressive picture, with 12 therapeutic areas (out of 22 ICD chapters)
having access to ML algorithms with an accuracy of 100%. In addition, �ve ICD chapters had scores
above 88% (Appendix 1). However, to understand the clinical usability of AI, a review of such absolute
numbers may not provide a full picture. The adoption of ML algorithms in clinical settings requires further
validation. The lack of testing of the predictive power on separate datasets may overestimate ML
performance in practical situations. Validation and cross-validation lead to more accurate estimates of
the performance of the ML model on an unseen dataset. This was the most common approach, but it
was found in only 15% of the included 10,462 studies (Appendix 1). Cross-validation divides the sample
into k subsets, with k subsets used as the test set/validation set and k-1 subsets for training. The model
was trained on the training data and predictions were made using the model on the testing data. The
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sensitivity and/or speci�city were averaged by testing multiple times on k-fold data subsets. As most of
the data were used for �tting, the k-fold approach signi�cantly reduced the bias and variance, as most of
the data were also used in the validation set. That is, it reduces the risk of undertraining when a large
amount of noise is introduced into the training data and, consequently, bias. It helps prevent over�tting,
which occurs when the model attempts to learn each detail and noise of the data, leading to poor model
performance on test sets (317).

The adoption of an appropriate methodology for validation is the bare minimum to approach the concept
of effectiveness introduced for pharmaceuticals. An adequate amount of data is also important for
ensuring the best ML accuracy, speci�city, and sensitivity. The cross-validation performed better with
larger datasets. This is vital, particularly when one considers the importance of ML for diagnosis which
initiates the sequence of subsequent actions. Hence, it is up to the correct prediction that we can allow
the healthcare system to be effective and e�cient. This helps to effectively optimise treatment pathways
for previously diagnosed patients. The availability of data enables healthcare professionals to use
predictive modelling techniques for prevention and prophylaxis actions more than ever.

Generally, the larger the dataset, the greater the statistical power and chances of better prediction. A
negative relationship between sample size and classi�cation accuracy has already been reported (317,
318), and it is important to note that as many as 83 out of 220 systematic literature reviews did not
provide information regarding the size of the datasets used for ML algorithm development.
Simultaneously, the majority of the included SLRs reported a large variance between the smallest and
largest sample sizes, despite having similar clinical objectives (Table 1). However, it is not only the size of
the training dataset that has signi�cant importance, but also the variability of the available data.
Insu�cient diversity in training datasets can lead to inadequate generalisation of the model outputs to
different patient populations. Training models on multi-institutional datasets can be the most effective in
combating model deterioration, and directly combating existing biases in training data can also mitigate
their impact. Some studies have indicated that other sources of potential variety driven by medical device
manufacturer software are adopted, in which AI models trained on cardiac magnetic resonance imaging
(MRI) scans provide different accuracy results from different scanners (319), and more than two-fold
differences were found in the error rate between two different optical coherence tomography (OCT) scans
(320). The limited diversity in the data used for ML is a problem, and a scoping review of publications
related to AI that appeared in PubMed in 2019 revealed that over half of the datasets used for clinical AI
originated from either the US or China (321). In addition, the U.S. and China contributed over 40% of the
publications (321). Barriers to accessing data lead to the overutilisation of available datasets. For
instance, there are only four major databases in ophthalmology, ESSIDOR, DRIVE, EyePACS, and E-
ophtha, with unknown publicly available datasets for ophthalmological images in 172 countries that
constitute roughly 45% of the global population (322).

Cross-validation also helps to ensure that the best ML model is used for a given decision problem. When
studies published comparative data, the results indicate that results differ for different ML methods used
on the same datasets. For instance, across 12 studies using deep neural networks for ECG analysis to
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detect structural cardiac pathologies, the predictive accuracy of the neural network DL models was
superior to that of expert interpretations by board-certi�ed cardiologists. The same was found in the
comparison of computer-aided detection (CAD) systems with 53 general endoscopists for detecting early
neoplasia in patients with Barrett’s oesophagus (BE). The CAD achieved higher accuracy than any of the
clinicians, regardless of the level of endoscopic expertise (323); in both cases, details regarding the
choice of the clinical group were missing.

It should be noted that less than 1% of the included studies reported external validation. This is a
signi�cant gap in the evidence. This has two speci�c consequences for its implementation in clinical
practice. For true external validation, a tuned algorithm must be applied to a new set of data from
different sources. The ultimate objective was to ensure the generalisability of the results with the
adoption of ML across various care compositions. As Bang and colleagues mentioned in their systematic
literature review: “CAD algorithms demonstrated high accuracy for the automatic endoscopic diagnosis
of oesophageal cancer and neoplasms. The limitation of a lack of performance in external validation and
clinical applications should be overcome” (20).

Our �ndings are similar to those of another review of DL studies that focused on the comparison of ML
against human comparators covering the period from 2010 to June 2022. Only ten RCTs (including eight
ongoing RCTs) and 81 non-randomised clinical trials compared diagnostic algorithm performance
against clinicians (324). In another systematic literature review of 82 publications, only 14 studies
compared the diagnostic performance of DL models based on medical imaging with that of healthcare
professionals (325).

Recommendations for regulators and payers
Will improvements in both internal and external validations make ML algorithms directly eligible for
registration and refundable? While the former is likely more about internal validity, as its primary objective
addresses the risk–bene�t ratio, the latter may be more about external validity, as its primary objective is
to address the value for money. Therefore, the next question is how regulators and public payers should
balance the requirements with respect to the evidence of the usability of ML algorithms against the need
to ensure safety and treatment effectiveness. First, given the existence of strict regulations for both
market regulation and pricing and reimbursement for pharmaceuticals and medical devices, it is
necessary to enquire whether similar hurdles of evidence generation should also be introduced for ML
algorithms. To address this issue, we introduce two random facts: only approximately 12% of drugs
entering clinical trials are ultimately approved by the FDA (326), and the average time to reimbursement
for innovative treatments in Europe is 511 days (327). Hence, some claim that overregulation may harm
innovation. However, the development of the majority of AI-driven innovations may be relatively short
compared to other time-consuming research and development technologies, and there is potential for
greater disruption in the healthcare sector by ML algorithms than what we have witnessed thus far.
Therefore, the types of regulations that should be developed to support the adoption of ML algorithms
remain unclear. Overall, there is a need to establish a matrix of criteria to assess the ability of AI solutions
to be integrated into healthcare systems. There are already several recommendations in this respect, such
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as a scoping review of 72 guidelines that, among others, identi�ed quality criteria regarding the
development, evaluation, and implementation of ML in healthcare (328). Other experts have suggested
grouping ML algorithms into one of the following categories: assistive, augmentative, or autonomous
(329).

Still, there is a need for decision-makers (regulators and public payers) to form a common uni�ed
approach towards the development of a common set of standards for the assessment of AI-driven health
technologies, as ML is seldom jurisdiction-speci�c. The maximum accuracy varied from 27% (ICD XVIII)
to 100% (ICD II) across the included studies. Therefore, the question is whether the same rules should be
applied, irrespective of the area under consideration. This may require the involvement of clinical experts
and a clear understanding of the unmet medical needs in each disease �eld. Therefore, our
recommendations �rst focus on interoperability in the journey towards uni�ed P&R regulations for ML
algorithms. The underlying rationale is to ensure the accessibility of data such as electronic medical
records (EMRs) to AI developers. Thus far, there have been limited efforts related to the availability of real-
world data (RWD) for validation as eluded earlier. In the era of digital transformation, we should move
further and ensure the integration of EMRs with unstructured data. Additionally, healthcare decision-
makers must prepare data repositories to facilitate external validation and invest in local data analytics
capabilities to facilitate internal validation. Such efforts should be welcomed by developers, as expressed
by many experts (330). The overarching objective is to ensure that ML algorithms have complete access
to health-related data irrespective of geographical, demographic, or institutional composition. Without an
appropriate understanding of the health problems in question, ML algorithms can only be utilised for the
populations and medical conditions for which they were trained, failing to provide any value for
populations or concomitant medical conditions that were omitted or underrepresented in the training set
owing to racial, ethnic, or simple misrepresentation. Such activities will inevitably bring an additional
burden on both payers and developers; however, AI is as good as the data it possesses, as demonstrated
in this study.

Conclusions
There is still unrealised potential for AI in healthcare. Despite the growing number of published ML
algorithms, there is limited evidence of their impact on clinical practice.

More evidence related to external and internal validation can drive the change towards a greater, more
robust, and safer adoption of AI. Consequently, it may allow payers, clinicians, and patients to increase
their trust in ML algorithms. The key is ensuring that AI development is examined through the lens of the
health problems in question. Unmet medical needs are heterogeneously shaped by patients and
in�uenced by the care setting, baseline characteristics, and cultural differences. Thus, there is a need to
prepare a landing �eld for ML algorithms for healthcare applications. However, we are not there yet.
Hence, by moving forward, AI will only face more challenges. Currently, we are in a different era. Let us be
ready with the right data at the appropriate time.
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Figure 1
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