This paper introduces a negotiation framework to solve Multi-Agent Path Finding (MAPF) Problem for self-interested agents in a decentralized fashion. The framework aims to achieve a good trade-off between the privacy of the agents and the effectiveness of solutions. Accordingly, a token-based bilateral negotiation protocol and two negotiation strategies are presented. The experimental results over four different settings of MAPF problem showed that the proposed approach could find conflict-free path solutions albeit suboptimally, especially when the search space is large and high-density, whereas Explicit Estimation Conflict-Based Search (EECBS) struggles to find optimal solutions. Besides, deploying a sophisticated negotiation strategy that utilizes information about local density for generating alternative paths can yield remarkably better solution performance in this negotiation framework.