[1] Luna, C. B. B.; Siqueira, D. D.; Ferreira, E. S. B.; Silva, W. A.; Nogueira, J. A. S.; Araújo, E. M. From disposal to technological potential: reuse of polypropylene waste from industrial containers as a polystyrene impact modifier. Sustainability 2020, 12(13), 5272-5291.
[2] Marinho, V. A. D.; Almeida, T. G.; Carvalho, L. H.; Canedo, E. L. Aditivação e biodegradação de compósitos PHB/babaçu. Revista Eletrônica de Materiais e Processos 2018, 13(1), 37-41.
[3] Ramos, R. R. F.; Siqueira, D. D.; Wellen, R. M. R.; Leite, I. L.; Glenn, G. M.; Medeiros, E. S. Development of green composites based on polypropylene and corncob agricultural residue. Journal of Polymers and the Environment 2019, 27(5), 1677–1685.
[4] Oliveira, T. A.; Barbosa, R.; Mesquita, A. B. S.; Ferreira, J. H. L.; Carvalho, L. H.; Alves, T. S. Fungal degradation of reprocessed PP/PBAT/thermoplastic starch blends. Journal of Materials Research and Technology 2020, 9(2), 2338-2349.
[5] Siqueira, D. D.; Luna, C. B. B.; Araújo, E. M.; Ferreira, E. S. B.; Wellen, R. M. R. Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties. Materials Research Express 2019, 6(9), 095335.
[6] Wearn, Y. N.; Montagna, L. S.; Passador, F. R. Coconut fiber/LDPE composites: effect of surface treatment of coconut fibers to produced green composites. Matéria (Rio J.) 2020, 25(1), e-12548.
[7] Oliveira, T. A.; Mota, I. O.; Mousinho, F. E. P.; Barbosa, R.; Carvalho, L. H.; Alves, T. S. Biodegradation of mulch films from poly(butylene adipate co‐terephthalate), carnauba wax, and sugarcane residue. Journal os Applied Polymer Science 2019, 136(47), 48240.
[8] Luna, C. B. B.; Siqueira, D. D.; Ferreira, E. S. B.; Araújo, E. M.; Wellen, R. M. R. Reactive compatilization of PCL/WP upon addition of PCL-MA. Smart option for recycling industry. Materials Research Express 2019, 6(12), 125317.
[9] Filho, P. A. F.; Oliveira, T. P.; Caetano, M. R. S.; Araújo, I. M. S.; Figueiredo, F. C.; Júnior, J. R. S. Enhancement of the photodegradative potential of polymer composites containing babassu fiber. Materials Research 2020, 23(2), e20190438.
[10] Lotfi, A.; Li, H.; Dao, D. V.; Prusty, G. Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials. Epub ahead of print 28 April 2019. DOI: 10.1177/0892705719844546.
[11] Mei, L. H.; Oliveira, N. Caracterização de um compósito polimérico biodegradável utilizando Poli (ε-caprolactona) e borra de café. Polímeros 2017, 27(1), 99-109.
[12] Ferreira, E. S. B.; Luna, C. B. B.; Araújo, E. M.; Siqueira, D. D.; Wellen, R. M. R. Polypropylene/wood powder composites: Evaluation of PP viscosity in thermal, mechanical, thermomechanical, and morphological characters. Journal of Thermoplastic Composite Materials. Epub ahead of print 09 October 2019. DOI: 10.1177/0892705719880958.
[13] Siqueira, D. D.; Luna, C. B. B.; Ferreira, E. S. B.; Araújo, E. M.; Wellen, R. M. R. Tailored PCL/Macaíba fiber to reach sustainable biocomposites. Journal of Materials Research and Technology 2020, 9(5), 9691-9708.
[14] Li, M.; Pu, Y.; Thomas, V. M.; Yoo, C. G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A. J. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering 2020, Volume 200(11), 1-20.
[15] Mertens, O.; Krause, K. C.; Weber, M.; Krause, A. Performance of thermomechanical wood fibers in polypropylene composites. Wood Material Science & Engineering 2020, 15(2), 114-122.
[16] Bezerra, E. B.; França, D. C.; Morais, D. D. S.; Siqueira, D. D.; Araújo, E. M.; Wellen, R. M. R. Toughening of bio-PE upon addition of PCL and PEgAA. REM - International Engineering Journal 2019, 72(3), 469-478.
[17] Tarrés, Q.; Ardanuy, M. Evolution of interfacial shear strength and mean intrinsic single strength in biobased composites from bio-polyethylene and thermo-mechanical pulp-corn stover fibers. Polymers 2020, 12(6), 1-16.
[18] Ehman, N. V.; Nagy, D. I.; Felissia, F. E.; Vallejos, M. E.; Quispe, I.; Area, M. C.; Carrasco, G. C. Biocomposites of bio-polyethylene reinforced with a hydrothermal-alkaline sugarcane bagasse pulp and coupled with a bio-based compatibilizer. Molecules 2020, 25(9), 1.16.
[19] Hossain, M. S.; Razzak, M.; Uddin, M. B.; Chowdhury, A. M. S.; Khan, R. A. Physico-mechanical properties of jute fiber-reinforced LDPE-based composite: effect of disaccharide (sucrose) and gamma radiation. Radiation Effects and Defects in Solids 2020, 175(5), 516-528.
[20] Velis, H. H.; Golzar, M.; Yousefzade, O. Composites based on HDPE, jute fiber, wood, and thermoplastic starch in tubular pultrusion die: The correlation between mechanical performance and microstructure. Advanves in Polymer Technology 2018, 37(8), 3483-3491.
[21] Morais, J. A.; Gadioli, R.; Paoli, M. A. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading. Polímeros 2016, 26(2), 115-122.
[22] Castro, B. D.; Faria, P. E.; Vieira, L. M. G.; Rubio, C. V. C.; Maziero, R.; Rodrigues, P. C. M.; Rubio, J. C. C. Recycled green PE composites reinforced with woven and randomly arranged sisal fibres processed by hot compression moulding. Acta Technologica Agriculturae 2020, 23(2), 81-86.
[23] Seifu, B.; Singh, B.; Gutu, J. M.; Legesse, D. Mechanical behaviours of hybrid ensete/sisal fiber, reinforced polyethylene composite materials for injection moulding. SN Applied Sciences 2020, 2(4), 1-25.
[24] Bazan, P.; Nosal, P.; Kozub, B.; Kuciel, S. Biobased polyethylene hybrid composites with natural fiber: mechanical, thermal properties, and micromechanics. Materials 2020, 13(13), 1-13.
[25] Amoako, G.; Amoah, P. M.; Sam, F.; Sackey, S. S. Some mechanical properties of coconut fiber reinforced polyethylene composite to control environmental waste in Ghana. Energy and Environment Research 2018, 8(1), 1-9.
[26] Duarte, I. D. Rheological behavior of hybrid composites made of polyethylene/cotton fiber/montmothilonite clay. Graduation Conclusion Thesis, Federal University of Rio Grande do Norte, Natal-Brazil, 2019.
[27] Bosenbecker, M. W.; Cholant, G. M.; Silva, G. E. H.; Paniz, O. G.; Carreño, N. L. V.; Marini, J.; Oliveira, A. D. Mechanical characterization of HDPE reinforced with cellulose from rice husk biomass. Polímeros 2019, 29(4), e2019058.
[28] Gulitah, V.; Liew, K. C. Morpho-mechanical properties of wood fiber plastic composite (WFPC) based on three different recycled plastic codes. International Journal of Biobased Plastics 2019, 1(1), 22-30.
[29] Murayama, K.; Ueno, T.; Kobori, H.; Kojima, Y.; Suzuki, S.; Aoki, K.; Ito, H.; Ogoe, S.; Okamoto, M. Mechanical properties of wood/plastic composites formed using wood flour produced by wet ball-milling under various milling times and drying methods. Journal of Wood Science 2019, 65(5), 1-10.
[30] Castro, D. O.; Passador, F.; Filho, A. R.; Frollini, E. Use of castor and canola oils in “biopolyethylene” curauá fiber composites. Composites Part A: Applied Science and Manufacturing 2017, 95(4), 22-30.
[31] Koohestani, B.; Darban, A. K.; Mokhtari, P.; Yilmaz, E.; Darezereski, E. Comparison of different natural fiber treatments: a literature review. International Journal of Environmental Science and Technology 2019, 16(7), 629-642.
[32] Kumar, S. S.; Anbumalar, V. Selection and Evaluation of Natural Fibers –A Literature Review. IJISET - International Journal of Innovative Science, Engineering & Technology 2015, 2(11), 929-939.
[33] Poleto, M. Effect of styrene maleic anhydride on physical and mechanical properties of recycled polystyrene wood flour composites. Maderas. Ciencia y tecnología 2016, 18(4), 533-542.
[34] Poleto, M. Mechanical, dynamic mechanical and morphological properties of composites based on recycled polystyrene filled with wood flour wastes. Maderas. Ciencia y tecnología 2017, 19(4), 433-442.
[35] Amaral, F. P.; Broetto, F.; Batistella, C. B.; Jorge, S. M. A. Extração e caracterização qualitativa do óleo da polpa e amendoas de frutos de macaúba coletada na região de Botucatu – SP. Revista Energia na Agricultura 2011, 26(1), 12-20.
[36] Feng, C.; Li, Z.; Wang, Z.; Wang, B.; Wang, Z. Optimizing torque rheometry parameters for assessing the rheological characteristics and extrusion processability of wood plastic composites. Journal of Thermoplastic Composite Materials 2019, 32(1), 123-140.
[37] Ogah, A. O.; Afiukwa, J. N.; Nduji, A. A. Characterization and comparison of rheological properties of agro fiber filled high-density polyethylene bio-composites. Open Journal of Polymer Chemistry 2014, 4(1), 12-19.
[38] Ferreira, E. S. B.; Luna, C. B. B.; Araújo, E. M.; Siqueira, D. D.; Wellen, R. M. R. Polypropylene/wood powder/ethylene propylene diene monomer rubber‐maleic anhydride composites: Effect of PP melt flow index on the thermal, mechanical, thermomechanical, water absorption, and morphological parameters. Polymer Composites. Epub ahead of print 06 October 2020. DOI: 10.1002/pc.25841.
[39] Baptista, C. A.; Canevarolo, S. V. Grafting polypropylene over hollow glass microspheres by reactive extrusion. Polímeros 2019, 29(3), e2019037.
[40] Poletto, M. Maleated soybean oil as coupling agent in recycled polypropylene/wood flour composites: Mechanical, thermal, and morphological properties. Journal of Thermoplastic Composite Materials 2019, 32(8), 1056-1067.
[41] Poletto, M. Natural oils as coupling agents in recycled polypropylene wood flour composites: Mechanical, thermal and morphological properties. Journal of Thermoplastic Composite Materials 2020, 28(7), 443-450.
[42] França, D. C.; Almeida, T. G.; Abels, G.; Canedo, E. L.; Carvalho, L. H.; Wellen, R. M. R.; Haag, K.; Koschek, K. Tailoring PBAT/PLA/Babassu films for suitability of agriculture mulch application. Journal of Natural Fibers 2019, 16(7), 933-943.
[43] Seixas, J. N.; Granada, J. E.; Melo, C. C. N.; Silva, G. E. H.; Passador, F. R.; Cholant, G. M.; Oliveira, A. D.; Beatrice, C. A. G.; Gonçalves, M. R. F.; Carreno, N. N. L. V. Compósitos de polipropileno reforçados com fibras naturais do talo da banana em diferentes granulometrias. Revista Brasileira de Engenharia e Sustentabilidade 2018, 5(1), 32-37.
[44] Jiang, X.; Wang, J.; Wu, G.; Peng, X.; Ma, X. Significant reinforcement of polypropylene/wood flour composites by high extent of interfacial interaction. Journal of Thermoplastic Composite Materials 2019, 32(5), 577-592.
[45] Guo, C.; Li, L.; Li, H. Evaluation of interfacial compatibility in wood flour/polypropylene composites by grafting isocyanate silane coupling agent on polypropylene. Journal of Adhesion Science and Technology 2019, 33(5), 468-478.
[46] Guo, C.; Li, L.; Li, H. Evaluation of interfacial compatibility in wood flour/polypropylene composites by grafting isocyanate silane coupling agent on polypropylene. Journal Journal of Adhesion Science and Technology 2019, 33(5), 468-478.
[47] Hao, X.; Yi, X.; Sun, L.; Tu, D.; Wang, Q.; Ou, R. Mechanical properties, creep resistance, and dimensional stability of core/shell structured wood flour/polyethylene composites with highly filled core layer. Construction and Building Materials 2019, 226(11), 879-887.
[48] Lin, H.; Li, R.; Li, D.; Huang, Z.; Pang, J.; X.; Liu, W.; Yang, W. Hydrophobic wood flour derived from a novel p-TsOH treatment for improving interfacial compatibility of wood/HDPE composites. Cellulose 2020, 27(2), 4053–4065.
[49] Anbupalani, M.; Venkatachalam, C. D.; Rathanasamy, R. Influence of coupling agent on altering the reinforcing efficiency of natural fibre-incorporated polymers – A review. Journal of Reinforced Plastics and Composites 2020, 39(13-14), 520-544.
[50] Latif, R.; Wakeel, S.; Khan, N. Z.; Siddiquee, A. N.; Verma, S. L.; Khan, Z. A. Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: A review. Journal of Reinforced Plastics and Composites 2019, 38(1), 15-30.
[51] Venancio, M. M. H.; Mazzafera, P.; Carvalho, C. L.; Silveira, L. H.; Filho, J. A. A.; Bazzo, B. R.; Colombo, C. A. Teor de óleo e perfil de ácidos graxos durante o desenvolvimento de frutos de macaúba. 6° Congresso da Rede Brasileira de Tecnologia de Biodiesel, Rio Grande do Norte, Natal, p. 333-334, 2016.
[52] Poletto, M. Compósitos termoplásticos com madeira - uma breve revisão. Revista Interdisciplinar da Ciência Aplicada 2017, 2(4), 42-48.
[53] Hejna, A.; Romatowska, M. P.; Kosmela, P.; Zedler, L.; Korol, J.; Formela, K. Recent advances in compatibilization strategies of wood-polymer composites by isocyanates. Wood Science and Technology 2020, 54(7), 1091–1119.
[54] Ali, J. B.; Danladi, A.; Bukhari, M. M.; Mamza, P.; Zurina, M. Effects of Org-MMT on mechanical and morphological properties of HDPE/ HD-g-MAH /maize-cobs nanocomposites. SLU Journal of Science and Technology 2020, 1(1), 24-32.
[55] Migneault, S.; Kounaa, A.; Perré, P.; Rieldl, B. Effects of wood fiber surface chemistry on strength of wood–plastic composites. Applied Surface Science 2015, 343(7),11-18.
[56] Han, Y.; Shi, J.; Mao, L.; Wang, Z.; Zhang, L. Improvement of compatibility and mechanical performances of PLA/PBAT composites with epoxidized soybean oil as compatibilizer. Industrial & Engineering Chemistry Research 2020, 59(50), 21779-21790.
[57] Zhang, Q.; Lu, W.; Zhou, L.; Zhang, D.; Cai, H.; Lin, X. Tensile and flammability characterizations of corn straw slagging/high-density polyethylene composites. Journal of Thermoplastic Composite Materials. Epub ahead of print 08 April 2019. DOI: 10.1177/0892705719830459.
[58] Todkar, S. S.; Patil, S. A. Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites Part B: Engineering 2019, 174(10), 1-16.
[59] Pickering, K. L.; Efendy, M. G. A.; Le, T. M. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A Applied Science and Manufacturing 2016, 83(4), 98-112.
[60] Wu, H.; Xu, D.; Zhou, Y.; Gao, C.; Guo, J.; He, W.; Qin, S. Tung oil anhydride modified hemp fiber/polypropylene composites: the improved toughness, thermal stability and rheological property. Fibers and Polymers 2020, 21(10), 2084–2091.
[61] Poletto, M. Polypropylene-based wood-plastic composites: Effect of using a coupling agent derived from a renewable resource. Maderas. Ciencia y tecnología 2017, 19(3), 265-272.
[62] Sommer, W. Plasticizer. In: Gachter, R & Muller, H. Plastics Additives Handbook. 2° edition, Hanser, Munich, 1985.
[63] Luna, C. B. B.; Silva, D. F.; Araújo, E. M.; Mélo, T. J. A.; Oliveira, A. D. Efeito dos agentes de compatibilização SBS e SEBS-MA no desempenho de misturas de poliestireno/resíduo de borracha de SBR. Matéria (Rio J.) 2016, 21(3), 632-646.
[64] Rusayyis, M. A. B.; Schiraldi, D. A.; Maia, J. Property/morphology relationships in SEBS-compatibilized HDPE/poly(phenylene ether) blends. Macromolecules 2018, 51(16), 6513–6523.
[65] Bezerra, E. B.; França, D. C.; Morais, D. D. S.; Silva, I. D. S.; Siqueira, D. D.; Araújo, E. M.; Wellen, R. M. R. Compatibility and characterization of Bio-PE/PCL blends. Polímeros 2019, 29(2), e2019022.
[66] Luna, C. B. B.; Siqueira, D. D.; Araújo, E. M.; Wellen, R. M. R. Tailoring PS/PPrecycled blends compatibilized with SEBS. Evaluation of rheological, mechanical, thermomechanical and morphological characters. Materials Research Express 2019, 6(7), 075316.
[67] Firmino, H. C. T.; Chagas, T. F.; Melo, P. M. A.; Silva, L. B. Caracterização de compósitos particulados de polietileno de alta densidade/pó de concha de molusco. Matéria (Rio J.) 2017, 22(4), 1-12.
[68] Wolak, J. E.; White, J. L. Factors that allow polyolefins to form miscible blends: polyisobutylene and head-to-head polypropylene. Macromolecules 2005, 38, 10466-10471.
[69] Bosenbecker, M. W.; Croche, S.; Cholant, G.; Rosa, P.; Passador, F.; Marini, J.; Oliveira, A. Propriedades térmicas de compósitos de polietileno de alta densidade reforçados com celulose. Revista Brasileira de Engenharia e Sustentabilidade 2018, 5(1), 7-12.
[70] Machado, M. L. C.; Pereira, N. C.; Miranda, L. F.; Terence, M. C.; Pradella, J. G. C. Estudo das propriedades mecânicas e térmicas do polímero poli-3-hidroxibutirato (PHB) e de compósitos PHB/Pó de madeira. Polímeros: Ciência e Tecnologia 2010, 20(1), 65-71.
[71] Kaymakci, A.; Gulec, T.; Hosseinihashemi, S. K.; Ayrilmis, N. Physical, mechanical and thermal properties of wood/zeolite/plastic hybrid composites. Maderas. Ciencia y tecnología 2017, 19(3), 339-348.
[72] Garcia, D. P.; Caraschi, J. C.; Ventorim, G. Decomposição térmica de pellets de madeira por TGA. HOLOS 2016, 32(1), 327-339.
[73] Poletto, M. Effect of extractive content on the thermal stability of two wood species from Brazil. Maderas. Ciencia y tecnología 2016, 18(3), 435-442.
[74] Poletto, M.; Zattera, A. J.; Santana, R. M. C. Effect of natural oils on the thermal stability and degradation kinetics of recycled polypropylene wood flour composites. Polymer Composites 2014, 35(10), 1935-1942.
[75] Poletto, M. Natural oils as coupling agents in recycled polypropylene wood flour composites: Mechanical, thermal and morphological properties. Polymers and Polymer Composites 2020, 28(7), 443-450.
[76] Vijay, R.; Singaravelu, D. L.; Vinod, A.; Sanjay, M. R.; Siengchin, S. Characterization of alkali-treated and untreated natural fibers from the stem of parthenium hysterophorus. Journal of Natural Fibers. Epub ahead of print 09 May 2019. DOI: 10.1080/15440478.2019.1612308.
[77] Vijay, R.; Singaravelu, D. L.; Vinod. A.; Sanjay, M. R.; Siengchin, S.; Jawaid, Mand.; Parameswaranpillai, J. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. International Journal of Biological Macromolecules 2019, 125(15), 99-108.
[78] Zahari, W. Z. W.; Badri, R. N. R. L.; Ardyananta, H.; Kurniawan, D.; Nor, F. M. Mechanical properties and water absorption behavior of polypropylene/ljuk fiber composite by using silane treatment. Procedia Manufacturing 2015, 2(1), 573-578.
[79] Bezerra, A. F. C.; Carvalho, L. H.; Cavalcanti, W. S.; Barbosa, A. G. Mechanical behavior of composites reinforced with fibers caroa. Fibers and Polymers 2016, 17(1), 1908–1915.
[80] Karim, M. R. A.; Tahir, D.; Hussain, A.; Haq, E. U.; Khan, K. I. Sodium carbonate treatment of fibres to improve mechanical and water absorption characteristics of short bamboo natural fibres reinforced polyester composite. Plastics, Rubber and Composites 2020, 49(10), 425-433.
[81] Wang, X.; Guo, C.; Song, K. The effects of maleated polybutadiene-grafted polypropylene (MAPB-g-PP) content on the properties of wood flour/polypropylene composites. Journal of Vinyl and Additive Technology 2020, 26(1), 17-23.
[82] Fonseca, J. S.; Martins, G. A. Curso de Estatística, 3rd ed.; Editora Atlas: São Paulo, Brazil, 1986, pp. 286.