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Current metagenomic classifiers analyze either DNA or1

amino-acid (AA) sequences. DNA-based methods have2

better specificity in distinguishing well-studied clades, but3

they have limited sensitivity in detecting under-studied4

clades. AA-based methods suffer the opposite problem.5

To tackle this trade-off, we developed Metabuli for a joint6

analysis of DNA and AA using a novel k-mer, metamer. In7

benchmarks, Metabuli was simultaneously as specific as8

DNA-based methods and as sensitive as AA-based meth-9

ods. In the CAMI2 plant-associated dataset, Metab-10

uli covers 99% and 98% of classifications of state-of-11

the-art DNA-based and AA-based classifiers, respectively.12

Metabuli is available as free and open-source software for13

Linux and macOS at metabuli.steineggerlab.com.14

Correspondence: martin.steinegger@snu.ac.kr15

Metagenomics allows studying microbial communities by16

analyzing DNA or RNA sequences directly taken from vari-17

ous environments. Some studies aim to reveal evolutionary18

distant organisms (e.g., in the soil (1), ocean (2) and hy-19

drothermal vent sites (3)). Others, in the clinical field, focus20

on detecting pathogens and emerging strains in samples from21

patients (4), public spaces (5), and wastewater (6).22

Identifying the origin of metagenomic reads is performed23

by searching for similar regions in reference sequences. One24

way to detect the similarity is to calculate local alignments25

between the read and the reference as in MMseqs2 Taxonomy26

(7) and MEGAN CE (8). Alternatively, alignment-free meth-27

ods were introduced for faster classification. For instance, k-28

mer-based tools extract fixed-length k-mers from queries and29

references and matches them. Another type, FM-index-based30

tools utilize the Burrows-Wheeler transformation of the ref-31

erences to query (9, 10) k-mer matches of flexible length.32

Metagenomic classifier needs two contrasting capabili-33

ties: 1) specificity for high-resolution classification of well-34

studied clades and 2) sensitivity to detect under-studied35

species based on known relatives in a database.36

However, current tools suffer an inherent trade-off prob-37

lem between specificity and sensitivity depending on the se-38

quence type they utilize: DNA or amino-acids (AAs) (11–39

13). DNA-based tools have better specificity as they exploit40

point mutations to differentiate strains. AA-based tools lever-41

age the higher conservation of AA sequences for better sensi-42

tivity to detect homology between novel organisms and their43

relatives in the reference, although it limits resolving close44

taxa.45

As a partial countermeasure, classifiers that are particu-46

larly well-suited to the research context need to be selected47

Fig. 1. Metabuli’s workflow. a) A DNA fragment of 24 nucleotides is translated into

eight AAs, which are encoded as an integral value encoded within 36 bits. Each AA

has 1-6 synonymous codons, thus requiring three bits to store which one is seen in

the fragment. b) Metabuli predicts ORFs in a genome using Prodigal and extends

them to cover intergenic regions. The extended ORFs are used to extract reference

metamers. c) Metabuli scans each read in six translational frames to extract query

metamers. d) The metamers are compared first to find exact AA matches and

subsequently to choose the closest one at the DNA level.

(11–13). However, metagenomic samples are a mixture of48

well- and under-studied taxa, the specificity-sensitivity trade-49

off inevitably restricts full sample characterization.50

To address this trade-off problem, we introduce Metabuli,51

a method that jointly analyzes DNA sequences and their AA52

translation to achieve both specificity and sensitivity simul-53

taneously (Fig. 1 and Supp. Fig. 1). In benchmarks com-54

prising simulated reads, Critical Assessment of Metagenome55

Interpretation 2 (CAMI2 (15)) datasets, as well as real-world56

metagenomes, Metabuli consistently demonstrated top per-57

formance while DNA- and AA-based tools had fluctuating58

performance depending on the distance between the queried59

organisms and available references in the database.60

To enable the joint analysis of DNA and AA sequences,61

Metabuli utilizes a novel k-mer structure, metamer, encoding62

a 24 nucleotide-long fragment (eight codons) in 60 bits. Its63

translation to AAs is encoded by 36 bits, and its codons - by64

24 bits. Since an AA is coded by at most six codons, three65

bits per AA suffice to indicate which one is seen. This joint-66

encoding is more efficient compared to individual encoding,67

requiring only 2/3 of the bits.68

During database creation, Metabuli predicts open reading69

frames (ORFs) using Prodigal (16). Each ORFs is extended70
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Fig. 2. Benchmark results. a-b) GTDB benchmarks GTDB genomes and taxonomy were used. Simulated short (Illumina) and long (ONT) reads were used. a) Reads were

simulated from genomes present in databases. b) Not the queried species but their sibling species were contained in databases. c-d) Pathogen detection tests. RNA-seq

reads from COVID-19 patients were classified. c) The reference included five SARS-CoV-2 variants and Viral RefSeq (14), and the reads from patients infected with either

omicron or beta variant were queried. Classifications to correct and incorrect variants were counted as TP and FP, respectively. d) Viral RefSeq, excluding SARS-CoV-2,

served as the reference. RNA-seq reads from controls (bottom) and patients (top) were classified. Classifications to Sarbecovirus, the LCA of SARS-CoV-1 and 2, were

counted as TP for patient samples and as FP for controls. Centrifuge classified more reads as SARS-CoV-2 than the estimated total number of SARS-CoV-2 reads. Recall

values for such cases were denoted. e-f) CAMI2 plant-associated dataset. e) GTDB genomes and the CAMI2-provided taxonomy were used for database construction.

Classifications for the CAMI2-provided plant-associated reads were evaluated. f) The relationship among TP (at genus level) sets of Kaiju, Kraken2, and Metabuli for one

of the plant-associated samples. g-h) Real metagenomes Human gut (g) and marine (h) metagenomic reads were classified using databases of (a). The proportion of

Metabuli-only area in the union of the three tools is denoted in parentheses. f-h) The area is proportional to the number of reads within each panel.

to cover intergenic regions to cover the whole genome, these71

regions are often missed in methods utilizing only coding se-72

quences (12, 13). Notably, Metabuli only stores metamers up73

to one-third of the length of contigs. This is in contrast to AA74

classifier kAsA (17), which involves storing all k-mers from75

six frames of the entire genomes, leading to a sixfold increase76

in size. In addition, Metabuli’s reference metamer list is also77

shortened by removing metamers that are redundant within78

each species.79

To classify each read, Metabuli computes query metamers80

from each read and its six-frame translations, which are car-81

ried through stop codons. These are compared to reference82

metamers to find perfect AA matches for sensitivity; among83

them, matches of the lowest DNA Hamming distance are84

selected for specificity. Metabuli can quickly calculate the85

distance with a pre-computed distance matrix designed for86

metamers. The selected matches are analyzed to score can-87

didate taxa and to classify (Supp. Fig. 2). In this process,88

Metabuli-P (precision mode) uses score thresholds to reduce89

false positive and over-confident classifications (Methods,90

Supp. Fig. 3).91

To compare the performance of Metabuli to state-of-the-92

art classifiers, we conducted inclusion and exclusion tests us-93

ing prokaryotes and viruses (Fig. 2a-d). In inclusion tests,94

we evaluated specificity, i.e., how well a classifier can distin-95

guish between reads from closely related organisms at lower96

taxonomic ranks. Thus, query (sub)species were present in97

the reference as well as their siblings. In contrast, exclusion98

tests evaluated sensitivity, i.e., the ability to classify reads99

from a novel (sub)species based on sequences of its siblings,100

so the query (sub)species was removed from the reference.101

Depending on the purpose of each test, we measured the102

precision (P) and recall (R) at different ranks. In inclusion103

tests, we measured them at the (sub)species rank, and in ex-104

clusion tests - at the rank of the lowest common ancestor105

(LCA) of each query and its siblings. When measuring at106

a certain rank, unclassified reads as well as reads classified107

at higher ranks were considered false negatives (FNs) to pe-108

nalize less informative classifications. Meanwhile, classifi-109

cations at lower ranks climbed up the taxonomy to the rank110

of measurement. Afterward, classifications to the correct or111

to the wrong taxon were counted as true positives (TPs) and112

false positives (FPs), respectively.113

First, we designed a short read benchmark using the114

Genome Taxonomy Database (GTDB) (15). In the inclu-115

sion test, where reads were simulated from 1,191 species116

that had at least two subspecies in the database (19% of all117

species), DNA-based methods classified more reads to cor-118

rect subspecies than AA-based ones (Fig. 2a). AA-based119

methods classified less than 18% of the reads, about half120

of what DNA-based methods could, also with lower preci-121

sion. However, in the exclusion test, where reads were simu-122

lated from 367 species that were removed from the database,123

AA-based tools performed better(Fig. 2b). They classified124

about twice as many reads as DNA-based tools into the cor-125

rect genus with better precision (R > 0.4 for AA-based, R <126
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0.25 for DNA-based). These results clearly demonstrate the127

pros and cons of DNA- or AA-based tools.128

Next, we conducted similar tests using simulated long129

reads. Again, DNA-based tools outperformed AA-based130

ones in the inclusion test. In the exclusion test only131

Kraken2X, exceeded DNA-based ones. Kraken2X ignores132

frame information, while the other AA-tools are sensitive133

to frame-shifting indel errors that are more frequent in long134

reads (18).135

Remarkably, only Metabuli achieved top-level perfor-136

mance in all the inclusion and exclusion tests using short and137

long reads. In the inclusion test, Metabuli performed as well138

as all DNA-based methods and outperformed all AA-based139

tools (Fig. 2a). Its performance was more similar to that140

of DNA-based tools in species rank (Supp. Fig. 4). More-141

over, in the exclusion tests (Fig. 2b), Metabuli achieved the142

best recall with competent precision with both short and long143

reads. Since Metabuli scores candidate taxa using matches144

from multiple frames like Kraken2X, it could be robust to145

the frequent indels of long reads. Metabuli-P was tested only146

with short reads for which it is optimized, and it was the sec-147

ond most precise tool with comparable R to AA-based tools148

in the short read exclusion test.149

Next, the classifiers were evaluated using real SARS-CoV-150

2 data for two main pathogen detection tasks: strain iden-151

tification and emerging pathogen discovery, both were per-152

formed in inclusion and exclusion tests (Fig 2c-d). In the153

inclusion test, RNA-seq reads from six COVID-19 patients154

were examined to identify the culprit variant when its genome155

was present in databases. In contrast, only SARS-CoV-1, but156

not 2, was provided in the reference databases of the exclu-157

sion test.158

DNA-based tools classified more reads to the culprits than159

the AA-based tools in the inclusion test. In the exclusion test,160

however, the best-performing DNA-based tool, KrakenUniq161

(19) missed two patient samples and made FP hits in three162

controls. On the other hand, AA-based tools outperformed163

DNA-based tools in the exclusion test, detecting up to twice164

as much SARS-CoV-2. However, they were worse at deci-165

phering the specific culprit strain in the inclusion test.166

Here as well, it was only Metabuli and Metabuli-P that167

showed robust performance in both tests. Their performance168

was similar, so only Metabuli is depicted in Fig. 2c-d. In169

the inclusion test, Metabuli classified a comparable number170

of reads to the culprits as DNA-based methods, even outper-171

forming Centrifuge (10). Moreover, it achieved the best pre-172

cision, classifying fewer reads to incorrect variants. In the173

exclusion test, it detected as many SARS-CoV-2 reads as the174

AA-based Kaiju (9) without any FP hits in the controls.175

Next, we sought to challenge the classifiers to identify176

reads from datasets that contained organisms varying in their177

query-to-database distances, as would be the case in many178

real-world studies. To that end, we used query datasets179

from CAMI2: strain-madness, marine, and plant-associated,180

which have different query-to-database distances.181

On the strain-madness data (Supp. Fig. 5a), Metabuli182

and DNA-based tools performed better than AA-based tools.183

In the marine benchmark (Supp. Fig. 5b), which contains184

reads with larger query-to-database distances, the gap in re-185

call became smaller and all tools showed similar precision186

(>0.93). For the plant-associated data with the largest query-187

to-database distance, tools of both types showed similar per-188

formance while Metabuli had the best sensitivity. To inves-189

tigate this result, we analyzed Metabuli with respect to the190

genus-level TP sets of the best-performing AA- and DNA-191

based tools, Kaiju and Kraken2. We found that Metabuli cov-192

ered 99.5% of their intersection, 76.6% of Kaiju−Kraken2,193

and 94.1% of Kraken2−Kaiju, which implies that Metab-194

uli successfully joins DNA- and AA-based classifications.195

Moreover, about 4.2% of the total reads were correctly clas-196

sified only by Metabuli. Across the three CAMI2 datasets,197

Metabuli-P progressively improved in precision with the198

growing diversity of data, with the largest improvement on199

the plant-associated data set (Supp. Fig. 5).200

Next, we compared Kraken2, Kaiju, and Metabuli using201

real metagenomic data from well-studied (human gut) and202

under-studied (marine) environments. As real reads have no203

ground-truth labels, we compared the proportion of reads204

classified by each tool. For the human gut data (Fig. 2g),205

Kraken2 and Kajiu respectively classified 50% and 65% of206

the total. However, their classified proportion dropped sig-207

nificantly to 30% and 12% as query-to-database distance in-208

creased in the marine data set (Fig. 2h). On both data sets,209

Metabuli could classify the largest number of reads, covering210

83-88% of Kaiju−Kraken2, 83-96% of Kraken2−Kaiju, and211

>99% of Kaiju∩Kraken2.212

Finally, we compared the speed, RAM usage, and database213

size in the prokaryote benchmarks (Supp. Table 1). All214

tools took less than ten minutes except for MMseqs2 Tax-215

onomy, which spent >100 minutes. Of all, Kraken2X was216

the fastest and used the least RAM, also having the smallest217

database. Notably, because Metabuli is designed to utilize a218

user-specified size of RAM, it can classify reads against any219

size database as long as it fits in the machine’s hard disk. We220

demonstrated this feature by measuring performance under221

various configurations. Metabuli was even able to complete222

the tasks on a notebook with just 8 GiB RAM and 8 threads223

(Supp. Table 1). Even though Metabuli stores both DNA and224

amino acid sequences, its database size was about 1.5 times225

that of Kraken2’s probabilistic database.226

In summary, Metabuli achieves high specificity and high227

sensitivity simultaneously by utilizing metamers to jointly228

analyze sequences at both DNA and AA levels. In bench-229

marks, only Metabuli showed robust state-of-the-art per-230

formance, while other tools sacrificed either sensitivity or231

specificity depending on their type and the benchmark sce-232

nario. The results demonstrate the transformative potential of233

Metabuli for diverse research contexts. Metabuli allows spe-234

cific classifications for reads from well-studied species while235

not losing sensitivity for under-studied organisms. At last,236

Metabuli is open-source software, and ready-to-use binaries237

and pre-computed databases were provided (Supp. Table 2).238
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Methods315

Simulated read generation316

To simulate paired-end short reads used in synthetic bench-317

marks, we used the mason_simulator module of Mason2318

(20). The reads were 150 nt in length and included simu-319

lated errors at rates of 0.11% for mismatches, 0.005% for320

insertions, and 0.005% for deletions. These error rates were321

based on the performance of the NovaSeq 6000 sequencer.322

As with Mason2’s default settings, the mismatch probability323

at the beginning and end of the reads was set to 0.5% and324

0.22%. When provided to MMseqs2 Taxonomy, simulated325

reads were concatenated with ’NN’ as it does not support326

paired-end reads. In the case of long reads, we used PBSIM3327

(21) to simulate reads of Oxford Nanopore Technologies328

with options; --strategy wgs --method errhmm329

--errhmm ERRHMM-ONT.model --depth 3.330

GTDB331

The GTDB was used for several benchmarks as well as332

for the calibration of Metabuli-P as it provides phylogenet-333

ically consistent taxonomy based on genomic distance mea-334

sures. For these, we started with a subset of GTDB R202335

consisting of 258,406 genomes from 47,894 species clus-336

ters. We used the GTDB_metadata_filter.R module in337

the pipeline Struo (22) to obtain a list of 22,973 genomes338

that were assembled at the level of complete genome or chro-339

mosome, had CheckM completeness >90, and had CheckM340

contamination <5. The filtered genomes were downloaded341

using Struo’s genome_download.R module, and 22,819342

successfully downloaded genomes of 6,186 species were343

used. NCBI-style taxonomy dump files for the GTDB were344

generated by gtdb_to_taxdump (23) module. The proteome345

corresponding to each genome was computed by Prodigal346

with default settings.347

Metabuli: Database creation348

Metabuli builds a reference database of computed metamers349

from nucleotide sequences following the procedure below350

(Supp. Fig. 1a-e).351

ORF prediction and extension. Metabuli utilizes Prodigal352

for ORF prediction in reference sequences. To enhance the353

prediction process’s efficiency, we implemented three opti-354

mizations. 1) Metabuli bins reference sequences by species355

in separate FASTA files, then it trains Prodigal once for each356

species using the longest sequence of the species’ bin before357

predicting genes. This approach significantly reduces train-358

ing time, considering the presence of multiple assemblies for359

a single species. 2) We narrowed down the calculation range360

of Prodigal’s dynamic programming during both the training361

and prediction steps. While this adjustment may cause Prodi-362

gal to miss very long genes, it effectively reduced runtime by363

half in tests performed on an Escherichia coli genome. 3)364

We parallelized the training and prediction processes by dis-365

tributing jobs for species bins across multiple threads, further366

accelerating computation. After the gene prediction, genes367

that are fully nested in longer ones are removed. The ORFs368

of the remaining genes are extended to cover all intergenic369

regions while maintaining the predicted translational frame.370

Reference metamer calculation and compression. Metab-371

uli computes reference metamers from the extended ORFs372

and their translations. All computed metamers are sorted373

numerically and then by their associated species ID. Be-374

cause metamers encode amino acids in the leading significant375

bits, metamers encoding the same amino acid sequence are376

placed consecutively after sorting, and within them, they are377

grouped by codon usage, followed by their associated species378

ID. Then, redundant metamers from the same species are re-379

moved, retaining only one of them (Supp. Fig. 1c). The380

reduced metamer list is then further compressed as follows381

(Supp. Fig. 1d). The full numerical value of the first metamer382

is stored. For all other metamers on the list, only the incre-383

ment value from the previous metamer is stored. The 64-bit384

encoding of the first metamer and the increments are then385

scanned as four slices of 15 bits each (the last four bits are386

unused). The slice of the least significant bits and any slice387

where some of the bits are turned on are copied and stored388

in 16 bits with one extra bit for an end flag. The end flag in-389

dicates whether the copied slice was the last one to be saved390

from a specific 64-bit value (where 1 = the copied slice is the391

last one). The optimal case is when only one slice is stored392

per metamer, yielding a compression ratio of four. The more393

reference metamers there are, the smaller the increments be-394

tween consecutive ones tend to be, so the compression rate395

becomes closer to four. For example, when Metabuli was396

used to create a database from genomes of NCBI RefSeq re-397

lease 217 (∼1.1TB), the compression rate was about three.398

Throughout this procedure, the reference sequence ID asso-399

ciated with each metamer is stored alongside it as well as400

information concerning metamer redundancy.401

Metabuli: Database decompression and usage402

The values of the first metamer and the increments can be403

computed back from the stored compression by concatenat-404

ing corresponding slices in a 64-bit data type. From the sec-405

ond metamer, their values are sequentially calculated by sum-406

ming up each increment.407

Metabuli: Classification408

Metamer match search. Query metamers from reads are409

sorted and compared to the reference metamer list to find410

matches (Supp. Fig. 1f-g). Because both query and refer-411

ence metamers are sorted, a single iteration through the lists412

is enough to find all matches.413

Calculating Hamming distance. After a query metamer is414

matched with reference metamers that are identical to it on415

the AA level, the closest matches are selected based on their416

DNA Hamming distance to the query. The distance be-417

tween query and reference metamers is calculated using a418

Hamming distance lookup table (Supp. Fig. 2a-b). In this419

table, the 3-bit representations of any pair of synonymous420

codons are used as indices to retrieve their distance. The421

distances of a match are summed up when the total DNA422
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Hamming distances of matches are compared to choose the423

closest metamer match (Supp. Fig. 2c).424

Computing sequence similarity and assigning taxonomy.425

The matched metamers of each read are grouped by genus426

and species and examined by their coordinates on the read.427

For each species, only matches within a minimum of four428

consecutive matches are used to reduce the risk of random429

matches. Two matches are considered consecutive when 1)430

their query metamers are extracted from positions that differ431

by 3 nt in the same translational frame, and 2) the Hamming432

distances within the overlapping region are identical. Such433

matches to each genus are aligned to the query to compute the434

sequence similarity score between the query and the genus.435

The score is calculated based on the number of identical AAs,436

the Hamming distances, and the query length (Supp. Fig. 1h437

and Supp. Fig. 2c). Next, Metabuli assigns the read to the438

genus of the highest sequence similarity score. If more than439

one genus has scored the highest, the query is classified as440

the LCA of the best-scoring genera. Similarly, the matches441

found from the assigned genus are grouped by each species442

to assign the query to the species of the highest sequence sim-443

ilarity (Supp. Fig. 1i).444

Metabuli: Metabuli-P445

Notably, as with other short k-mer-based classifiers, rely-446

ing on few matches can often lead to false positive or over-447

confident classifications. False positive classification occurs448

mainly when the matched region is short. The similarity be-449

tween a pair of sequences is expected to be higher if the450

pair belongs to the same lower taxonomic rank (rather than451

a higher rank). Over-confidence occurs when a read is classi-452

fied at lower ranks like species or subspecies with not enough453

sequence similarity. To address this, Metabuli’s precision454

mode (Metabuli-P) uses two sequence similarity thresholds455

to avoid false and overconfident classifications. These thresh-456

olds were set based on similarity score distributions within457

prokaryotic and viral genera and species (Supp. Fig. 3).458

Distribution of sequence similarity scores. We investigated459

the distribution of sequence similarities underlying TP and460

FP classifications using prokaryotes and viruses. Prokary-461

otic and viral species were identified based on two crite-462

ria: 1) there was at least one other species belonging to the463

same genus in the database, and 2) the database contained464

genomes of at least two of their subspecies. For prokary-465

otes, we could find 435 species, from the 22,819 GTDB466

genomes, that met the two criteria. We then designed two467

settings: subspecies-exclusion and species-exclusion. In the468

subspecies-exclusion, for each of the 435 species, one sub-469

species was included in the reference database while one of470

its sibling subspecies was excluded from it and used to sim-471

ulate query reads. In the case of species-exclusion, the same472

database was used, and for each of the 435 species a ran-473

dom sibling species from the same genus was used to gen-474

erate query reads. In both settings, 45,000 paired-end reads475

for each query genome were simulated using Mason2 as de-476

scribed above. In the case of viruses, we used NCBI tax-477

onomy and Viral RefSeq. We could not find enough viral478

species fulfilling both criteria. Therefore, for the subspecies-479

exclusion setting, we applied the second criterion to find480

211 species with at least two subspecies. In the case of481

the species-exclusion setting, the first criterion was applied482

to find 889 genera that have at least two species. In both483

settings, 10,000 paired-end reads were simulated from each484

query genome. Then, we used Metabuli to classify query485

reads in the various test settings and examined the sequence486

similarity scores underlying the TP or FP classifications.487

Determining thresholds. Examination of the sequence simi-488

larity distributions revealed that FP’s relative frequency peaks489

under sequence similarity of 0.1 (Supp. Fig. 3). Further-490

more, the vast majority: 89.2-99.7% of all TPs are associated491

with a sequence similarity score greater than 0.15 (Supp. Fig.492

3a-d), while many FPs (29.4.3-59.7%) are associated with a493

lower score (Supp. Fig. 3e-h). Therefore, Metabuli-P is set494

to leave a query as unclassified if its best genus-level sim-495

ilarity score is lower than 0.15. In the subspecies-exclusion496

settings, 97.0% (prokaryote) and 82.2% (virus) of the TPs are497

associated with a similarity score greater than 0.5 while only498

14.6% (prokaryote) and 57.4% (virus) of the FPs scored as499

high. Thus, Metabuli-P is set to classify a read at the species500

level or a lower rank only if it has a similarity score of > 0.5501

to at least one species.502

Prokaryote benchmarks503

Inclusion test. We examined the 22,819 complete genome or504

chromosome level assemblies in the GTDB by their species505

and identified 1,626 species that had at least two subspecies506

with a genome in the database. Of these, 435 species were507

used for the score threshold setting of Metabuli-P (Supp. Fig.508

3). The remaining (1,191) contributed two subspecies each,509

from which 6,150 paired-end reads were simulated with Ma-510

son2 (∼15M reads in total). Each of the same genomes was511

also used to simulate ONT reads of 3X depth using PB-512

SIM3. Performance metrics were measured at species and513

subspecies ranks.514

Exclusion test. The 22,819 GTDB genomes were examined515

by their genera. We identified 802 genera, which had at516

least two species with a genome in the database. Of these,517

435 were used for the score threshold setting of Metabuli-P518

(Supp. Fig. 3). The remaining 367 genera were used for the519

exclusion test. In this setting, ∼50,000 reads were simulated520

from each species (∼20M reads in total) using Mason2. PB-521

SIM3 was used to simulate ONT reads of 3X depth from each522

of the species. Performance was measured at genus rank.523

Pathogen detection benchmarks524

Inclusion test. Reference databases were built using genomes525

from NCBI Viral Refseq and five SARS-CoV-2 variant526

genomes (alpha, beta, delta, gamma, and omicron). We man-527

ually included these variants as children of SARS-CoV-2 to528

the NCBI taxonomy database. Two sets of RNA sequencing529

data from COVID-19 patients were used as query reads. One530

6 Kim et al. | Metabuli: Joint DNA-AA taxonomic classification



set was prepared from patients infected by the beta variant531

(24), and the other - by the omicron variant (25).532

Exclusion test. The database for each tool was constructed533

using the taxonomy of NCBI and the genomes of Viral Ref-534

Seq, excluding all SARS-CoV-2 sequences. Due to this535

exclusion, SARS-CoV-1 is the closest relative in the refer-536

ence database to any variant of SARS-CoV-2. RNA-seq data537

from SARS-CoV-2 patients and controls prepared in a host-538

response study were used as query reads (26). The estimated539

number of SARS-CoV-2 reads in each sample was calculated540

by multiplying the total number of RNA-seq reads by the541

reads per million (RPM) of reads aligned to the SARS-CoV-2542

genome. The RPM values were taken from the original study.543

CAMI 2 benchmarks544

We used paired-end reads of strain-madness, marine, and545

plant-associated datasets and taxonomy provided in CAMI2546

(15). In the case of CAMI2-provided reference databases for547

DNA- and AA-based tools (nt and nr), where there are no548

one-to-one relationships between their entries, it is possible549

to encounter under- or over-representation of some taxa. This550

discrepancy can lead to a potentially unfair comparison be-551

tween the two groups of classifiers. To replace the CAMI2-552

provided databases, we used the reference genomes and pro-553

teomes in the prokaryote inclusion test. The references and a554

mapping from accessions to taxonomic IDs used in CAMI2555

were provided to each classifier for database creation. Metab-556

uli, Centrifuge, and KrakenUniq used 7,318 genomes, which557

together with two additional genomes were used for Kraken2,558

Kraken2X, Kaiju, and MMseqs2. CAMI2 provides 10, 21,559

and 100 query samples for the marine, plant-associated, and560

strain-madness benchmarks, respectively. To reduce the run-561

time of the benchmarks, we took all, every second, and every562

tenth query samples, respectively. We also used the CAMI2-563

provided ground truth labels for each read. When measuring564

performance at the species and genus ranks, we ignored clas-565

sifications for reads whose ground truth taxon is at a higher566

rank than the rank of measurements.567

Benchmarks with real metagenomes568

We challenged the classifiers on two distinct metagenomes:569

one obtained from a well-studied environment, specifically570

a human gut sample (SRR24315757), and the other from a571

less-studied environment, a marine sample (SRR23604821)572

(27). The same GTDB databases as in the prokaryote inclu-573

sion test were used.574

Resource measurement575

Maximum RAM usage (maximum resident set size) and576

elapsed time of each tool were measured with the GNU time577

-v command. The average performance over five repeated578

measurements is reported (Supp. Table 1).579

Software versions and options580

All benchmarks were performed with Kaiju v1.9, Kraken2581

v2.1.2, KrakenUniq v0.7.3, Centrifuge v1.0.4, and MM-582

seqs2 v13.45111. We run Centrifuge with -k 1 option to583

report at most one classification per read. For Kraken2,584

--minimum-hit-groups was set as 3 following a rec-585

ommended usage (28). Struo v0.1.7 was used to download586

genomes and make taxonomy dump files for GTDB bench-587

marks. Mason_simulator v2.0.9 and PBSIM3 v3.0.0 were588

used to simulate query reads.589

Computing resource590

For the resource measurement, we used a server and a Mac-591

Book Air. The server was equipped with a 64-core AMD592

EPYC 7742 CPU and 1TB of RAM, and the MacBook Air593

(2020) had 8GB RAM and an Apple M1 chip (8-core CPU594

with 4 performance cores and 4 efficiency cores). A server595

with 2×64-core AMD EPYC 7742 CPUs and 2TB of RAM596

was used for other benchmarks.597
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Supplementary Fig. 1. Metabuli’s workflow and metamer structure. Metamer structure. An AA 8-mer and the codon usage of each AA are stored in a metamer using

60 bits. The codon encoding table shows how synonymous codons of each AA are mapped to 3-bit encodings. Database generation. a) Metabuli builds a database from

genomes in FASTA format. It predicts ORFs using Prodigal and extends them to cover intergenic regions. The extended ORFs and their translations are used to compute

reference metamers. b) The computed metamers are sorted numerically and redundant ones from the same species are removed. c) The 60-bit expression of the first

metamer and each difference (increment) between two consecutive metamers are scanned as four 15-bit slices. d) The slice of the least significant bits is stored, followed

by all other non-zero slices. An end flag is added to each slice to indicate if it was the last one to be stored from the 60-bit expression. This allows grouping the slices by

the 60-bit expression they correspond to. e) The reference ID and redundancy of each metamer are stored in a separate list. Classification. f) Metabuli takes query files

in FASTA or FASTQ format. It scans each read in six frames and computes metamers from the DNA fragments and their translations. g) Query metamers are sorted and

compared to reference metamers to find perfect AA matches. Among these, matches with the smallest DNA Hamming distance are selected (Supp. Fig. 2a-b). h-i) The

matches of each genus are aligned to the query to score the genus, and then matches from the best genus are grouped by species to find the best species (Supp. Fig. 2c).

Matches specific to a lower rank are used for lower-rank classifications.
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Supplementary Fig. 2. Calculating Hamming distance. a) The Hamming distance lookup table stores the distance between two codons of an identical AA pair in an 8 by 8

matrix. b) An example of Hamming distance calculation. An AA sequence (top, green) can be a translation of two different DNA sequences (DNA 1 and 2, orange). The 3-bit

codon encodings for the same AA are used to index the Hamming distance lookup table. The Hamming distances of 8 codon pairs are summed up to get the total Hamming

distance. c) Matches to a genus are aligned along the translated query, and Hamming distance at each position is pooled (See Supplementary Fig. 1g-h). The score of the

taxon is calculated using the number of covered amino acids and Hamming penalty.

Kim et al. | Metabuli: Joint DNA-AA taxonomic classification 9



Supplementary Fig. 3. Sequence similarity score distribution. The distribution of sequence similarity scores was examined in prokaryotic and viral data (full details

in Methods). The thresholds for classification are marked as dashed lines. These thresholds were selected because most TP classifications were made with sequence

similarity that is greater than these thresholds, while many of the FPs have lower sequence similarity. a-h) Setting a threshold of 0.15 as the minimal sequence similarity

for classification removes 53.7-59.7% of FP prokaryotic classifications and 29.4-34.4% of the viral FPs while retaining 86.8-99.6% of all TPs. c-d) Out of species-level

classifications, 97.0% (prokaryote) and 82.2% (virus) of TPs have sequence similarity score > 0.5. So Metabuli-P has a threshold of 0.5 as the minimal sequence similarity

for species-level classification to avoid over-confident low-rank classification. A similar threshold could not be identified for the genus level (a-b).
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Supplementary Fig. 4. Prokaryote inclusion test results at species rank Precision and recall of tools in the benchmarks of Fig. 2a were measured at species rank.
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Supplementary Fig. 5. Benchmarks using CAMI2’s strain-madness and marine dataset GTDB genomes and the CAMI2-provided taxonomy were used for reference

construction. CAMI2-provided queries of strain-madness, marine, and plant-associated datasets were classified by each tool, and metrics were measured at the species and

genus ranks.
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Supplementary Table 1. Speed and memory usage

GTDB inclusion test GTDB exclusion test

Software DB size (GiB) RAM (GiB) Time (sec) DB size (GiB) RAM (GiB) Time (sec)

Kraken2 43 44 24 41 42 55

KrakenUniq 309 306 169 294 292 272

Centrifuge 40 41 218 39 41 247

Kraken2X 11 12 26 10 12 47

Kaiju 39 41 145 38 41 582

MMseqs2 37 174 6075 34 173 6606

Metabuli 32GiB 69 27 525 66 22 512

Metabuli 64GiB - 47 484 - 37 465

Metabuli 128GiB - 91 473 - 68 448

Metabuli 256GiB - 173 480 - 129 450

Metabuli MacBook 6GiB - 5 5640 - 4 6680
* About 15M and 20M of 150nt paired-end reads were used in the inclusion and exclusion test
* Metabuli has an --max-ram option that limits maximum RAM usage. Here, runs with the option set as 6, 32, 64, 128, or 256 GiB were presented.
* All runs utilized 32 threads except for “Metabuli Macbook”, which used 8 threads.

Kim et al. | Metabuli: Joint DNA-AA taxonomic classification 13



Supplementary Table 2. Pre-computed databases

Name Size (GiB) Data Link

GTDB 81.2
Complete genome or chromosome level

assemblies in GTDB207 and a human genome.

GTDB’s taxonomy was used.

https://metabuli.steineggerlab.workers.dev/

gtdb207+human.tar

RefSeq 115.6
Complete Genome or Chromosome level

assemblies of virus and prokaryotes in

RefSeq (2023-04-04) and human genome

https://metabuli.steineggerlab.workers.dev/

refseq_complete_chromosome+human.tar

RefSeq217 480.5 Refseq release 217 and human genome
https://metabuli.steineggerlab.workers.dev/

refseq_release217+human.tar

RefSeq_virus 1.5 Genomes of Viral RefSeq
https://metabuli.steineggerlab.workers.dev/

refseq_virus.tar
* For the human genome, GRCh38.p14 is used.
* For GTDB database, genomes with CheckM Completeness > 90 and CheckM Contamination < 5 were used.
* Taxonomy of GTDB was edited to include a human taxon.
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