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Abstract
Adenosine N1 methylation (m1A) of RNA, a type of post-transcriptional modification, has been shown to
play a significant role in the progression of cancer. The objective of the current research was to analyze
the genetic alteration and prognostic significance of m1A regulators in kidney renal clear cell carcinoma
(KIRC). Genomic and clinicopathological characteristics were obtained from 558 KIRC patients in the
Cancer Genome Atlas (TCGA) and Gene Omnibus Expression (GEO) databases. Alterations in the gene
expression of ten m1A-regulators were analyzed and survival analysis was performed using the Cox
regression method. We also identified three clusters of patients based on their distinct m1A alteration
patterns, using integrated analysis of the ten m1A-related regulators, which were significantly related to
overall survival (OS), disease free survival (DFS) and tumor microenvironment (TME) immune cell
infiltration cells in KIRC. Our findings showed that m1A alteration patterns have critical roles in
determining TME complexity and its immune cell composition. Furthermore, different m1A expression
patterns were significantly associated with DFS and OS rates in KIRC patients. In conclusion, the
identified m1A RNA modification patterns offer a potentially effective way to classify KIRC patients based
on their TME immune cell infiltration, enabling the development of more personalized and successful
treatment strategies for these patients.

Introduction
Kidney cancer is one of the most prevalent types of cancer in both males and females. The number of
patients with kidney cancer has increased in the past two decades, compromising up to 2–3% of all new
occurrences of cancer (1). Renal cell carcinoma (RCC), is the most frequent type of kidney cancer,
accounting for up to 85% of all cases (2). RCC affects approximately 400,000 individuals annually
worldwide (3). It mostly affects males over the age of 60 (4).Among different pathological subtypes of
RCC, kidney renal clear cell carcinoma (KIRC) is the most common subtype, comprising 75% of all renal
cell cancer cases (5). Surgical resection is often the only effective treatment option for KIRC, since it is
generally resistant to chemotherapy and radiotherapy (6). However, even with early surgical intervention,
30% of patients with localized tumors will subsequently show metastasis (7). Therefore, early
identification of KIRC patients with high metastasis risk could be useful for a more accurate prediction of
clinical outcome. Furthermore, effective tumor immunotherapy biomarkers will be advantageous to
improve the response rate. In addition, determining patient subgroups that could benefit from certain
targeted therapies requires urgent investigation of the factors involved in the carcinogenesis and
progression of KIRC.

Major cellular functions, such as cell differentiation, critical cellular signaling pathways, and cell
metabolism are partly regulated at the post-transcriptional level through biochemical modifications of
RNA (8). To date, more than 170 post-transcriptional biochemical modifications of RNA have been
reported in non-coding RNAs and mRNAs, generating functional differences (9). The most common types
of such alterations are N1-methyladenosine (m1A) (10), N6-methyladenosine (m6A) (11), pseudouridine
(Ψ) (12), and 5-methylcytosine (m5C) (13) modifications. m1A modification is a type of dynamic
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reversible methylation at the N1 position of adenosine in mammalian cells, contributing to RNA
secondary structure stabilization and alteration in protein-RNA binding interactions (14).
Methyltransferases, binding proteins, and demethylases, the so called “writers” (TRMT6/61A, TRMT61B,
and TRMT10C), “readers” (YTHDC1, YTHDF1, YTHDF2, and YTHDF3), and “erasers” (FTO, ALKBH1, and
ALKBH3), respectively, are the major regulators of m1A modification (14). In summary, “writers” and
“erasers” methylate and demethylate, respectively, while “readers” identify and bind methylation spots
(15). The function of each "reader" determines the endpoint of the modified RNA including splicing,
stability and/or translation (16). Current studies suggest that m1A regulators' genetic mutation may
affect the transcription and translation processes, leading to abnormal cell proliferation and
tumorigenesis (17). In this case, according to Shi et al., m1A-related regulatory genes are essential for the
tumorigenesis of hepatocellular carcinoma and have prognostic and diagnostic value (18). Zheng et al.
reported that dysregulation of the m1A-related regulatory genes can be identified as prognostic
biomarkers for pancreatic cancer (19). Moreover, Gao et al. revealed that different RNA modification
patterns are correlated with tumor immune microenvironment characteristics in oral squamous cell
carcinoma. Based on their results, two different clusters on the basis of m1A gene signature were
identified, which were correlated with prognosis and immune microenvironment features (20). With regard
to KIRC, YTHDF2, a well-known m6a reader protein, has been shown to be an indicator of higher immune
cell infiltration and its higher expression was associated with longer overall survival rate (21).
Nonetheless, the role of m1A modification is not completely understood in KIRC and a broader
investigation of these regulators would aid in elucidating the possible functions of m1A modification in
different physiological and pathological processes.

In the present study, we analyzed the clinicopathological data from a cohort of 558 KIRC patients from
The Cancer Genome Atlas (TCGA-KIRC) and Gene Expression Omnibus (GEO) databases. We then
analyzed the alterations in the profiles of ten m1A-related regulatory genes and identified the
associations between their modification patterns, expression data, somatic mutations, and
clinicopathological characteristics including prognosis in KIRC patients. Additionally, different m1A
modification patterns were identified and their correlation with immune infiltrating cells within the tumor
microenvironment (TME) was investigated. In order to further investigate the functions of the identified
differentially expressed genes (DEGs), gene set enrichment analysis (GSEA) was carried out. To discover
the putative signaling pathways, KEGG, or the Kyoto Encyclopedia of Genes and Genomes analyses were
performed. Ultimately, we evaluated the association between the expression patterns of m1A regulators
and disease-free survival (DFS) in KIRC patients.

Methods

Data acquisition
The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to
download clinical information as well as gene expression and RNA-sequencing data of KIRC patients. In
summary, two eligible KIRC cohorts (TCGA-KIRC and GSE22541) were identified suitable for our analysis.
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The data of the TCGA-KIRC dataset was downloaded through the UCSC Xena portal
(https://xenabrowser.net/hub/). Somatic mutation data was further obtained from the TCGA-KIRC cohort
for further analysis. “GEOquery” package of R was utilized to obtain the expression profiles of GSE22541
patients. The final expression values were obtained after quantile normalization and log2(x + 1)
transformation. When a single gene had numerous probes, the mean expression was calculated. Genes
with no expression values were excluded from the study. Patients without prognostic data were not
included in the analysis. Table 1 provides an overview of the clinical characteristics of the cohorts
included in the present study.
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Table 1
Demographic and clinical information
of the cohorts included in this study.

  TCGA-
KIRC

(n = 
534)

GSE22541

(n = 24)

Sex    

Male 348
(64.1%)

13
(54.2%)

Female 186
(35.9%)

11
(45.8%)

Age    

Median 61 -

Range 26–90 -

TNM
Stage

   

I 268
(50.2%)

10
(41.7%)

II 58
(10.9%)

9 (37.5%)

III 123
(23.0%)

5 (20.8%)

IV 82
(15.4%)

0 (0%)

not
available

3
(0.5%)

-

Grade    

G1 14 0

G2 231 18

G3 206 6

G4 75 0

Gx 8 0

Follow
up
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  TCGA-
KIRC

(n = 
534)

GSE22541

(n = 24)

Sex    

Alive 361
(67.6%)

-

Death 173
(32.4%)

-

Median
OS

38.8 72.5

DEG identification, somatic mutation analysis, and
prognostic study of the 10 m1A regulatory genes
To identify survival-related regulatory genes among the 10 m1A regulators, a univariate cox regression
analysis was conducted. Forest plot and Kaplan–Meier curves were depicted to identify the prognostic
significance of the studied RNA regulators. The Spearman correlation method was used to analyze the
relationship between the 10 m1A-related regulators. In order to obtain differentially-expressed m1A-
related regulatory genes (m1A-related DEGs) between the tumor and normal samples or between different
subtypes, the “limma” package of R was used and the adjusted p.value cutoff was set as < 0.05.
Ultimately, the Maftools R package was used to investigate the tumor mutational burden related to the 10
m1A regulatory genes.

Unsupervised hierarchical clustering of 10 m1A-related
methylation regulators in KIRC
The 10 m1A-related regulators including ALKBH1, ALKBH3, TRMT10C, TRMT6, TRMT61A, TRMT61B,
YTHDC1, YTHDF1, YTHDF2, and YTHDF3 were selected to construct different modification patterns.
Subsequently, unsupervised hierarchical clustering analysis was performed using the R package.
Accordingly, 558 patients were classified into three distinct subgroups (“C1”, “C2”, and “C3”). The
“pheatmap” package of R was implemented to visualize the heatmap of these three clusters.

Immune and stromal cell infiltration analysis
The ESTIMATE algorithm was applied to evaluate the degrees of immune cell infiltration among different
clusters. The immune, stromal, and ESTIMATE scores were calculated and then a gene set of human
immune cell subtypes was retrieved from published references. The single-sample gene set enrichment
analysis (ssGSEA) was performed to evaluate the relative abundance and levels of activity of each
immune cell type in the TME of KIRC. Moreover, to evaluate the differences in the immune subtypes, the
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proportion of infiltrating immune cells in KIRC patients with their expression patterns were assessed
using CIBERSORT.

Functional enrichment analysis
Gene ontology (GO) and KEGG pathway analysis were conducted using the clusterProfiler and ggplot2 R
packages. The inclusion criteria were set as p < 0.01 and q < 0.05.

Construction and validation of m1A gene signature
A random forest classifier was constructed by random based m1A gene’s expression in TCGA-KIRC
dataset. Using the same classifier, subtype labels of patients from independent cohorts were classified.
Before classifier construction and validation, the expression values of all the cohorts were Z-score
normalized respectively.

Results

The landscape of m1A-related regulatory genes in KIRC
Briefly, 10 m1A regulatory genes were analyzed in the present study, including four writers (TRMT61A,
TRMT61B, TRMT6, and TRMT10C), four erasers (YTHDF1, YTHDF2, YTHDF3, and YTHDC1), and two
readers (ALKBH1 and ALKBH3). Initially, the relationship between the selected m1A regulatory genes were
studied in the TCGA-KIRC dataset. As shown in Fig. 1A, TRMT61B-YTHDF3 and TRMT61A-YTHDF3 had
the strongest and weakest relationships among others, respectively. Additionally, a comparison of the
expression data revealed that 7 out of the 10 m1A regulators were dysregulated in the TCGA-KIRC
patients, while the remaining three (TRMT61A, YTHDC1, and YTHDF1) did not show significant changes.
Furthermore, clinical data from the TCGA-KIRC dataset was extracted and univariate Cox analysis on the
10 regulatory genes was implemented. The findings revealed that 2 out of the 10 genes (TRMT6 and
TRMT61A) were strongly associated with poor prognosis of KIRC patients (Fig. 1B). Among the
regulatory genes, ALKBH1 and ALKBH3, which are methylation erasers, were upregulated and TRMT10C,
TRMT6, TRMT61B, YTHDF2, and YTHDF3 were downregulated in tumor samples in comparison to
normal tissues (Fig. 1C). In addition, we identified a strong association between the ten m1A regulators
and the present TME-infiltrating immune cells employing the Spearman's correlation analysis and GSEA
method for infiltrated immune cells. Our results indicated that most of these regulators have varied
degrees of association with immune cells. Meanwhile, the regulator YTHDC1 was positively associated
with the infiltration of most of the immune cells (Fig. 1D). Based on these findings, it can be concluded
that m1A regulators are among critical role players in the continuous dynamics of the immune
microenvironment as KIRC progresses. Finally, mutation frequency of the selected m1A regulators were
analyzed in TCGA-KIRC. Our findings revealed that 7 out of 558 KIRC samples carried m1A-related
regulatory mutations, which ranged from 14 to 43% for 5 genes (YTHDC1, ALKBH1, TRMT61B, YTHDF2,
and YTHDF3) and YTHDC1 was the top-ranked gene with 43% mutation among others (Supplementary
Fig. 1s).
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Unsupervised hierarchical clustering based on m1A modification patterns and its correlation with
different tumor infiltrating cells

Five hundred and thirty-four KIRC patients from the TCGA dataset (the Cancer Genome Atlas-Kidney
Renal Clear Cell Carcinoma were included in unsupervised clusters for categorizing the various m1A
modification patterns based on the expression levels of the ten m1A regulators. Finally, we identified three
distinct m1A modification patterns, which were classified as "C1, C2, and C3". These clusters are depicted
in a dendrogram in Fig. 2A as well as in a heatmap in Fig. 2B. Subsequently, the expression differences of
the ten m1A-related regulators between the identified clusters was visualized and most of the regulators
were upregulated in the C3 cluster (Fig. 2C). Subsequently, we performed a comprehensive assessment of
the landscape of tumor infiltrating cells between the three clusters with the results revealing that the C3
and C2 clusters had higher abundance of different immune cells, while the C1 cluster only displayed
endothelial cells as the most abundant cells. We also performed differentially expressed gene analysis
using whole-transcriptomic data. A clear pattern could be found by heatmap for differentially expressed
genes at transcriptomic level (Supplementary Fig. 3C)

The mutational pattern and immune landscape of the three
identified clusters
Our results revealed that the three identified clusters displayed different enrichment mutations. In this
regard, PBRM1 and PBRM were the top-ranked significant genes with higher mutation frequencies in the
C1 and C3 clusters, respectively (Supplementary Fig. 2A). Next, using the ESTIMATE method, we
determined the abundance of immune and stromal cells present in the KIRC samples. As per the results,
the C1 cluster was characterized by a higher stromal score, while the C3 cluster had a lower immune
score (Supplementary Fig. 2B).

Association between different identified clusters with
clinicopathological characteristics, enriched pathways, and
distinct gene signatures
Given the importance of m1A-related regulators in cancer progression, we subsequently assessed the
relationship between modifications of the m1A-related regulatory genes and patient clinicopathological
characteristics. The associations between m1A modification patterns and the clinicopathological
features are illustrated in distinct heatmaps (p-values of hypergeometric test were shown) in Figs. 3A-C.
As shown in Fig. 3A-B, patients in the C2 cluster showed higher tumor grades, while the C1 cluster had
more tumor-free patients across other clusters indicating the critical roles of m1A regulators in the
progression of KIRC. In terms of gender, the C1 and C3 clusters were mostly comprised of males and
females, respectively. Furthermore, functional enrichment analysis revealed that “oxidative
phosphorylation”, “ribosome”, “complement and coagulation cascades”, “primary immunodeficiency”,
“spliceosome”, “cytokine-cytokine receptor interaction”, and the “mRNA surveillance pathway” were
among the top pathways, which were significantly different between the three clusters (Fig. 3D). Finally,



Page 9/19

we identified the gene signatures of each of the three clusters. Our gene signature results showed that, in
the C2 cluster, the expression level of PD-1 was higher, while its ligand, PDL-1, showed a lower expression,
compared to the other clusters.

Subtype of m1A Regulators was associated with KIRC
prognosis
To assess the prognostic significance of the three distinct clusters in KIRC, we performed a univariate cox
regression analysis on both the TCGA-KIRC and GSE22541 cohorts to identify survival-associated
clusters. As shown in Fig. 4A-B, the clusters C3 and C2 in the TCGA-KIRC cohort showed better and worse
DFS and overall survival (OS) rates, respectively. Similarly, among the GSE22541 patients, the C3 cluster
had a better DFS rate, while the C2 cluster showed a poorer DFS compared to the other clusters (Fig. 4C).
Taken together, these findings indicate the fact that the expression patterns of m1A regulators are
associated with prognosis in KIRC patients.

Discussion
RNA modification has been emerged as a hot topic of “RNA epitranscriptomics”, also known as “RNA
epigenetics”, defined as different types of biochemical modifications in different coding and non-coding
RNAs (23). Generation of a N1-methyladenosine, the so-called m1A methylation, is among the post-
transcriptional RNA modifications and has been shown to play an essential role in cancer progression
(24). As a new study focus, m1A RNA methylation has been attributed to a number of key biological
processes, including protein translation (25) and RNA metabolism (26). Nevertheless, investigations on
RNA modifications in KIRC patients have mostly focused on a few RNA modification regulators,
particularly m6A-related regulators, with the functions of other types of RNA modifications and their
interactions remaining unexplored.

In the present study, we aimed to analyze the alterations in m1A-related regulators in KIRC and its
relationships with clinicopathological characteristics, using the TCGA-KIRC and GSE22541 databases.
The differential expression, crosstalk, and potential prognostic values of the ten m1A-related regulatory
genes in KIRC patients, as well as the associated biological activities and signaling pathways, were
investigated. Ultimately, certain m1A modification patterns among KIRC patients were identified and
through this classification, immune cell infiltration, gene signature, clinicopathological features, and
prognostic values of each cluster was investigated.

We first evaluated RNA expression of the ten m1A-related regulators in the TCGA-KIRC cohort and
identified that 5 out of the 10 studied genes including TRMT10C, TRMT6, TRMT61B, YTHDF2, and
YTHDF3 were up-regulated in these patients. Unlike previous genes, which are categorized as readers and
writers, both eraser genes (ALKBH1 and ALKBH3) were shown to be downregulated in KIRC patients.
Demethylation by ALKBH1 has been shown to enhance the stability of tRNAs leading to decreased tRNA
usage in the translation process (27). Additionally, individuals with pancreatic adenocarcinoma (PAAD),
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whose expression of the "eraser" gene ALKBH1 is low, have a worse prognosis in comparison to high
expressers (19). Furthermore, recent evidence has shown that demethylation by ALKBH3 may increase
translation performance. Therefore, suppressing ALKBH3 may inhibit protein synthesis by increasing the
quantity of m1A in tRNAs (10). Moreover, mutation frequency analysis revealed that the mutation burden
varied from 14–43% in 7 samples of the analyzed cohorts, and YTHDC1 had the highest mutation burden
among the other m1A-related regulators. Zheng et al. also reported that the clinical stage of patients with
pancreatic cancer is correlated with genetic variants in the m1A regulators, and copy number variations
(CNVs) are strongly correlated with the expression of m1A regulators (19). Li et al. conducted a thorough
analysis of the correlation between the clinical information from 33 different cancer types from the TCGA
and the molecular alterations of m1A-reated regulators. Their team discovered that m1A-related
regulatory gene expression was associated with a number of carcinogenic pathways and patient OS,
suggesting that m1A regulators may be used to predict prognosis in a variety of cancers and may
possibly provide give rise to novel therapeutic targets (28). In our analysis, we identified that TRMT6 and
TRMT61A were associated with a poor prognosis in TCGA-KIRC patients based on the univariate cox
regression analysis. Similarly, Wang et al. demonstrated that the deregulation of m1A regulators was
significantly correlated with glioma tumorigenesis and progression. Moreover, their findings indicated that
TRMT6 may be a potent biomarker for glioma prognosis (29). In another parallel study, Wang et al.
confirmed that TRMT6 and TRMT61A are overexpressed in advanced hepatocellular carcinoma (HCC)
tumors and correlate adversely with HCC patient survival. In brief, they confirmed that TRMT6/TRMT61A
increases m1A methylation in a subset of tRNAs to enhance PPAR translation, which in turn induces
cholesterol production to activate Hedgehog signaling pathway, ultimately promoting self-renewal of liver
cancer stem cells and HCC tumorigenesis (30). Moreover, the relationship between m1A regulators and
TME-infiltrating immune cells has remained poorly understood. We discovered a substantial correlation
between the ten m1A regulators and the TME-infiltrating immune cells using the GSEA algorithm,
suggesting the possible function of m1A regulators in the immunological TME and eventual progression
of KIRC.

Here, we also identified three m1A modification patterns on the basis of the ten studied m1A regulators in
the TCGA-KIRC patients, which we labeled as Cluster “C1”, Cluster “C2”, and Cluster “C3”. Growing
evidence suggests that m1A modification patterns may impact different clinicopathological features
including the infiltration of immune cells, tumor grade, cancer status, and prognosis of the patients (31);
consequently, the associations between RNA modification imposed by m1A methylation and the such
characteristics has been emerging as a hot topic in cancer field. In this context, Liu et al. discovered three
distinct m1A alteration patterns in ovarian cancer that may forecast patient survival, tumor grade, and
stage (32). Within the distinguished clusters, patients in the C2 cluster displayed the poorest prognosis
and the highest tumor grades among other clusters in the KIRC cohorts. Meanwhile, C1 showed a higher
stromal score, while Cluster C3 had lower immune score based on the ESTIMATE algorithm. Regarding
the poor prognosis of the C2 cluster, TME immune cell infiltration data revealed that this cluster has the
highest abundance of B lymphocytes and neutrophils. Tumor-suppressive effects of B lymphocytes are
highlighted by a number of studies, which have established a correlation of B lymphocytes with longer
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survival rates in multiple malignancies (33–35); however, in other tumors, the relationship between B
lymphocytes and prognosis was less evident, and some investigations have even linked B lymphocytes to
a worse prognosis (36). Interestingly, as an indicator of inflammation, tumor-infiltrating neutrophils (TINs)
have been correlated with poor prognosis in different types of malignancies. With regard to KIRC, Tessier-
Cloutier et al. reported that TINs can act as independent indicators of poor prognosis, which can be
clinically utilized in the biopsy or fine-needle aspiration (37). Paradoxically, based on the ESTIMATE
algorithm, C2 had the highest immune score in comparison to C1 and C3 clusters. As previously reported,
the presence of numerous immune cells preserved in the stroma around tumor cell nests may activate the
stroma of TME, inhibiting the immunity (38). Consequently, we hypothesized that the activation of
stromal cells in the C2 cluster decreased the anti-tumor activity of immune cells. Furthermore, GSEA
analysis demonstrated that the three m1A modification patterns followed statistically distinct pathways.
C3 with the best OS included spliceosome and mRNA surveillance pathways, C1 with the poorer
prognosis included proteoglycan in cancer, actin cytoskeleton control, and cell adhesion molecules, and
C2 with the worst prognosis was mainly enriched in oxidative phosphorylation and ribosome pathways.

KIRC is known to occasionally induce a robust immunological response, and clinical studies have shown
that a substantial number of KIRC patients respond to immune checkpoint inhibitors (39). We also
compared the expression of the immune checkpoint PD-1 and its ligand, PDL-1 in different clusters. We
found that the PD-1 was highly expressed in C3; however, PDL-1 was overexpressed in C2. According to
these data, estimating anti-PD-L1 effectiveness based on the m1A modification pattern could be a
potential clinical tool, which requires further clinical investigation. These findings may aid in our
comprehension of the role of m1A modification in the establishment of a complicated TME in KIRC.

Conclusion
In summary, the present research identifies m1A regulators in KIRC across numerous aspects and
substantiates their significance in determining prognosis and immune performance. To our knowledge,
the present work is the first to report the complex functions and wide-ranging interconnections of ten
different types of m1A-related RNA modifications in KIRC. We identified three different RNA modification
patterns, their underlying biological pathways, their correlations with clinicopathological features, and
their potential prognostic values in the KIRC patients. This work emphasizes the importance of ten
different RNA modifications in KIRC and provides a novel insight for future research, herein.
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Figure 1

The landscape of m1A-related regulators in KIRC. A) Crosstalk and relationship of the ten m1A regulators
in the TCGA-KIRC patients. B) Univariate cox analysis of the ten m1A-related regulatory genes C)
Differentially-expressed genes of the ten m1A-related regulators between tumor and normal samples of
the TCGA-KIRC cohort. D) Correlation of the ten m1A-related regulators with tumor infiltration of immune
cells in the TCGA-KIRC patients.
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Figure 2

m1A modification patterns. A) Dendrogram of hierarchical clustering of the ten m1A-related regulators in
the TCGA-KIRC cohort. B) Heatmap of the identified modification patterns in the TCGA-KIRC cohort. C)
Distribution of the ten m1A-related regulators in the three distinct modification patterns. D) The
proportion and abundance of the 7 tumor infiltrating cell types in the identified modification patterns.
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Figure 3

Clinicopathological characteristics and biological pathways of the three modification patterns. A)
Neoplasm histologic grades (G1, G2, G3, G4, GX) of three distinct clusters. B) Cancer status of the
different modification patterns (“Tumor free” and “With tumor” subgroups). C) Gender of the three
identified clusters. The significance of hypergeometric distribution test was shown in each cell. D)
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Biological and KEGG pathway enrichment analysis of the three m1A modification patterns based on
GSEA. D) Immune checkpoint gene signature of the three identified clusters.

KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene set enrichment analysis.

Figure 4
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Association of the m1A expression pattern with disease free survival and overall survival. A) Association
of the three identified modification patterns and DFS in TCGA-KIRC cohorts. B) Correlation of m1A
expression pattern and OS in the TCGA-KIRC cohort. C) Association of the m1A expression pattern and
DFS in the GSE22541 patients.

DFS, Disease free survival; OS, Overall survival
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