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Abstract
Although papillary thyroid cancer (PTC) has a good prognosis, its recurrence rate is high and remains a
core concern in the clinic. Molecular factors contributing to different recurrence risks (RRs) remain poorly
de�ned. Here, we performed an integrative proteogenomic and metabolomic characterization of 102
Chinese PTC patients with different RRs. Genomic pro�ling revealed that mutations in MUC16 and TERT
promoter as well as multiple gene fusions like NCOA4-RET were enriched by the high RR. Integrative
multi-omics analysis further described the multi-dimensional characteristics of PTC, especially in
metabolism pathways, and delineated dominated molecular patterns of different RRs. Moreover, the PTC
patients were clustered into four subtypes (CS1: low RR and BRAF-like; CS2: high RR and metabolism
type, worst prognosis; CS3: high RR and immune type, better prognosis; CS4: high RR and BRAF-like)
based on the omics data. Notably, the subtypes displayed signi�cant differences considering BRAF and
TERT promoter mutations, metabolism and immune pathway pro�les, epithelial cell compositions, and
various clinical factors (especially RRs and prognosis) as well as druggable targets. This study can
provide insights into the complex molecular characteristics of PTC recurrences and help promote early
diagnosis and precision treatment of recurrent PTC.

Introduction
Thyroid cancer (TC) is the most common malignant tumor of the endocrine system, and papillary thyroid
cancer (PTC) is the most common type of thyroid malignancy. Although PTC is in general with low-grade
malignancy and favourable long-term prognosis, the recurrence rate is relatively high with up to 20% of
PTC patients having recurrences [1, 2]. The American Thyroid Association (ATA) risk strati�cation system
categorizes the recurrence risks (RRs) into low, intermediate, and high levels based on several recurrence
relevant clinical factors [1]. Uncovering molecular factors associated with PTC RR may promote early
detection of PTC recurrences and better treatment. The elevated serum levels of Thyroglobulin (Tg) were
found associated with PTC recurrence and have been applied for recurrence surveillance in clinical use
[3]. Some recurrence relevant genes and microRNAs were identi�ed based on the transcriptomics data [4,
5]. However, the molecular basis underlying different RRs are still not fully revealed.

High-throughput omics methods have been applied to explore the molecular atlas of PTC [4, 6–10].
Accordingly, the molecular landscape of PTC have been described. The high mutation frequencies in
BRAF, RAS, TERT promoter and gene fusions involving RET have been widely observed [6, 11]. Proteomics
and metabolomics studies described the remarkably altered protein and metabolite pro�les in PTC [8, 10].
Existing omics based studies manifest that PTC is molecularly complex and the molecular characteristics
underlying PTC recurrence require further more in-depth integrative investigations.

To obtain a more comprehensive perspective on the molecular landscape of PTC with different RRs, we
performed an integrated proteogenomic and metabolomic investigation of PTC of 102 Chinese PTC
patients. Our integrated analysis described the complicated and distinctive molecular features of the PTC
patients and identi�ed the RR relevant molecular landscape from the genomic, transcriptional, proteomic
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and metabolism perspectives. We also rede�ned four molecular subtypes of PTC which not only
possessed distinctive molecular characteristics but also showed signi�cant differences in clinical and
pathological scales, especially for RR patterns and recurrence-free prognosis. This multi-omics study
holds immense potential in offering valuable data resources for unraveling the intricate molecular
mechanisms of PTC recurrences, and the rede�ned molecular subtypes can signi�cantly contribute to
enhancing precision diagnosis and treatment of recurrent PTCs, thus leading to improved long-term
survival rates.

Results

Overview of the multi-omics study of PTC
To comprehensively understand the molecular basis of PTC with different RRs, 102 PTC patients were
collected, and �ve different types of omics including genomics, transcriptomics, metabolomics,
proteomics and phosphorylated (phospho)-proteomics were performed (Fig. S1a). Whole exome
sequencing (WES) based genomics data were from 97 tumor tissue samples and 33 paired normal
tissues, the RNA-sequencing (RNA-seq) based transcriptomics data (16925 genes) were from 92 tumor
tissue samples and 34 paired normal tissue samples, metabolomics pro�ling (503 metabolites) were
conducted on 102 tumor tissue samples and 37 paired normal tissue samples, and proteomics (3147
proteins) and phospho-proteomics (652 phospho-proteins) pro�ling were performed on 37 paired tumor-
normal tissues (Fig. S1a).

Genomic pro�ling of the PTC patients
An average of 74 nonsynonymous somatic point mutations and 2 indels were identi�ed in the 97 Chinese
PTC patients. Consistent with most genome studies about PTC [12, 13], the most frequent somatic
mutation gene was BRAF (47%, all belong to V600E mutation, Fig 1a). In addition, frequently mutated
cancer-associated genes also included MUC16 (36%), RNF213 (8%) and MSH6 (7%) (Fig. 1a), showing
higher mutation frequencies than the TCGA PTC dataset [13]. Here, the MUC16 mutations were
speci�cally enriched in the PTC patients with high RR (Fig. 1b), and also associated with multiple
pathological factors including high RR (P=0.027), recurrence (P=0.010), metastatic lymph node size
larger than 3cm (LNM.3cm) (P=0.018), T3 stage (P=0.032), N1b stage (P=0.0061) and M1 stage
(P=0.021) (Fig. 2c, examined by hypergeometric distribution). Meanwhile, this Chinese PTC cohort did not
contain mutations in RAS which were frequently mutated in previous PTC studies [12-14].

There were also frequent TERT promoter mutations (C228T, 14%) in the PTC patients. The mutations
were also signi�cantly enriched in the high RR patients (Fig. 2b and 2d), and frequently overlap with
certain pathological or clinical factors including high RR (P=0.0026), recurrence (P=0.0030), LNM.3cm
(P=0.011), extrathyroidal extension (ETE) (P=0.0013), lymph node metastasis (LNM) (P=0), or extranodal
extension (ENE) (P=0.0077) (Fig. 2d, examined by hypergeometric distribution).
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Gene rearrangements in RET, NTRK and BRAF have been frequently identi�ed in PTC [15]. Here, RET
fusions (CCDC6-RET 8%, NCOA4-RET 5%) were the most frequent fusions, and multiple NTRK fusions
(NTRK3-ETV6, TPR-NTRK1, ETV6-NTRK3) were also identi�ed (Fig. 1a). In addition, several other gene
fusions (FBXO25-SEPTIN14, TLK2-FAM157A, ZNF33B-NCOA4) showing rare frequencies in previous PTC
studies were also identi�ed (Fig. 1a). Interestingly, several gene fusions (NCOA4-RET, TLK2-FAM157A,
ZNF33B-NCOA4, TPR-NTRK1) also showed speci�c enrichment in the high RR (Fig. 1b).

Multi-omics based comparison of tumor and normal tissues
of PTC patients
In addition to the genomic alterations, differentially expressed molecules (DEMs) were recognized by
comparing between tumor and matched normal samples based on the multi-omics pro�ling data (Fig.
S2). As a result, four types of DEMs, including 1674 genes (P<0.01, DeSeq2 [16]), 1864 proteins (P<0.01,
Wilcox-test, paired), 391 phospho proteins (P<0.01, Wilcox-test, paired) and 334 metabolites (P<0.01,
Wilcox-test, paired) were recognized (Fig. 2a). The most signi�cant DEMs in mRNA level included
GGTLC3, C1QL1, PRG4, etc. The most signi�cant metabolites included free fatty acids (FFAs), serine,
citric acid, triglycerides (TGs), sphingosines (SPHs), etc. Increased FFAs in PTC tumors have also been
identi�ed by other metabolomics studies [17]. Proteins like tenascin (TNC), and Fibronectin 1 (FN1) and
dipeptidyl peptidase 4 (DPP4) and phospho-proteins of major vault protein (MVP) and Fibronectin 1
(FN1) showed remarkable up-regulation in the PTC tumor tissues, while proteins thyroid peroxidase
(TPO), desmin (DES) and fatty acid binding protein 4 (FABP4), and phospho-proteins of thyroglobulin
(Tg), DES, hemoglobin subunit delta (HBD) and hemoglobin subunit beta (HBB) were down-regulated in
the PTC tumors (Fig. 2b). TNC was reported to show remarkably high expressions in medullary TC [18],
here, we found it was also up-regulated in the PTC tumors. The up-regulation of FN1 was observed in all
types of TC [19]. TPO, an essential enzyme for the production of thyroid hormones, is expressed mainly in
normal thyroid cells [20]. The expression levels of TPO were decreased in the PTC tumors when
compared to the normal ones.

Pathways enriched by the four types of DEMs were identi�ed respectively (P<0.05, Hypergeometric
Distribution). A large fraction of the enriched pathways were metabolism pathways even for the DEMs in
terms of genes, proteins and phospho-proteins (Fig. 2a), and the pathways enriched by genes, proteins
and phospho-proteins simultaneously all fell in metabolism pathways including valine, leucine and
isoleucine degradation, pyruvate metabolism, glycolysis/gluconeogenesis, as well as arginine and proline
metabolism (Fig. 2c), where glycolysis and pyruvate metabolism were also enriched by the differentially
expressed metabolites (Fig. 2d). Meanwhile, multiple metabolism pathways like oxidative
phosphorylation and citrate cycle were enriched by at least three types of DEMs (Fig. 2d). These together
suggest the remarkable metabolic alterations of the PTC tumor tissues.

The multi-omics based pathway analysis enable a comprehensive description of the pathway alteration.
Taken glycolysis as one example (Fig. 2e), we observed that although most enzymes were down-
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regulated considering the mRNA expressions (e.g., HK1, PGM1), many of them were up-regulated in the
protein or phospho-protein levels (e.g., ENO1, PCK1, PDHA1), suggesting the complicated post-
transcriptional modi�cations in the glycolysis process of PTC patients. Meanwhile, the metabolite
changes were mainly re�ected in the reduced levels of glucose, fructose, glycerate-3P and pyruvate and
increased levels of lactate (i.e., L-Lactate) (Fig. 2e). Increased levels of lactate in TC and many other
caner types have been widely reported [9]. The multi-omics based pathway alteration patterns help further
explain potential mechanisms including alteration of the direct enzyme LDHA (in both mRNA and protein
levels) and associated up/down-stream changes (e.g., ENO1, PKM and pyruvate).

In addition to the metabolism pathways, two cell death relevant pathways, necroptosis and apoptosis,
were also signi�cantly enriched by the DEMs in terms of metabolites, proteins and phospho-proteins (Fig.
2d). Most of the DEMs in the necroptosis and apoptosis pathways were up-regulated in the PTC tumor
tissues than the normal tissues (Fig. S3a-S3b).

Multi-omics based molecular features of PTC with different
RRs
The molecular expression features underlying different RRs of PTC were also characterized (Fig. 3a). The
high RR PTC patients showed higher expression levels in multiple lipids like TGs, FFAs and the other
metabolites like histamine and kynurenine. The high RR also displayed higher expressions in genes like
MMP13, CST1, COL11A1, proteins like Tg, PTRRG, VWA1 and phospho-proteins like EPPK1, ALDH1A1 and
LAMC1. The intermediate RR PTC patients showed higher expressions in metabolites like several FFAs
and kynurenine, genes like IGFN1, LOC391322 and ZNRD1, proteins like FTL, FABP5 and APOB, and
phospho-proteins like C1QB, HBB and HBD. The low RR patients showed higher expressions in
metabolites like PG (18:2_18:2) and OAHFA (18:2_18:1), genes like JSRP1, TCAP and TNNI2, proteins like
ACADL, ABHD11 and FN1 and phospho-proteins like TNC, FN1 and POSTN. Comparing to the alterations
between tumor and normal samples, the high RR PTC tumor samples showed reversed alterations
compared to intermediate or low RR ones considering various molecules (Fig. 3a and Fig. S4a-S4d). For
instance, although the PTC tumor samples showed signi�cant reduced protein levels in Tg compared to
the normal samples, the high RR PTC samples were with higher protein expressions of Tg comparing to
other tumor samples (Fig. 3a and Fig. S4a-4d).

The expression pro�les of the RR relevant molecules especially for the FFAs (FFA 26:2, FFA 24:2, FFA
26:4) and several proteins or phospho-proteins were highly associated (Fig. 3b, spearman correlation >
0.65 or spearman correlation < -0.65 ). The FFA 26:2, Tg, FN1 and 5-Lipoxygenase (ALOX5), phospho-FN1
and phospho-TNC harbored a relative hub position in the correlation network, suggesting their crucial
roles in interactive regulations or signaling communications. ALOX5, as a non-heme iron-containing
enzyme, can catalyze the peroxidation of polyunsaturated fatty acids [21]. Aberrant expression of ALOX5
has been observed in various types of cancers including PTC [22]. Here, we also found ALOX5 showed
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speci�c low expressions in high RR PTC patients, and its alterations were associated with changes in
many FFAs (Fig. 3b-d).

The different RRs also displayed remarkable differences in the pathway pro�les. For high RR, the
metabolites in various metabolism pathways, e.g., biosynthesis of amino acids and glycolysis, were up-
regulated, while the protein levels of metabolic enzymes were mainly down-regulated (Fig. 3c). Except of
the direct metabolism enzymes, there were other proteins showing remarkable associations with
metabolite changes in PTC (Fig. 3f), e.g., protein Tg, phospho-protein MSN (Fig. 3g-3h). For the other
pathways, the high RR showed up-regulations in PI3K-AKT and TGF-beta signaling pathways (based on
the mRNA expressions) and thyroid hormone synthesis (based on the protein expressions) (Fig. S4d).

Integrative correlation analysis of the multi-omics data
Based on a supervised multi-omics integrative analysis method called DIABLO (Data Integration Analysis
for Biomarker discovery using Latent cOmponents) [23] to simultaneously maximize the correlations
among different types of omics and identify key molecules which can discriminate different sample
groups (i.e., high, intermediate and low RR groups and the normal sample group). As a result, the general
correlations between metabolism, proteomics and phospho-proteomics were high (no less than 0.88)
suggesting common information among metabolism, proteomics and phospho-proteomics. By contrast,
the correlations between transcriptomics and the other types of omics were relatively low (less than 0.6,
Fig. 4a), implying the complicated post-transcription modi�cations.

The key molecules were further clustered into four network modules based on their expression pro�les
and inter-correlations, and different modules showed distinctive expression pro�les (Fig. 4b) and
interaction patterns (Fig. 4c). The molecules in the �rst module (M1) were mainly composed of
extracellular matrix (ECM) relevant proteins including FBLN5, NID1, NID2, COL4A2, TINAGL1, VWA1 and
different chains of the laminin proteins (LAMA4, LAMB1, LAMC1) [24], they showed high inter-correlations
and possessed higher expression levels in the high RR groups than the other tumor samples (Fig. 4b-4c),
highlighting the key role of ECM interactions in PTC recurrence. The second module (M2) was composed
of multiple metabolism relevant phospho-proteins like PGK1, PSMF1, PRDX1 and TOM1, they showed
lower expressions in the tumor tissues, especially the high RR tumor tissues (Fig. 4b). Their expressions
were also associated with the proteins IGKV3-15, RPS27A, genes MYH11 and HTR2A (Fig. 4c). The third
module (M3) was the largest module, and molecules in M3 mainly showed higher expressions in the
tumor tissues (regardless of the RRs) than the matched normal tissues (Fig. 4b). There were three sub-
modules in M3 which were aggregated by metabolites, genes and proteins/phospho-proteins (Fig. 4c,
M3). The inter-correlated metabolites in M3 were mainly lipids including phosphatidylcholines (PCs),
phosphatidylethanolamines (PEs) and sphingomyelins (SMs). A large fraction of the proteins/phosph-
proteins were involved in autophagy
(STAT3/ATP6V1B2/ATP6V1C1/HGS/LAMTOR2/VPS13C/HSP90AA1) [25]. The genes were involved in
glutathione metabolism (GGTLC3/GGT2) [25], immune response (IFNE/PRSS2) [25] and exocytosis
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secretion of thyroid-stimulating hormone (TRHR). Meanwhile, TRHR, C1QL4 and AMY1B possessed inter-
connection positions in the network of M3. Molecules in the fourth module (M4) mainly showed higher
expressions in the intermediate and low RR groups (Fig. 4b). Metabolites including FFAs, Diacylglycerols
(DGs) and Phosphatidylglycerols (PGs) and the fatty acid binding protein FABP5 formed an
intermediated layer linking the genes and proteins or phospho-proteins in the network of M4, and multiple
proteins and phospho-proteins (ERAP2/CYBB/CD74/DYNC1H1/RAB7A) in M4 were involved in antigen
processing and presenting [25] (Fig. 4c), indicating the potential interactions between fatty acid
metabolism and adaptive immune functions in PTC.

Integrative strati�cation of PTC patients into four subtypes
based on transcriptomics and metabolomics
Notably, although most high RR samples showed low expressions of molecules in M4, part of them also
show similar expression pro�les with the intermediate and low RR samples (Fig. 4b), implying alternative
molecule subtypes different from the ATA risk classi�cation may exist. We re-strati�ed the PTC patients
into four subtypes based on a consensus integrative clustering analysis (see Methods, Fig. S5a) of the
transcriptomics and metabolomics data (proteomics and phospho-proteomics were not considered here
since the two types of omics were highly associated with metabolomics).

The four rede�ned subtypes showed signi�cant differences in the transcriptional and metabolism pro�les
(Fig. 5a) as well as multiple clinical and mutation features including RR (P = 1.61×10-5, chi-square test), T
stage (P = 4.17×10-2, chi-square test), N stage (P = 2.45×10-3, chi-square test), BRAF mutation (P =
5.67×10-3, chi-square test), TERT promoter mutation (P = 3.49×10-3 for overlap between CS4 and TERT
promoter mutation, examined by hypergeometric distribution ) (Fig. 5a-5b) and ENE (P = 6.95×10-3, chi-
square test, Fig. S5b). The subtype CS1 contained more low RR patients, while the other three subtypes
CS2 to CS4 had more high RR patients (Fig. 5b). The subtype CS2 and CS3 had more T3 stage, N1b stage
patients but had less BRAF and TERT promoter mutations (Fig. 5b). The subtype CS4 had the highest
BRAF and TERT promoter mutation frequencies (Fig. 5b). Moreover, the four subtypes possessed
different prognosis outcomes in terms of recurrence free survival (Fig. 5c), where the subtype CS2 and
CS3 respectively showed the worst and best prognosis among the three high RR enriched subtypes (Fig.
5d-5e). By contrast, the prognosis differences based only on the RRs were not signi�cant (Fig. S5c).
Taken together, the transcriptomics and metabolomics data help rede�ne four meaningful PTC subtypes.

Multi-dimensional characterization of the four PTC
subtypes
The four subtypes were with remarkably distinctive molecular pro�les, and each subtype possessed
various speci�cally up or down regulated genes (Fig. 6a) and metabolites (Fig. 6b). Plasminogen (PLG)
was reported to show signi�cantly lower expressions in serum samples of PTC patients than the nodular
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goiter patients [26]. Here, the mRNA expression levels of PLG were higher in the low RR dominated
subtype CS1 than the other subtypes (Fig. 6a). HSP6A was found to be a potential biomarker to predict
the prognosis of TC [27]. ECM1 is associated with tumor invasiveness and poor prognosis in various
cancer types [28]. Both HSP6A and ECM1 showed CS2 speci�c higher expressions (Fig. 6a). Considering
metabolites, the subtype CS1 had higher levels in FFAs, PGs, Fructose 1,6−diphosphate, etc.; the subtype
CS2 had higher levels in stachydrine; the subtype CS3 had higher levels in TGs, citric acid, etc.; while the
subtype CS4 showed higher levels in acylcarnitines, adenosine, histamine, etc. (Fig. 6b).

In addition to the molecular features, the four subtypes also showed differences in the other key aspects
including tumor sizes, number of metastatic lymph nodes, tumor differentiation scores (TDSs) [6], BRAF-
scores and RAS-scores. The subtype CS2 and CS3 showed larger tumor sizes than the subtype CS1 (Fig.
6c). The subtype CS1 had less number of metastatic lymph nodes than the other subtypes (Fig. 6d). The
subtype CS2 showed higher TDSs than the subtype CS1 and CS4, and the subtype CS3 had higher TDSs
than the subtype CS1 (Fig. 6e). Moreover, both subtype CS2 and CS3 showed higher RAS scores and
lower BRAF scores comparing to the subtype CS1 and CS4 (Fig. 6f-6g). Correspondingly, the subtypes
CS2 and CS3 had lower BRAF mutation frequencies than CS1 and CS4 (Fig. 5b).

Furthermore, the pathway pro�les for the four subtypes were also identi�ed. Although no signi�cant
differences in terms of the tumor sizes, number of metastatic lymph nodes, TDSs, BRAF and RAS scores
were observed between the subtype CS2 and CS3 (Fig. 6c-6g, Fig. S6a), they displayed noteworthy
opposite trends in the pathway pro�les (Fig. 6h-6i). For the metabolism pathways, the mRNA expressions
of enzymes in various metabolism pathways were up-regulated for CS2 and down-regulated for CS3 (Fig.
6h). Reversely, most immune relevant pathways were up-regulated for CS3 but down-regulated for CS2
(Fig. 6i). The up-regulation in various metabolism enzymes in CS2 imply a high metabolite consumption
and can partly explain why few metabolites show higher levels in the CS2 subtype (Fig. 6b).

Single cell RNA-seq analysis has been performed to illustrate the tumor microenvironment of PTC [29].
We used a deconvolution method to predict the tumor microenvironment compositions of the PTC tumor
samples based on the bulk sample RNA-seq data in our study and a previously reported single cell RNA-
seq dataset of PTC [29] (see also Methods). As result, the four subtypes also displayed distinctive cell
compositions, especially for the epithelium sub-populations (Fig. 6j, Fig. S6b), implying the different
subtypes are oriented from different types of malignant thyrocytes (Fig. 6j).

Potential targets or biomarkers of different subtypes
According to the clinical, molecular and pathway features of the four subtypes, we summarized the four
subtypes as low RR and BRAF-like (CS1), high RR and metabolism type (CS2), high RR and immune type
(CS3), and high RR and BRAF-like (CS4).

Candidate druggable targets for each subtype were identi�ed (Fig. 7a). These distinctive expression
pro�les of the four subtypes in the druggable targets, suggesting that different therapeutic strategies
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should be applied to different subtypes in PTC. Carbonic anhydrase 12 (CA12/CAXII) is one metabolic
enzyme and has emerged as a one promising cancer therapeutic target [30]. Germinal center kinase
(GCK) has been identi�ed as a therapeutic target in multiple myeloma with RAS mutation [31]. Both CA12
and GCK can be candidate targets for the high RR and metabolism subtype (CS2) as both CA12 and GCK
showed higher expressions for CS2 (Fig. 7a). PRMT8 can be a potential therapeutic target for colon
tumor [32]. CARTPT may affect thyroid stimulating hormone levels due to its association with the
neuroendocrine function of hypothalamus [33]. PRMT8 and CARTPT can be potential therapeutic targets
of the high RR and immune subtype (CS3, Fig. 7a). CEACAM6 has been regarded as a potential target for
cancer immunotherapies [34], and it showed a CS4 speci�c up-regulation among the four subtypes (Fig.
7a).

In addition, metabolites which showed signi�cantly associations with these potential targets were also
identi�ed (Fig. 7b). These metabolites can be potential biomarkers to indicate different targets. For
instance, CEACAM6 showed high positive correlations with PE (16:0p_16:1) and PE (16:0p_18:1), then
high levels of the two PEs in certain PTC patients may suggest the applicability of the CEACAM6 targets.

Furthermore, to predict the four meaningful PTC subtypes based on the omics data, we constructed a
subtype predictor based on the expression levels of the top ranked genes and metabolites (see Methods).
The predictor can classify the four subtypes accurately, with the areas under the receiver operator
characteristic curves (AUCs) 1, 0.97, 0.97, 0.99 for CS1 to CS4 on the testing dataset (Fig. 7c). Meanwhile,
the predicted probabilities of being the subtype CS2 were associated with recurrence-free survival where
high CS2 probabilities were associated with unfavourable prognosis (Fig. 7d).

Discussion
In this study, we performed an integrative investigation of 102 Chinese PTC patients based on multi-
omics pro�ling including WES, transcriptomics, metabolomics, proteomics and phospho-proteomics. We
identi�ed the molecular and pathway characteristics of these Chinese PTC patients from multi-omics
perspectives. Consistent with previous reports, common mutations in PTC like BRAF, TERT promoter and
gene fusions involved in RET were also revealed. However, no RAS mutation was identi�ed, probably due
to the geographical limitations of the sample collection. Additionally, frequent mutations in MUC16 (36%)
were also observed. Although few MUC16 mutation was reported in PTC studies, MUC16 showed high
mutation frequencies and was associated with prognosis in various types of cancers like gastric cancer
[35], glioma [36] and melanoma [37], and MUC16 mutation was found to be associated with better
response to immune checkpoint inhibitors in solid tumors [38]. Molecular characters in terms of
metabolites, genes, proteins and phospho-proteins were described, these molecular alterations especially
focused on the metabolism processes, especially for the glycolysis and pyruvate metabolism.

Meanwhile, the molecular differences of PTC with different levels of recurrence risks were also portrayed.
Mutations in MUC16, TERT promoter and various gene fusions were speci�cally enriched in the high RR
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PTC patients. The multi-omics based molecular expressional patterns of different RRs were
comprehensively described. It has been reported that elevated post lobectomy serum Tg can be used to
predict high recurrence risk [3]. However, the other information about the molecular characteristics of
different RRs in PTC was limited. Here, we found the high RR was associated with elevated levels in
triglycerides, genes MMP13 and CST1, proteins Tg, PTPRG and VWA1 and phosphorylated EPPK1,
ALDH1A1 and LAMC1, etc. Expression of MMP-13 was reported to be associated with PTC invasion and
metastasis [39]. CST1 up-regulation was found to facilitate cell proliferation, motility, epithelial-
mesenchymal transition and stemness in PTC [40]. LAMC1 was reported to show a higher level in
samples from PTC patients with metastasis [41]. The speci�c molecular features of intermediate and low
recurrence risks were also described (Fig. 4). The complicated correlations between molecules were also
investigated. Interestingly, the high RR showed speci�c high expressions in the ECM relevant protein
dominant correlation network and low expressions in the FFA centered correlation network. Moreover, the
metabolites showed high correlations with proteins and phospho-proteins in general. These �ndings
therefore add to the atlas of biomarkers or targets that may be applied in the diagnosis and treatment of
recurrent PTC.

PTC patients were usually strati�ed into high, intermediate and low RR according to the ATA
recommendations. In this study, we re-strati�ed the PTC patients into four molecular subtypes based on
an integrative clustering analysis using both transcriptomics and metabolomics. The four subtypes were
different from the original RR groups, where the �rst subtype was featured by low RR patients while the
other subtypes were mainly composed of the high and intermediate RRs. Biologically, these four subtypes
showed remarkable differences in terms of hallmark mutations, PTC relevant gene and metabolite
expressions, epithelial cell compositions, as well as metabolism and immune pathway pro�les. Clinically,
the subtypes were also enriched by different pathological factors including the disease stages, lymph
node metastasis and tumor invasion states. Importantly, the four subtypes showed a signi�cant
difference in prognosis, where the subtype CS2 (high RR, less BRAF mutations, up-regulation in
metabolism) showed the most unfavourable recurrence-free prognosis outcomes, and the subtype CS3
(high RR, less BRAF mutations, up-regulations in immune pathways) showed a relatively good prognosis
among the three high RR subtypes, highlighting the important roles of metabolism and immune
pathways in PTC recurrence. Moreover, the expressional patterns of druggable targets for the four
subtypes were distinctive, suggesting subtype speci�c treatment may be needed. The rede�ned subtypes
suggest ATA risk strati�cation should not be used as one single predictor, other molecular pro�les should
be taken into consideration as well to do better and precision management of PTC recurrences.

Overall, we revealed the molecular basis of PTC with different RRs and proposed an effective molecular
strati�cation strategy. We also illustrated the PTC subtypes relevant molecular characteristics, identi�ed
potential drug targets, constructed subtype predictors and highlighted the important role of metabolism in
PTC, thus can provide guidance for PTC strati�cation and promoting precision diagnosis and treatment.

Materials and methods
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Clinical sample collection
The consecutive samples used for this study were selected from patients diagnosed with PTC from Oct
2014 to Jul 2021 at Fudan University Shanghai Cancer Center (FUSCC) in China. The clinical information
of the enrolled PTC patients were also recorded, including age, gender, sex, tumor size, lymph node
metastasis (LNM), extrathyroidal extension (ETE), extranodal extension (ENE), number of metastatic
lymph nodes (LNM.No), TNM staging (AJCC cancer staging system 8th edition) and RR strati�cation
(2015 ATA guideline [42]). Each patient provided a written informed consent for his/her specimens and
information to be used for research and stored in the hospital database, and this study was approved by
the Ethical Committee of the FUSCC. All procedures performed in our study were in accordance with the
ethical standards of our institutional research committee and with the 1964 Helsinki declaration and its
later amendments or comparable ethical standards.

DNA library preparation and WES
The exome DNA sequences were enriched from 0.4 µg genomic DNA using Agilent SureSelect Human All
Exon V6 kit according to manufacturer’s protocol. DNA fragments were end repaired and phosphorylated,
followed by A-tailing and ligation at the 3’ends with paired-end adaptors. DNA fragments with ligated
adapter molecules on both ends were selectively enriched in a PCR reaction. Then, libraries hybridize with
liquid phase with biotin labeled probe, and use magnetic beads with streptomycin to capture the exons of
genes. Captured libraries were enriched in a PCR reaction to add index tags to prepare for sequencing.
Products were puri�ed using the AMPure XP system (Beckman Coulter, Beverly, USA), DNA concentration
was measured by Qubit®3.0 Flurometer (Invitrogen, USA), libraries were analyzed for size distribution by
NGS3K/Caliper and quanti�ed by real-time PCR (3 nM). At last, DNA library were sequenced on Illumina
for paired end 150 bp reads. The clustering of the index-coded samples was performed on a cBot Cluster
Generation System using Illumina PE Cluster Kit (Illumina, USA) according to the manufacturer’s
instructions. After that, the DNA libraries were sequenced on Illumina platform and 150 bp paired-end
reads were generated.

RNA library preparation and RNA-seq
Brie�y, mRNA was extracted and puri�ed from total RNA of the fresh frozen tissues using poly-T oligo-
attached magnetic beads. RNA integrity was measured using the RNA Nano 6000 Assay Kit of the
Bioanalyzer 2100 system (Agilent Technologies, CA, USA). Fragmentation was carried out using divalent
cations under elevated temperature in First Strand Synthesis Reaction Buffer (5X). First strand cDNA was
synthesized using random hexamer primer and M-MuLV Reverse Transcriptase (RNase H). Second strand
cDNA was synthesized by DNA Polymerase I and RNase H. Remaining overhangs were converted into
blunt ends via exonuclease/polymerase activities. After adenylation of 3' ends of DNA fragments,
Adaptor with hairpin loop structure were ligated to prepare for hybridization. To select cDNA fragments of
preferentially 370 ~ 420 bp n length, the library fragments were puri�ed with the AMPure XP system
(Beckman Coulter, Beverly, USA). Then PCR was performed with Phusion High-Fidelity DNA polymerase,
Universal PCR primers and Index (X) Primer. At last, PCR products were puri�ed (AMPure XP system) and
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library quality was assessed on the Agilent Bioanalyzer 2100 system. The library preparations were
sequenced on an Illumina Novaseq platform and 150 bp paired-end reads were generated.

Metabolomics pro�ling
Sample preparation. Samples were prepared by extracting metabolites through a
chloroform/methanol/water system. In brief, sheared tissues were weighed and then 500 µL methanol
with internal standards (including 50 µM L-methionine sulfone and 50 µM D-camphor-10-sulfonic acid for
capillary electrophoresis-mass spectrometry [CE-MS] analysis; carnitine C2:0_d3 at 0.8 µg/mL, carnitine
C8:0_d3 at 0.8 µg/mL, carnitine C16:0_d3 at 0.5 µg/mL, palmitic acid-d3 at 0.8 µg/mL, ceramide d18:1-
d7/18:0 at 0.8 µg/mL, lyso-phospatidylcholine (LPC) 17:0-d5 at 0.8 µg/mL, phosphatidylcholine (PC)
17:0/22:4-d5 at 0.8 µg/mL, and triacylglycerol (TAG) 15:0/18:1/15:0-d5 at 0.8 µg/mL for liquid
chromatography-mass spectrometry [LC-MS] analysis) were added. Mixed grinding apparatus (Scientz-
48) was used for homogenization (35 Hz, 2 minutes) followed by the addition of 500 µL chloroform and
vortex for 30 seconds. After phase breaking using 200 µL water and centrifugation (13,000 g, 4°C, 15
min), the resulting extract was divided into three fractions: one for CE-MS, one for carnitine and acyl-
carnitines analysis by LC-MS, and one sample was used for LC-MS-based lipidomics. 300 µL hydrophilic
layer was transferred for ultra�ltration through a 5-kDa cutoff �lter (Millipore, cat. UFC3LCCNB-HMT).
Simultaneously, the quality control sample was prepared by combining the aqueous phase from each
sample and then �ltered. Then samples were vacuum dried and stored at -80°C until CE-MS analysis. For
carnitine and acyl-carnitines analysis, 150 µL hydrophilic layer and 100 µL hydrophobic layer were freeze-
dried. Quality control sample was also prepared by combining the aqueous phase and then vacuum dried
to evaluate the analytical quality. 300 µL hydrophobic layer was collected and freeze-dried for lipidomics
analysis. At the same time, the quality control sample was prepared by combining the hydrophobic layer
from each sample and then vacuum dried.

Mass spectrometry. CE-MS analysis was conducted on CE (G7100A, Agilent) couple to time of �ight
(TOF) mass spectrometry (G6224A, Agilent). The fused silica capillary (50 µm i.d. × 80 cm, Human
Metabolome Technologies (HMT), Japan) was used for sample separation and the temperature of the
capillary was at 20°C. Two analysis modes were performed. Detailed CE-MS methods were as previously
described [43]. LC-MS analysis was performed by an ACQUITY UPLC system (Waters) coupled with a
tripleTOF™ 5600 plus mass spectrometer (AB SCIEX). For acyl-carnitines analysis, the mobile phases
consisted of phase A = water + 0.1% formic acid and phase B = acetonitrile + 0.1% formic acid.
Development and validation of this rapid method was described before [44]. Lipidomics analysis was
conducted through the C8 AQUITY column (2.1 mm × 100 mm × 1.7 µm, Waters, Milford, MA) and liquid
chromatography was performed with phase A = 40:60 water: acetonitrile + 10 mM ammonium acetate
and phase B = 90:10 2-propanol: acetonitrile + 10 mM ammonium acetate. Detailed LC-MS methods were
performed as previously described [45]. In both ESI (+) and ESI (−) modes, TOF MS full scan and
information-dependent acquisition (IDA) were performed in parallel to acquire high resolution MS and
tandem-MS data simultaneously. In the positive mode, ion source gas 1 and gas 2 were set to 50 psi,
curtain gas to 35 psi, temperature to 500°C, ion spray voltage �oating (ISVF) to 5500 V, and collision
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energy (CE) to 30 V with a collision energy spread (CES) of ± 15 V. In the negative mode, ion source gas 1
and gas 2 were set to 55 psi, curtain gas to 35 psi, temperature to 550°C, ISVF to − 4500 V, and CE to − 30
V with CES of ± 10 V. In the IDA setting, candidate ions with top 5 intensity were selected and subjected to
high resolution tandem-MS analysis. All samples were randomized with respect to run order to avoid
batch effects. Additionally, the quality control samples were identically inserted into the analytical
sequence to monitor the reproducibility of the analytical method.

Metabolite Identi�cation, Quanti�cation, and Data Normalization. For CE-MS-based metabolites, the
qualitative analysis of metabolites was performed using the pre-analyzed metabolite standard library
(HMT), and internal standards were used to adjust the migration time and standardize the metabolite
intensity. Peak extraction and identi�cation were carried out with Quantitative Analysis Software
(Agilent). Acyl-carnitines identi�cation was based on the mass-to-charge ratio (m/z), retention time and
MS/MS pattern. Lipid identi�cation was based on exact mass and MS/MS pattern. The applied database
search engines were HMDB (http://www.hmdb.ca/), Metlin (https://metlin.scripps.edu) and LIPID MAPS
(http://www.lipidmaps.org/). Peakview workstation (AB SCIEX) was used to check MS/MS information of
metabolites and Multiquant (AB SCIEX) was used to obtain the peak areas of identi�ed metabolites. The
raw data from CE-MS and LC-MS were normalized by corresponding internal standards and tissue weight
to minimize errors arising from the sample pretreatment and analysis procedures as much as possible.

Proteomics and phospho-proteomics pro�ling
Sample preparation. The samples were homogenized in lysis buffer consisting of 2.5% SDS/100 mM
Tris-HCl (pH 8.0). Then the samples were subjected to treatment with ultra sonication. After
centrifugation, proteins in the supernatant were precipitated by adding 4 times of pre-cooled acetone. The
protein pellet was dissolved in 8 M Urea/100 mM Tris-Cl. After centrifugation, the supernatant was used
for the reduction reaction (10 mM DTT, 37°C for 1 h), followed by an alkylation reaction (40 mM
iodoacetamide, room temperature/dark place for 30 min). Protein concentration was measured by the
Bradford method. Urea was diluted below 2 M using 100 mM Tris-HCl (pH 8.0). Trypsin was added at a
ratio of 1:50 (enzyme: protein, w/w) for overnight digestion at 37°C. The next day, TFA was used to bring
the pH down to 6.0 to end the digestion. After centrifugation (12000×g, 15 min), the supernatant was
subjected to peptide puri�cation using Sep-Pak C18 desalting column. The peptide eluate was vacuum
dried and stored at -20°C for later use. Phosphopeptide enrichment was performed totally according to a
previous study [46].

LC-MS/MS analysis. LC-MS/MS data acquisition was carried out on an Orbitrap Exploris 480 mass
spectrometer coupled with an Easy-nLC 1200 system. Peptides were loaded through auto-sampler and
separated in a C18 analytical column (75µm × 25cm, C18, 1.9µm, 100Å). Mobile phase A (0.1% formic
acid) and mobile phase B (80% ACN, 0.1% formic acid) were used to establish the separation gradient. A
constant �ow rate was set at 300 nL/min. For DDA mode analysis, each scan cycle consists of one full-
scan mass spectrum (R = 60 K, AGC = 300%, max IT = 20 ms, scan range = 350–1500 m/z) followed by 20
MS/MS events (R = 15 K, AGC = 100%, max IT = auto, cycle time = 2 s). HCD collision energy was set to 30.
Isolation window for precursor selection was set to 1.6 Da. Former target ion exclusion was set for 35 s.
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Database search. MS raw data were analyzed with MaxQuant v1.6.6 using the Andromeda database
search algorithm. Spectra �les were searched against the UniProt Human proteome database using the
following parameters: LFQ mode was checked for quanti�cation; Variable modi�cations, Oxidation (M),
Acetyl (Protein N-term) & Deamidation (NQ); Fixed modi�cations, Carbamidomethyl (C); Digestion,
Trypsin/P; The MS1 match tolerance was set as 20 ppm for the �rst search and 4.5 ppm for the main
search; the MS2 tolerance was set as 20 ppm; Match between runs was used for identi�cation transfer.
Search results were �ltered with 1% FDR at both protein and peptide levels. Proteins denoted as decoy
hits, contaminants, or only identi�ed by sites were removed, the remaining identi�cations were used for
further quanti�cation analysis.

WES data analysis
Adaptors and low-quality reads of the WES sequencing data were removed by Trimmatic (v 0.39) [47],
and the data quality was examined by fastqc (v 0.11.9) [48]. Then, the sequencing data were aligned to
the human genome reference (GRCh38/hg38) using BWA (v 0.7.17) [49] and samtools (v 1.8) [50]. The
somatic gene mutations of tumor samples with matched normal samples sequenced were called by the
function of VarScan2 (v 2.4.4) [51], and the variants of tumor-only samples were called based on the
function mpileup2cns of VarScan2 and stringent downstream �lters. The called variants were annotated
with Annovar [52] (version updated in 2020-06-08) according to multiple databases including refGene,
knownGene, Exome Aggregation Consortium (ExAC03), Catalogue Of Somatic Mutations In Cancer
(cosmic70), avsnp147, 1000 Genomes Project (2015_08), exome sequencing project (esp6500siv2_all)
and clinvar_20220320.

To obtain high quality somatic variants for the tumor-only samples, stringent downstream �lters were
used. These �lters included a base coverage of a minimum of 200 read depth and variant allele fraction
(VAF) of 20% in tumor, and the variants should be at a frequency higher than 1% in the 1000 Genomes
Project, ESP6500 or ExAC database, or present in the COSMIC with two or more occurrences.

TERT promoter mutation
The telomerase reverse transcriptase (TERT) promoter mutation (C228T/C250T) is determined using
ampli�cation-refractory mutation system quantitative polymerase chain reaction (ARMS-qPCR) as
reported in the previous study [53].

RNA-seq data quanti�cation
RNA-seq reads were aligned to the human genome reference (GRCh38/hg38) using HISAT2 (v2.0.5) [54].
HTseq (v 2.0.2) [55] was utilized to count the read numbers of each gene. Normalized gene expression
matrix was obtained based on the counts function of DESeq2 [16] (v 1.26.0) with parameter normalized = 
TRUE.

Gene fusion
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Gene fusions were detected from the RNA-seq data using arriba (v 2.3.0) [56] and STAR-fusion (v 1.4.0,
https://github.com/STAR-Fusion/STAR-Fusion/wiki). The results from the two methods were further
annotated and �ltered base on annoFuseData (https://github.com/d3b-center/annoFuseData), and only
fusions with JunctionReadCount > 3 and evaluated as high or median con�dence were retained.

Differential expression analysis between tumor and normal
samples
For the RNA-seq data, DESeq2 [16] (v 1.26.0) was applied to �nd the differentially expressed genes
between paired tumor and normal samples. For the metabolism/proteomics/phospho-proteomics data,
the differential expressions of each molecule was examined by Wilcox-Test (paired, two sided). Log2FCs
between the paired tumor and normal samples were also calculated. P-values were adjusted by Benjamini
& Hochberg method.

Multi-omics characterization of PTCs with different RRs.

For each RR type, we recognized the RR type associated molecules by comparing the expressions of
molecules (metabolites, mRNAs, proteins, phosph-proteins) between this RR type and the other two RR
types using Wilcox-Test (un-paired, two sides) and corresponding Log2FCs were calculated.

Integrative correlation analysis
The DIABLO [23] method (mixOmics R package, v 6.10.9) was applied to the four types of omics data
(transcriptomics, metabolomics, proteomics, phosph-proteomics, and only molecules showed signi�cant
differences between tumor and normal tissues or speci�c type of RR were taken into account), with the
samples covered by all four types of omics and labeled as high RR, intermediate RR, low RR and normal
tissue. The DIABLO method aims to obtain the common information across multi-omics data by selecting
a subset of molecules which not only maximize the inter-correlations among omics but also discriminate
between different phenotypic labels. The expressional matrixes and the labels were taken as the input of
DIABLO, the latent component number was set as 3, and the number of representative molecules to select
for each latent component considering each type of input omics data was set as 20.

Integrative clustering of PTC patients
Firstly, we tried to cluster the PTC patients based on both transcriptomics and metabolomics pro�les.
Here, ten different multi-omics clustering methods including SNF, PINSPlus, NEMO, COCA, LRAcluster,
ConsensusClustering, CIMLR, MoCluster, iClusterBayes, IntNMF were performed on our data using the
MOVICS [57] R package (v 0.99.17). These methods generated ten clustering records, and a similarity
matrix describing to what extant different samples were grouped into the same clusters in terms of the
ten clustering records was obtained. Then, hierarchical clustering algorithm was applied on the
consensus similarity matrix, and the number of clusters was set as 4 (to ensure each cluster with was
with more than 10 samples).
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TDS, BRAF scores and RAS scores
We calculated the mean log2-transformed expression levels of 16 thyroid function relevant genes de�ned
by the TCGA-PTC study [6] as the TDS scores. Similarly, the BRAF and RAS scores were calculated based
on the mean expression of the upregulated signature genes in the BRAFV600E-mutated and RAS-mutated
samples from the TCGA-PTC mRNA expressions.

Single cell RNA-seq based prediction of cell compositions
in the PTC bulk sample RNA-seq data
The single cell RNA-seq data of PTC samples (GSE184362,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184362) as well as the annotated cell types
were utilized as the input of dampened weighted least squares (DWLS R package, v 0.1.0, https://CRAN.R-
project.org/package=DWLS) to train a cell decovolution model. Then, the trained DWLS model was
applied on the transcriptomics data of the PTC bulk tissue samples to estimate the potential cell
compositions of each tissue sample and a cell type composition matrix was obtained.

Identi�cation of druggable targets of different subtypes
For each subtype, the subtype associated genes and metabolites were recognized by examining the
differential expressions between one subtype and the other three subtypes using DESeq2 for
transcriptomics and limma for metabolomics. Then, the top-10 signi�cant and speci�cally highly
expressed genes for each subtype was recognized using the runMarker function of the MOVICS package.
Then, druggable targets among the top-ranked subtype associated genes were selected based on the
DGIdb database [58].

Subtype prediction model
The transcriptomics and metabolomics data of the 97 PTCs were partitioned into training (60%) and
testing datasets (40%). Importances of the metabolites and genes in predicting the subtypes were
estimated based on random forest (RF) [59] method using the randomForest R package (v 4.6–14). Then,
a subtype predictor was trained based on the expressional pro�les of the top-30 metabolites and top-30
genes using the RF method. The model was applied on the testing dataset, and the prediction
performance was evaluated by ROC curves.

Statistical analysis
Detailed computational and statistical methods are reported in the Methods or �gure legends. All
statistical analyses were performed by R (v 3.6.3 and v 4.0.4). The statistical tests were two-sided by
default, and one-sided tests were speci�cally stated.
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Figure 1

Genetic pro�le of the PTC patients with different recurrent risk

a. Genetic pro�le and associated clinical information of 97 PTC patients.

b. Mutations with signi�cant enrichment in one type of RR.
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c-d. Clinical features showed signi�cant enrichment in the samples with mutations in MUC16(c) or TERT
promoter(c). Overlap signi�cance was examined by hypergeometric distribution. *: P<0.05.

Figure 2

Multi-omics based pro�ling of the tumor and normal thyroid samples
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a. Pathway categories enriched by the DEMs.

b. Heatmap showing the top-rank DEMs. Only molecules with the top-10 signi�cant p-values for each
omics type are listed. The metabolite levels for TG, FFA, PG and SPH were the summarized abundances
of different kinds of TG, FFA, PG and SPH. The su�x Pro and Phos respectively represent proteins and
phospho-proteins.
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Figure 3

Multi-omics landscape of different recurrent risk

a. Molecules signi�cant differential expressions in patients with different RR. H: high RR, M: intermediate
RR; L: low RR.

b. Correlation network of the molecules showed signi�cant differential expressions among different RRs.

c-d. Scatter plot showing the correlations between protein ALOX5 and metabolite FFA 26:2 (c) and FFA
24:2(d).

e. Metabolism pathway enrichment results of the RR relevant molecules. Fisher exact test, *: P<0.05;

f. Correlation network of the molecules. Only metabolites in the down-regulated metabolism pathways for
the high-risk samples concerning proteomics were shown. The displayed edges are with correlation
coe�cients larger than 0.5.

g-h. Scatter plot showing the correlations between metabolite citric acid and protein TG (g), metabolite PS
(18:1_22:6) and phospho-protein MSN (h).
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Figure 4

Correlations between different types of omics

a. Correlation between the �rst DIABLO component determined by different types of omics.
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b. Heatmap of the most contributing molecules for the �rst two components. The four columns on the
right showed the log2FC calculated for comparing different groups. H: high compared to intermediate
and low risks; M: intermediate compared to high and low risks; L: low compared to high and intermediate
risks; T2N: tumor compared to paired normal samples.

c. Correlation network for four molecule modules (M1 to M4) based on the multi-omics.
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Figure 5

Integrative clustering of the PTC patients based on the transcriptome and metabolomics pro�le

a. Heatmap showing the clustering results of the PTC patients based on both transcriptomics and
metabolomics.

b. Bar plot of the clinical features with signi�cantly different distribution across the four clusters.

c. Kaplan Meier (KM) plot of the recurrence free survival probability of the patients in different clusters

d. KM-plot of the patients in the cluster CS2 and the other two high-risk enriched subtypes

e. KM-plot of the patients in the cluster CS3 and the other two high-risk enriched subtypes.



Page 29/32

Figure 6

Characterization of the four PTC subtypes

a-b. Signi�cantly up-regulated genes (a) and metabolites (b) in different clusters based on
transcriptomics and metabolomics.
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c-g. Boxplot of tumor size (c), number of metastatic lymph nodes (LNM.No) (d), tumor difference scores
(TDS) (e), RAS score (f) and BRAF score (g) across the four clusters. T-test, *: P<0.05, **:P<0.01,
***:P<0.001, ****:P<0.0001

h-i. The metabolism (h) and immune pathway (i) enrichment results for the four clusters.

j. Heatmap showing different cell compositions of different clusters. Epi: epithelium. Only cell types
showing signi�cant differences (Kruskal test, P<0.05) for at least one subtype were displayed.
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Figure 7

Potential biomarkers or targets of different subtypes

a. Heatmap of mRNA expression of the over-expressed druggable targets in the four clusters.

b. Correlations between metabolites and the druggable targets.
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c. Receiver operator characteristic (ROC) curve for predictions of CS1 to CS4 subtypes in the test dataset.

d. KM-plot of the recurrence free survival curves of the PTC patients predicted with high and low CS2
probabilities (threshold was set as 0.25, since there were four subtypes).
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