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Abstract
Studies on Oryza sativa (rice) are crucial for improving agricultural productivity and ensuring global sustenance security,
especially considering the increasing drought and heat stress caused by extreme climate change. Currently, the genes and
mechanisms underlying drought and heat resistance in rice are not fully understood, and the scope for enhancing the
development of new strains remains considerable. To accurately identify the key genes related to drought and heat stress
responses in rice, multiple datasets from the Gene Expression Omnibus (GEO) database were integrated in this study. A co-
expression network was constructed using a Weighted Correlation Network Analysis (WGCNA) algorithm. We further
distinguished the core network and intersected it with differentially expressed genes and multiple expression datasets for
screening. Differences in gene expression levels were veri�ed using quantitative real-time polymerase chain reaction (PCR).
OsDjC53, MBF1C, BAG6, HSP23.2, and HSP21.9 were found to be associated with the heat stress response, and it is also
possible that UGT83A1 and OsCPn60a1, although not directly related, are affected by drought stress. This study offers
signi�cant insights into the molecular mechanisms underlying stress responses in rice, which could promote the
development of stress-tolerant rice breeds.

Key Message
This study integrated multiple datasets obtained from the GEO database and performed bioinformatics methods to predict
and validate �ve key genes associated with the response to heat stress in plants. 

Introduction
Rice, scienti�cally known as Oryza sativa, is a vital cereal that is extensively grown and serves as a fundamental source of
sustenance for approximately 50% of the global population(Ashkani, Ra�i et al. 2015, Li, Tian et al. 2018). In recent decades,
with the rapid increase in the total population of Earth and the demand for sustenance security, the importance of rice
genetics and breeding has become increasingly critical(Huang, Yang et al. 2016). Studies focusing on the generation of
advanced rice types aim to improve the yield, quality, and resilience of rice plants to biotic and abiotic stressors, such as
pests, diseases, salt, drought, and heat(Vo, Rahman et al. 2021, Raj and Nadarajah 2022). With the deterioration of global
climate, the frequency and severity of drought and heat waves are expected to increase in many rice-growing
regions(Zandalinas, Fritschi et al. 2021, Saud, Wang et al. 2022). Rice is an aquatic plant predominantly grown in lowland
areas that are often subjected to �ooding, making the crop more vulnerable to drought and heat stress(Ji, Wang et al. 2012,
Jagadish, Murty et al. 2015, Sahebi, Hana� et al. 2018).

Advances in rice breeding biotechnology and genetic cultivar improvement have played a signi�cant role in increasing the
drought resistance of rice while enhancing its ability to adapt to hot environments (Shen, Xie et al. 2022, Wang and Han
2022). Research into the molecular mechanisms underlying drought and heat adaptability in rice can facilitate the creation
of novel rice cultivars with improved stress tolerance(Kim, Chung et al. 2020, Liu, Lyu et al. 2020).

Several key genes that confer drought tolerance in rice have been identi�ed. UGT85E1- and OsWRKY5-mediated
enhancement of abscisic acid response has been shown to improve drought stress tolerance(Liu, Dong et al. 2021, Lim,
Kang et al. 2022). OsNAR2.1 serves a fundamental role in nitrate absorption and translocation; thus, its expression level is
positively correlated with drought resistance in rice(Chen, Qi et al. 2019). OsRINGzf1 regulates aquaporins during drought
stress(Chen, Xu et al. 2022). The expression levels of photosynthesis-related genes, such as CA1, also change under
drought stress(Li, Liu et al. 2020, Auler, Nogueira do Amaral et al. 2021). Overexpression of Arabidopsis UBC32 improves
drought tolerance in rice(Chen, Liu et al. 2021). These genes are involved in various processes such as hormone signaling
pathways, osmotic regulation, and photosynthesis.

OsRab7-mediated modulation of osmolytes, antioxidants, and genes that respond to abiotic stress can lead to improved
grain yield and enhanced ability to withstand heat in transgenic rice(El-Esawi and Alaya� 2019). OsTT1 plays a protective
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role against heat stress by eliminating denatured proteins that are cytotoxic and preserving thermal response processes in
cells(Li, Chao et al. 2015), and OsNTL3 and OsbZIP74 have a similar mechanism(Liu, Lyu et al. 2020). HES1 maintains the
stability of the photosynthetic system under high-temperature stress(Xia, Liu et al. 2022). These genes are associated with
heat shock proteins, antioxidant enzymes, protein synthesis, and photosynthesis.

In summary, research on drought and heat durability in rice is critical for ensuring global food security, adapting to extreme
climate change, and improving agricultural productivity(Tyczewska, Woźniak et al. 2018). Previous studies have provided
valuable insights into the physiological and molecular aspects of stress responses in rice(Lakshmanan, Cheung et al. 2016).
However, one signi�cant gap and limitation in the current literature is the incomplete identi�cation and understanding of the
key genes and regulatory networks involved in drought and heat stress responses in rice. Although many stress-responsive
genes have been identi�ed, they represent only a small fraction of the vast number of genes in rice. Existing studies are
unable to compare the signi�cance of these genes in stress responses. This limits our ability to develop targeted strategies
for enhancing stress tolerance in rice varieties.

To comprehensively analyze the molecular mechanisms underlying drought and heat responses in rice, a set of RNA-seq
data from the Gene Expression Omnibus (GEO) database was selected, which contained different gradients of drought and
heat treatments, and compared with multiple datasets that were subjected to either drought or heat stress. The integration
of diverse datasets and the utilization of advanced analytical techniques allow us to overcome the limitations of individual
studies and provide a more holistic view of the molecular mechanisms underlying stress responses in rice. The present
study enhances our understanding of the molecular mechanisms underlying drought and heat stress adaptation in rice and
can be useful in discovering new and more important genes that could serve as candidates for genetic breeding purposes.

Materials and Methods
4.1. Data collection

Multiple gene expression pro�ling datasets, including high throughput sequencing (Illumina HiSeq 2000/ Illumina HiSeq
4000/ Illumina NovaSeq 6000) and array datasets (Affymetrix Rice Genome Array Platforms), were sought and retrieved
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). These included GSE221542, GSE168650(Kan, Mu et al. 2022),
GSE136746(Ps, Sv et al. 2017), GSE41648(Sharma, Borah et al. 2021), GSE14275(Hu, Hu et al. 2009), GSE159816(Zu, Lu et
al. 2021), GSE93917(Wang, Li et al. 2020), GSE83378(Wei, Chen et al. 2017), and GSE121303(Chung, Jung et al. 2016)
(Table 1). Gene symbols for these GEO datasets were annotated using the National Center for Biotechnology Information
(NCBI), Rice Annotation Project database (RAP-db) (https://rapdb.dna.affrc.go.jp/), and the Rice Genome Annotation Project
(RGAP) (http://rice.uga.edu/index.shtml). The data were processed using R (version 4.2.3) and RStudio (version 2023.03.0)
software. GSE221542 contains 15 samples, including three water levels and two heat levels, each with three replicates.
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Table 1
Raw data information from GEO.

Name Dataset Cultivar Tissue Samples

GSE221542 GSE221542 Nipponbare whole shoot all

GSE168650X GSE168650 NIL-TT2HJX developing aerial tissues heat vs control

GSE168650-32 GSE168650 NIL-TT2HPS32 developing aerial tissues heat vs control

GSE136746-N22 GSE136746 Nagina22 panicle heat vs control

GSE41648-Ann GSE41648 Annapurna seedling heat vs control

GSE14275 GSE14275 ZhongHua 11 seedling heat vs control

GSE159816-WT GSE159816 wild type leaf drought vs control

GSE159816-idr11 GSE159816 idr1-1 leaf drought vs control

GSE93917-nadk1 GSE93917 osnadk1 leaf drought vs control

GSE93917-WT GSE93917 wild type leaf drought vs control

GSE83378-MILT GSE83378 MILT1444 panicle drought vs control

4.2. WGCNA of drought/heat response genes

Using the WGCNA(Langfelder and Horvath 2008) package in R (version 4.2.3), a WGCNA co-expression network was
constructed using the following steps. First, the average expression of each gene under different levels of drought or heat
stress was calculated, and genes that did not exhibit any changes in expression were �ltered out. Second, normalization of
gene expression levels to a range of 0–1 was followed by the calculation of Pearson’s correlation coe�cients, which is used
to measure the similarity of co-expression between genes. Third, to ensure a scale-free network distribution, an appropriate
beta value was selected for the adjacency matrix weights to construct a Topological Overlap Matrix (TOM) for module
clustering and segmentation. Finally, to select modules related to drought or heat responses, the relationship between each
network module and the sample phenotype was analyzed.

GO terms were used to enrich selected genes (Tian, Liu et al. 2017). The analysis results were presented using the R
package "clusterPro�ler" for visualization(Yu, Wang et al. 2012). KEGG enrichment(Kanehisa and Goto 2000) analysis was
also performed using the R package “clusterPro�ler” (Yu, Wang et al. 2012). Using the CytoHubba(Chin, Chen et al. 2014)
plugin of Cytoscape (3.9.1), based on the shortest paths, every gene of the key module was scored using the MCC method,
and the top 20 hub genes were selected.

4.3. DEG analysis with DESeq2 and GO enrichment in R

DEG analysis was performed using the R package DESeq2(Love, Huber et al. 2014). Raw count data from the RNA-seq
experiments were imported into R, and genes with low expression were �ltered using the “�lterByExpr” function. Next, the
“DESeqDataSetFromMatrix” function was used to create a DESeq2 object, which was then used to estimate size factors and
dispersions using the “estimateSizeFactors” and “estimateDispersions” functions, respectively. A false discovery rate (FDR)
cutoff of 0.05 was applied to identify genes that were signi�cantly differentially expressed, based on an absolute log2 fold
change ≥ 1 and an adjusted p-value ≤ 0.05. All data analyses were performed using R software (version 4.2.3).

GO enrichment analysis was also performed to analyze DEGs using a previously described approach(Yu, Wang et al. 2012,
Tian, Liu et al. 2017).

4.4. Intersection of hub and DEGs for candidate key genes
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The top 20 hub genes from the �ltered key modules were compared with the DEGs obtained from the �ltering process.
Based on their intersection and the candidate key genes along with their log2 fold change values were obtained. The Rice
Gene Index (RGI) (https://riceome.hzau.edu.cn/) was used to determine the gene ID corresponding to the rice gene(Yu, Chen
et al. 2023).

We searched for datasets on drought or heat treatments in the GEO database (Table 1). Count data were processed using
the same method as above but not �ltered for log2 fold change ≥ 1 and p-value ≤ 0.05. For array data, online GEO2R
analysis was performed, and a matrix table containing the log2 fold change, p-value, and adjusted p-value data was
downloaded.

Using the “pheatmap” package in R (version 4.2.3), the log2 fold change calculated from the different array or count data
treatments were clustered and plotted. Key genes with high and stable expression levels were selected for further
experiments.

4.5. Plant Materials

Oryza Sativa, Jiahe 102 (State Key Laboratory of Hybrid Rice, Wuhan, China) was used as a model rice variety subjected to
appropriate environmental conditions, drought stress, and heat stimulation and for RNA extraction for quantitative real-time
PCR (qRT-PCR).

The seed coat was removed, sterilized, and soaked in a dark room at 37°C for 24 h. The seeds were allowed to germinate at
25°C in the dark for 48 h and then transferred to a culture bottle for cultivation in the Murashige and Skoog (MS) medium at
25°C for 14 days. The control group was directly sampled. For the drought treatment group, on the evening of the 13th day,
the samples were cultured for 12 h in the MS medium containing 0.3 M mannitol. For the heat treatment group, on the 14th
day, rice seedlings cultured in normal MS medium were exposed to a temperature of 37°C for 1 h and then sampled.

4.6. RNA extraction

Whole shoot tissues (100 mg) of rice from different treatment groups were weighed and placed in a grinding tube
containing steel beads. The grinding tubes were immersed in liquid nitrogen for 10–20 min. Finally, the samples were
freeze-ground at − 20°C for 120 s and returned to liquid nitrogen for storage. RNA extraction was performed using the
FastPure Universal Plant Total RNA Isolation Kit (Vazyme, Nanjing, China), and the extracted total RNA was stored at − 80°C.

4.7. Quantitative real-time PCR

cDNA was synthesized using the Revert Aid First Strand cDNA Synthesis Kit (Thermo Scienti�c, Watham, MA, USA). qRT-
PCR analysis was performed using a LightCycler 96 (Roche, Basel, Switzerland). eEF1 was used as the reference gene. Gene
sequences were searched using Phytozome (https://phytozome-next.jgi.doe.gov/), and qRT-PCR primer sequences were
designed using the primer blast tool of NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The primers used in this study are
listed in Table 2.
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Table 2
Primer information for qRT-PCR.

Gene name MSU-ID Group 5' primer 3' primer

eEF1 LOC_Os03g08010 Reference GATGATCTGCTGCTGCAACAAG GGGAATCTTGTCAGGGTTGTAG

BAG6 LOC_Os02g15930 Green GTTGAAAGTAGTGTGTCAGCT AAGGATACTGATGAGTCCCC

HSP23.2 LOC_Os04g36750 Green GGTGGAGGTGGAGGACAA CCAGAACCTGCCGTAGGA

OsDjC53 LOC_Os06g09560 Green GATTTCCTCGGCGAGATGG ACGAACAGCTGCTGCAA

MBF1C LOC_Os06g39240 Green AGGTTGAGCGGCAACATC CGCATCGCCTGGTTCAC

HSP21.9 LOC_Os11g13980 Green CGTACGGCTACGGCTACAT TCCTTCCAGTCGCACCTC

UGT83A1 LOC_Os03g55030 Darkmagenta GGCGTCCTCAACGAGAAG CAGACGAGGTCGAAGATGATG

OsCPn60a1 LOC_Os12g17910 Darkmagenta CAAGGCTGTCCTTCAGGATATT TGTCCCAAGTTGCTCTTCAG

Relative expression level of target genes was calculated based on the 2–ΔΔCt method for normalization(Livak and
Schmittgen 2001). The normalized qRT-PCR data was analyzed using a t-test to determine statistically signi�cant
differences in gene expression between the control and experimental groups.(Wilson and Worcester 1942) Statistical
signi�cance was set at p < 0.05.

Results
2.1. Construction of co–expression network

The work�ow followed in this study is demonstrated in Fig. 1.

Weighted Correlation Network Analysis (WGCNA) was utilized in this study to analyze the GSE221542 dataset, with a scale-
free topology model �tting degree of 0.8 and a soft threshold of 30 selected for network construction (Fig. 2A-B). A
hierarchical clustering process was used to create a tree-like structure representing genes. Subsequently, gene modules
were determined using the dynamic cutting method, followed by calculation of the eigenvector value of each module.
Similar modules were then merged to identify distinct modules, which were assigned different colors for better visualization
(Fig. 2C).

2.2. Co–expression network module analysis

Six modules, namely black (1550 genes), green (1646 genes), dark orange (3658 genes), dark magenta (535 genes), royal
blue (9432 genes), and gray (234 genes), were obtained. The modules showed either positive or negative correlation with
drought or heat stress, and the genes within these modules were either upregulated or downregulated, suggesting that the
genes respond differently under different stress conditions. The green module with heat and the dark magenta module with
drought had the highest positive correlation coe�cients (0.98 and 0.71, respectively) (Fig. 3A). According to the scatter
plots, the genes in the green module were highly correlated with heat stimulation, whereas the genes in the dark magenta
module showed a weak association with drought stress (Fig. 3B-E). The other modules showed low correlation with heat or
drought stress (Figure S1).

Cytoscape software was used to process the dark magenta and green modules separately and visualize the co-expression
network obtained from WGCNA. Genes in the network were scored using the Maximal Clique Centrality (MCC) method, and
the top 20 hub genes with the highest correlations with other genes were selected (Fig. 3F-G). These genes were located at
the most central positions in the co-expression network and may play a central regulatory role in drought and heat stress.
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In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that genes in the green module
are involved in processes such as protein synthesis in the endoplasmic reticulum and RNA splicing, whereas genes in the
dark magenta module are involved in essential processes such as carbon metabolism, synthesis of amino acids and
coenzyme factors, and glycerolipid metabolism. In addition, both gene modules are involved in carbon �xation in
photosynthetic organisms (Fig. 4A). The results of the Gene Ontology (GO) enrichment analysis showed that genes in the
green module were related to biological processes such as cellular response to stimuli, phosphorylation, and signaling,
whereas genes in the dark magenta module were involved in as phosphorus metabolism and phosphate-containing
compound metabolic processes. Although genes of both modules are expressed in the cytoplasm and vesicles; genes of
the green module are expressed in membrane-bound organelles only. In green module, the expressed proteins exhibited
transferase activity and nucleic acid binding, whereas those in the dark magenta module exhibited catalytic activity and
metal ion binding (Fig. 4B).

Construction of the gene co-expression network narrowed the range of candidate genes, and the 20 hub genes obtained by
screening made the follow-up study more convenient.

2.3. Differentially expressed gene (DEG) analysis

Differential gene analysis was performed on two modules of the GSE221542 dataset: severe drought stress and control and
prolonged heat stress and control (Fig. 5A). The count data �les were downloaded directly from the GEO website. Because
the count data can only represent the read count of each gene, normalization is necessary. The expression level of the
experimental group was subtracted from that of the control group, and log2 fold-change values were calculated to compare
gene expression levels. The preset threshold was used to select DEGs; 484 DEGs had increased expression levels, and 1559
DEGs had decreased expression levels in the drought stress group, whereas 1876 DEGs were upregulated, and 3158 DEGs
were downregulated in the heat stress group.

GO analysis indicated that under drought or heat stress, macromolecule metabolism was the most altered biological
process, and hormonal responses and other response activities were also altered. The proteins expressed by the two
groups of DEGs were mainly binding proteins and mostly located in membrane-bound organelles and vesicles. However, the
DEGs in the drought stress group were mostly related to ATP function, whereas those in the heat stress group were involved
in nucleic acid and DNA-related functions. (Fig. 5B).

The GO enrichment analysis results for the green module and heat stress-induced DEGs shared many similarities. In terms
of biological processes, both involved cellular response activities. Regarding molecular functions and cell components both
involve a large proportion of proteins with nucleic acid binding that commonly act on membrane-bound organelles or
vesicles. Therefore, the prediction of heat stress-related genes in the green module was expected to be more accurate
(Fig. 4B and 5B).

Analyzing DEGs in the dataset is an important basis for the subsequent screening of key genes.

2.4. Further screening of hub genes

The top 20 hub genes in the dark magenta and green modules intersected with the DEGs under drought and heat stress,
respectively, resulting in the selection of two candidate key genes associated with drought stress and 20 genes associated
with heat stress (Fig. 5C).

Green module: The RNA-seq dataset used was GSE168650(Kan, Mu et al. 2022), which contained RNA-seq data for two
different strains of rice subjected to heat treatment and their corresponding controls. The data type was the RAW count.
Differential genes were analyzed using the same method without setting a threshold �lter to identify key genes and their
relative expression levels. GEO2R was used to analyze the expression levels of key candidate genes in multiple array
datasets including GSE136746(Ps, Sv et al. 2017), GSE41648(Sharma, Borah et al. 2021) and GSE14275(Hu, Hu et al. 2009).
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Cluster analysis was performed separately according to the original data types. Genes with high expression levels and
consistent expression levels among different samples were selected from the heatmaps of both RNA-seq and array data
(Fig. 6A-B, Figure S1A). Five key genes with the best overall performance were selected: OsDjC53, MBF1C, BAG6, HSP23.2,
and HSP21.9.

Darkmagenta Module: dataset GSE159816(Zu, Lu et al. 2021) was downloaded, which contained two lines of rice subjected
to drought treatment and their corresponding controls. We also analyzed the expression levels of key candidate genes in the
GSE93917(Wang, Li et al. 2020) and GSE83378(Wei, Chen et al. 2017) array datasets. The results showed that the
expression levels of UGT83A1 and OsCPn60a1 did not show the same trend in multiple datasets; however, they were
classi�ed as key genes for further con�rmation (Fig. 6C-D, Figure S2B).

2.5. Veri�cation of key genes

Quantitative real-time PCR (qRT-PCR) was used to verify changes in the expression levels of key genes in rice subjected to
drought or heat stress conditions. The results showed that OsDjC53, MBF1C, BAG6, HSP23.2, and HSP21.9 were
signi�cantly overexpressed in rice under heat stress conditions (Fig. 7A), whereas the expression levels of UGT83A1 and
OsCPn60a1 signi�cantly decreased in rice under drought stress conditions (Fig. 7B). In summary, the �ve candidate genes
in the green module may be the key genes associated with heat stress response in rice.

Discussion
A co-expression network was constructed using the WGCNA algorithm, which allowed us to identify the top 20 genes and
form a core network. The core network was intersected with DEGs identi�ed from the same dataset to obtain candidate key
genes associated with drought and heat stress responses. Furthermore, by analyzing multiple datasets, two key genes that
respond to drought stress and �ve key genes that respond to heat stress were identi�ed among the candidate key genes.
The �nal qRT-PCR results excluded all key drought-related genes and identi�ed OsDjC53, MBF1C, BAG6, HSP23.2, and
HSP21.9 as genes associated with heat stress response.

UDP-glycosyltransferases (UGTs) are a class of enzymes that add sugars covalently to a wide range of secondary
metabolites(Bowles, Isayenkova et al. 2005). UGT83A1 is a key gene for yield and drought resistance in rice, and UGT83A1-
overexpressing lines exhibit strong resistance to drought stress(Dong, Sun et al. 2020). In addition, the expression level of
UGT85E1 �rst increases and then decreases under drought stress; the UGT83A1-overexpressing line can obviously improve
the drought tolerance of rice but is more prone to withering(Liu, Dong et al. 2021). A dataset (GSE121303(Chung, Jung et al.
2016)) was subjected to drought stress for 1,2,3 days, respectively. The expression level of this gene �uctuated with drought
duration (Figure S3). In conclusion, the overexpression of UGT83A1 can improve drought resistance in rice; however,
UGT83A1 expression levels do not necessarily increase or decrease when rice is under drought stress. This suggests that
UGT83A1 may be involved in the drought stress response through a complex mechanism in�uenced by other factors.

OsCPn60a1 may bind to the RuBisCO small and large subunits and is implicated in the assembly of the enzyme
oligomer(Aigner, Wilson et al. 2017). Thus, we suggest that changes in OsCPn60a1 expression levels may indicate changes
in photosynthesis but may not necessarily be directly associated with the drought stress response.

The response of rice to heat stress is closely linked to heat shock proteins (HSPs). There is a high degree of homology
between HSP21.9 and HSP23.2 proteins (Figure S4). Furthermore, protein motif prediction revealed multiple shared motifs
among OsDjC53, MBF1C, BAG6, HSP23.2, and HSP21.9 (Figure S5), indicating that these �ve proteins potentially interact or
cooperate with each other.

HSPs are crucial for plant growth and abiotic stress tolerance(Mans�eld and Key 1987, Sarkar, Kim et al. 2009). OsDjC53 is
predicted to belong to the DnaJ/HSP40 family (RGI). HSP21.9 and HSP23.2 belong to the HSP20 family (RGI). HSPs were
found to control programmed cell death (PCD) of suspension cells in response to high temperatures and play an important
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role in the response to hyperosmotic and heat shock stress by preventing the aggregation of stress-denatured proteins and
by disaggregating proteins(Wang, Zhang et al. 2019). MBF1C is a multi-protein bridging factor. In Arabidopsis, MBF1C
improves the tolerance to heat and osmotic stress by partially activating or disrupting the ethylene response signal
transduction pathway(Suzuki, Rizhsky et al. 2005). BAGs (Bcl-2 associated athanogene) are considered to be adaptor that
can form complexes with signaling molecules and molecular chaperones(Kabbage and Dickman 2008). BAG6 plays a
critical role in plant heat tolerance by regulating the accumulation of HSPs and maintaining protein homeostasis under heat
stress conditions in Arabidopsis(Echevarría-Zomeño, Fernández-Calvino et al. 2016). In other species, these genes are also
highly correlated with drought resistance. Thus, increased expression of these genes may improve the ability of rice to resist
heat stimulation.

This study has few limitations. The small number of control, heat stress, and drought stress samples in the WGCNA may
have resulted in potential statistical errors during the construction of the co-expression network. Furthermore, the limited
data available in the GEO validation cohorts underscore the need for more publicly available transcriptome sequencing data.
Additional experiments are required to elucidate the mechanisms underlying the response of rice to drought and heat
stress. In addition, although our analytical method successfully predicted the heat stress response genes in rice, it did not
perform as well in predicting drought stress response genes, possibly because of the limited data used by the WGCNA.
Therefore, larger datasets are required for more accurate analyses and predictions.

Overall, our �ndings provide valuable insights into the molecular mechanisms underlying the response of rice to drought and
heat stress and may have important implications for the development of stress-tolerant rice varieties through genetic
engineering approaches.

Conclusions
Our approach successfully identi�ed key candidate genes associated with heat stress response in rice. More importantly,
our study represents an innovative integration of multiple RNA-seq and array datasets from the GEO database to analyze the
key genes associated with drought and heat stress responses in rice. The degree of �t between each module and the
corresponding trait (Fig. 3B and E) determined the effectiveness of the obtained key gene (Fig. 7). In addition, the majority of
this study did not require gene annotation; therefore, this study may be of greater value to research on unsequenced species
with large amounts of RNA-seq data.
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Work�ow of the present study.

Figure 2

(A, B): Network topology for different soft–thresholding powers. The x-axis represents the weight parameter β. The y-axis in
panel (A)represents the square of the correlation coe�cient between log(k) and log(p(k)) in the corresponding network. The
y-axis in panel (B)represents the mean of all gene adjacency functions in the corresponding gene module. The approximate
scale free topology can be attained at the soft thresholding power of 30 in the genotypes. (C): Gene modules identi�ed by
Weighted Correlation Network Analysis (WGCNA). Gene dendrogram obtained by clustering the dissimilarity based on
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consensus topological overlap with the corresponding module colors indicated by the color column. Each colored column
represents a module, which contains a group of highly connected genes.

Figure 3

(A): The correlation coe�cient and correlation signi�cance between the module and different stress conditions. Each row in
the table corresponds to a consensus module, and each column corresponds to drought or heat stress. The red arrows
indicate the two modules with the highest correlation. (B-E): Gene signi�cance and module membership �t scatter plot.
Each gene is represented by a hollow dot. In (B, D) graphs, the x-axis represents the correlation between the module
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eigengene and the gene expression pro�le in the green module. The (C, E) graphs correspond to the dark magenta module.
In (D, E) graphs, the y-axis represents the correlation between the gene and different degrees of drought stress. The (B, C)
graphs correspond to heat stress. (F-G): Top 20 hub genes obtained from the interaction network analysis. Identi�cation of
hub genes using the Maximal Clique Centrality (MCC) method. Genes with the top 20 MCC values were colored orange to
yellow. Orange refers to a relatively large MCC value, whereas yellow refers to relatively smaller MCC values. The F network
corresponds to the green module, and the G network corresponds to the dark magenta module.

Figure 4
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The y-axis shows the biological function of a gene in a cell. The x-axis represents the ratio of the number of genes enriched
from the target pathway to the total genes contained in the gene list. The size of bubble area indicates the number of
enriched genes. Bubble color indicates enrichment signi�cance. The green module is shown on the left, and the dark
magenta module is shown on the right. (A): Bubble map of the Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis. (B): Bubble map of the gene Ontology (GO) enrichment analysis.

Figure 5
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The drought group is shown on the left, and the heat group is shown on the right. (A): Volcano plot of differentially
expressed genes (DEGs). Log2 fold change = 1 and p-value = 0.05 were used as truncation criteria. The x-axis represents
log2 fold change, and the y-axis represents −log10 q-value. Each dot represents a gene. Red dots represent signi�cantly
upregulated genes. Blue dots represent signi�cantly downregulated genes. Gray dots represent genes with no signi�cant
differences. (B): Gene Ontology (GO) enrichment analysis bar chart. The y-axis shows the biological function of a gene in a
cell. The x-axis represents the ratio of the number of genes enriched from the target pathway to the total genes contained in
the gene list. The size of bubble area indicates the number of enriched genes. Bubble color indicates enrichment
signi�cance. The left panel shows the GO analysis of drought stress and control DEGs, and the right panel shows the GO
analysis of heat stress and control DEGs. (C): Venn diagram of intersection of top 20 hub genes and DEGs. Green module
and heat stress DEGs are shown on the left. Dark magenta module and drought stress DEGs are shown on the right.
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Figure 6

Heat maps indicate the expression of candidate key genes in response to heat or drought stress in array sequencing data or
RNA-seq data. The abscissa represents the data set, and the ordinate represents each candidate key gene. The level of gene
expression is indicated by the shade of color. Darker colors indicate a higher expression level. (A, C) are array sequencing
data. (B, D) are RNA-seq data. (A, B) are heat stress response group. (C, D) are drought stress response group. The red
boxes indicate genes with high expression levels across multiple datasets.

Figure 7
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The expression levels of key genes in rice under drought and heat stress conditions were detected by quantitative real-time
PCR (qRT-PCR) and compared with those in the control group. *p< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (A): Heat
stress-related genes, including BAG6, HSP23.2, OsDjC53, MBF1C, and HSP21.9. (B): Drought stress-related genes, including
UGT83A1 and OsCPn60a1.
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