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Abstract

Background
Circulating alanine concentrations are associated with several cancers, but little is known about the causal
direction of the associations. This study aims to explore whether there is a relationship between circulating
alanine and ten common cancers.

Methods
We conducted two-sample Mendelian randomization (MR) analysis to assess the causal effects of circulating
alanine on ten common cancers. According to published genome-wide association studies (GWASs), we
obtained 36 alanine-related single nucleotide polymorphisms used as instrumental variables. For exposure data,
genetic association data of lung, breast, pancreatic, liver, colorectal, esophageal, stomach, thyroid, prostate and
ovarian cancer from GWAS Consortia were used, including up to 1,213,351 participants of European origin and
196,187 participants of East Asian. The inverse variance weighting (IVW) method was used for MR analysis,
and MR-Egger and the weighted median method further evaluated the pleiotropic effect.

Results
Speci�c to cancer GWAS, we found that circulating alanine was signi�cantly associated with increased
squamous cell lung cancer (odds ratio [OR]: 1.37, 95% CI = 1.00-1.87; P = 0.048), pancreatic cancer (OR 3.02,
95% CI = 1.35 to 6.76; P = 0.007), low grade serous ovarian cancer (OR 1.81, 95% CI = 1.01 to 3.25; P = 0.047). We
have no evidence of a convincing causal effect of circulating alanine concentrations predicted by genetics on
other cancer risks.

Conclusion
We observed the possible causal relationship between circulating alanine and lung squamous cell carcinoma,
pancreatic cancer, low-grade serial ovarian cancer. Further research is needed to verify this causal relationship.

Introduction
Metabolic reprogramming has been widely elucidated in tumor cells since the discovery of the Warburg effect in
the 1920s(Koppenol 2011). Metabolic reprogramming is a typical marker of tumor cells, including glucose fatty
acid and amino acid metabolism(Martínez-Reyes 2021). Amino acids are among the most suitable candidates
for focused metabolomics because they are either ingested or synthesized endogenous and play important
physiological roles as basic metabolites and metabolic regulators. L-alanine is a non-essential amino acid and
one of the amino acids that make up human protein. It is produced by pyruvate catalyzed by alanine
transaminase. Because L-alanine can participate in protein synthesis and gluconeogenesis, activate the AMPK
signal pathway and regulate cell, tissue and systemic metabolism(Adachi 2018), it has been widely used in
daily medical and healthcare products. Furthermore, the growth of tumors also needs nutrition. The
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accumulated evidence of basic research shows that serine(Muthusamy 2020), glycine(Tajan 2021) and other
non-essential amino acids(LeBoeuf 2020) are essential for tumor progression. Since alanine is the second
richest amino acid in protein located at the central hub of carbon metabolism, it is likely to be absorbed by
cancer cells(Caiola 2020), so evaluating the causal relationship between alanine and various cancers is urgent.

Most existing studies show that alanine can cause the proliferation of Kelch-like ECH-associated protein 1
(Keap1) mutant cells(LeBoeuf 2020), breast cells and inhibit the proliferation of gastric cancer cells(Gu 2015). It
can also affect the growth of non-adherent tumor cells(Muthusamy 2020). In observational research, S Leij-
Halfwerk suggests abnormal alanine metabolism in lung cancer patients with weight loss. These changes may
be related to weight loss but not lung cancer itself(Leij-Halfwerk 2000). Interestingly, alanine levels in the
plasma metabolic spectrum of breast cancer patients and healthy people decrease or increase(Huang 2016).
Increased alanine concentration was also observed in patients with prostate cancer(Swanson 2006). In a
metabolic analysis of ovarian cancer, benign ovarian tumors and normal people, the alanine level of ovarian
cancer was higher than that of the other two groups(Zhong 2022).Meanwhile, due to the limitations of the
experimental design, observational studies may be affected by potential confounders, leading to different
conclusions. Moreover, alanine has been considered a biomarker for detecting certain cancers(Kumar 2015).
Therefore, it remains unclear whether there is a true causal relationship between alanine itself and lung cancer.

MR is a new approach that could provide evidence about the putative causal relationship between modi�able
risk factors and disease6. Mendelian randomization relies on the natural assortment of genetic variants during
meiosis yielding a random distribution of genetic variants in a population7. Individuals are assigned genetic
variations or not at birth, regardless of environmental factors. With genetic variants used as instrumental
variables for risk factors, MR can be regarded as a natural analog of classical randomized controlled trials
(RCTs), which could determine whether the risk factors are causal for the disease conveniently8.

This study conducted a two-sample MR analysis to comprehensively evaluate the causal association between
alanine and lung cancer, using the summary data from the published GWASs.

Method

Data Source
The current MR analysis was comprehensively performed by leveraging information from ten GWASs totaling
1,213,351 participants of European origin and 196,187 participants of East Asian, including 247,271 cancer
cases and 996,080 controls across the lung (including lung adenocarcinoma and lung squamous cell
carcinoma), breast, pancreatic (including ER-positive and ER-negative), liver, colorectal, esophagus, stomach,
thyroid, prostate and ovarian cancer (including high-grade serous ovarian cancer cases and low-grade serous
ovarian cancer). The characteristics of each cancer-speci�c GWAS, including sample sizes and data sources,
are illustrated in Table 2.

Instrumental variable (IV) selection
Circulating alanine was the main exposure of interest. We collected GWAS-identi�ed circulating alanine-
associated single-nucleotide polymorphisms (Table 1) from a large GWAS available to date, which met the
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following criteria as instruments for MR analysis: (i) reported P-value < 5.00×10− 8, (ii) minor allele frequency
(MAF) ≥ 0.05. We use the F statistic (F = beta2/se2) to assess the strength of IV to avoid potential weak tool
bias as much as possible. If F > 10, the correlation between IV and exposure is considered to be strong enough
that the results of the MR analysis can be protected from weak instrumental bias(Burgess 2011).

Sensitivity analyses
To ensure that our �ndings were robust MR results, we performed heterogeneity analysis and MR-Egger
regression analysis. The heterogeneity test was used to assess whether a genetic variant’s effect on cancer risk
was proportional to its effect on circulating alanine. A �xed-effects model was utilized when no statistically
signi�cant heterogeneity was presented. Otherwise, the random-effects model was used to provide more
conservative estimates(Greenland1987). MR-Egger regression (MR-Egger intercept test) was �tted to evaluate
the presence of horizontal pleiotropy(Sproviero 2021). Therefore, IVW analysis should be performed after the
removal of genetic variants in the sensitivity analysis.

Our research used MR-base (http://www.mrbase.org/) for data analysis and three R packages (R version 4.20),
MRInstruments, TwoSampleMR, and googleAuthR, for statistical analysis.

Statistical Analysis
Our MR studies identi�ed and extracted exposure-associated SNP information at the genome-wide signi�cance
level. In addition, traits associated with alanine-related SNPs were searched on the PhenoScanner website
(http://www.phenoscanner.medschl.cam.ac.uk/) to determine whether the selected instrumental variables were
associated with any confounding factors in the potential association between alanine levels and cancer. To
ensure genetic instruments were independent, a pairwise-linkage disequilibrium (LD) clumping method was
used with an r2 cutoff of 0.001. The unquali�ed SNP is excluded from MR analysis.

Two-sample MR analysis evaluated the association between circulating alanine intake at baseline and the
cancer risk. Estimates of genetic causality were obtained by applying �xed effects IVW analysis. This was done
to determine the overall effect of alanine concentration on each outcome. In the MR analysis, the statistical
signi�cance threshold was P < 0.05. For each single nucleotide polymorphism (SNP), the ratio of the causal
effect of exposure on the outcome was estimated as the ratio of the effect of the SNP on the outcome to the
effect of the SNP on the exposure. In IVW, the overall estimate was derived from an IVW randomized analysis of
the ratio estimates for all variables in a set of instrumental variables. Considering that IVW methods can be
affected by directional pleiotropy (genetic variation affecting the outcome through pathways other than
exposure), we used MR-Egger and weighted median methods to check the robustness of IVW method
estimates(Hartwig 2017).

Results

Descriptives
For alanine-speci�c GWAS, the smallest F-statistics of the SNPs was 30 (larger than 10), indicating a strong
instrumental strength. List the genetic variation characteristics used to represent alanine, and estimates of R2

and F-statistics for each target are presented in Table 1. The sample sizes for each site-speci�c cancer in each
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participating study are listed in Table 2. Table 1 summarizes the characteristics of selected SNPs related to
alanine.
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Table 1
Summary of 36 traits related to circulating alanine-associated SNPs.

SNP Exposure Effect allele EAF P value Beta R2 F-statistic

rs2808454 Alanine T 0.543 1.7×10− 25 -0.043 0.001 109

rs79687284 Alanine C 0.035 4.7×10− 33 0.134 0.001 143

rs2160387 Alanine C 0.428 5.9×10− 28 -0.045 0.001 120

rs6752053 Alanine C 0.409 5.7×10− 10 -0.026 0.000 38

rs1047891 Alanine A 0.315 1.6×10− 10 -0.028 0.000 41

rs1260326 Alanine C 0.604 1.9×10− 40 -0.056 0.001 177

rs11715633 Alanine A 0.271 3.3×10− 10 -0.029 0.000 39

rs7624902 Alanine G 0.538 4.1×10− 21 -0.039 0.001 89

rs4693210 Alanine G 0.440 1.8×10− 15 -0.033 0.001 63

s138373837 Alanine T 0.024 1.3×10− 12 -0.096 0.000 50

rs6931514 Alanine G 0.262 1.4×10− 15 0.037 0.001 64

rs144262262 Alanine C 0.004 2.1×10− 08 -0.194 0.000 31

rs2385127 Alanine A 0.617 1.8×10− 11 -0.028 0.000 45

s11558471 Alanine G 0.315 3.1×10− 12 -0.031 0.000 49

rs13277542 Alanine G 0.489 4.9×10− 15 -0.033 0.001 61

rs56335308 Alanine A 0.027 3.7×10− 14 0.095 0.000 57

rs12379111 Alanine G 0.095 2.5×10− 09 -0.042 0.000 36

rs4237150 Alanine C 0.403 9.1×10− 12 0.028 0.000 47

rs2168101 Alanine A 0.308 9.0×10− 31 -0.053 0.001 133

rs7925445 Alanine G 0.556 5.6×10− 13 0.030 0.000 52

rs74093304 Alanine A 0.119 2.3×10− 15 0.050 0.001 63

s2933243 Alanine A 0.183 3.3×10− 56 0.084 0.002 250

rs7978353 Alanine G 0.405 2.0×10− 11 0.028 0.000 45

Note: SNP, single nucleotide polymorphism; EAF, effect allele frequency; MAF, minor allele frequency; SE,
standard error. R2 was calculated as follows: 2*beta2*EAF*(1-EAF). The F-statistic for each SNP was
calculated as follows: F = beta2/se2.
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SNP Exposure Effect allele EAF P value Beta R2 F-statistic

rs11183581 Alanine A 0.213 1.3×10− 31 0.058 0.001 137

rs4554975 Alanine G 0.563 3.3×10− 27 -0.045 0.001 117

rs4766214 Alanine G 0.457 8.3×10− 10 -0.025 0.000 38

rs5023078 Alanine C 0.531 2.8×10− 09 -0.024 0.000 35

rs58116791 Alanine C 0.235 4.2×10− 08 0.027 0.000 30

rs4903264 Alanine T 0.559 2.6×10− 08 0.023 0.000 31

rs339969 Alanine A 0.616 7.3×10− 09 0.024 0.000 33

rs8056893 Alanine A 0.733 2.8×10− 08 -0.026 0.000 31

rs34495668 Alanine C 0.096 1.1×10− 14 0.054 0.001 60

rs8061221 Alanine A 0.746 4.0×10− 35 0.058 0.001 153

rs7503139 Alanine T 0.167 1.3×10− 13 -0.041 0.000 55

rs73201506 Alanine G 0.046 8.6×10− 09 0.056 0.000 33

rs807672 Alanine G 0.531 3.9×10− 10 0.026 0.000 39

Note: SNP, single nucleotide polymorphism; EAF, effect allele frequency; MAF, minor allele frequency; SE,
standard error. R2 was calculated as follows: 2*beta2*EAF*(1-EAF). The F-statistic for each SNP was
calculated as follows: F = beta2/se2.
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Table 2
Summary of cancer-speci�c GWAS data included in Mendelian randomization (MR) analysis.

Trait Number
of cases

Number
of
controls

Sample
size

Population PubMed
ID

Year Sourcea

Lung cancer
overall

11,348 15,861 27,209 European 24880342 2014 ILCCO

Adenocarcinoma 3,442 14,894 18,336 European 24880342 2014 ILCCO

Squamous cell
carcinoma

3,275 15,038 18,313 European 24880342 2014 ILCCO

Breast cancer 122,977 105,974 228,951 European 29059683 2017 BCAC

ER-positive 69,501 105,974 175,475 European 29059683 2017 BCAC

ER-negative 21,468 105,947 127,442 European 29059683 2017 BCAC

Pancreatic cancer 442 195,745 196,187 East Asian 32581250 2019 Biobank
Japan

Liver cancer 168 372,016 372,184 European   2021 UK Biobank

Colorectal cancer 5,657 372,016 377,673 European   2021 UK Biobank

Esophageal
Cancer

740 372,016 372,756 European   2021 UK Biobank

Stomach Cancer 633 174,006 174,639 European   2021 GWAS

Thyroid cancer 649 431 1,080 European 23894154 2013 Italian

Prostate cancer 79,148 61,106 140,254 European 29892016 2018 PRACTICAL

Ovarian Cancer 25,509 40,941 66,450 European 28346442 2021 OCAC

High grade serous
ovarian cancer

13,037 40,941 53,978 European 28346442 2021 OCAC

Low grade serous
ovarian cancer

1,012 40,941 41,953 European 28346442 2021 OCAC

A dbGaP, the database of Genotypes and Phenotypes; ILCCO, the International Lung Cancer Consortium
Consortium (https://ilcco.iarc.fr/); BCAC, the Breast Cancer Association Consortium
(http://bcac.ccge.medschl.cam.ac.uk/); Biobank Japan, (http://biobankjp.org); PRACTICAL, the Prostate Cancer
Association Group to Investigate Cancer Associated Alterations in the Genome (http://practical.icr.ac.uk/blog/);
OCAC, the Ovarian Cancer Association Consortium (http://ocac.ccge.medschl.cam.ac.uk/).

A causal association between circulating alanine and cancer
risk
To investigate the causal effect of alanine on lung cancer, we conducted the conventional Mendelian
randomization analysis (IVW method). Table 3 shows MR estimates of circulating alanine and each cancer risk.
Notably, genetically predicted higher circulating alanine was causally associated with an increased risk of lung
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squamous cell carcinoma (OR 1.37, 95% CI = 1.01-1.87; P = 0.048) (Supplementary Fig. 1), pancreatic cancer (OR
3.02, 95% CI = 1.35 to 6.76; P = 0.007) (Supplementary Fig. 2) and low grade serous ovarian cancer (OR 1.81,
95% CI = 1.01 to 3.25; P = 0.047) (Supplementary Fig. 3). Our two‐sample MR analysis indicated that higher
circulating alanine was not associated with risks of the following cancers: lung adenocarcinoma, liver cancer,
colorectal cancer, esophageal cancer, stomach cancer, thyroid cancer, high-grade serous ovarian cancer, where
all P-values were above 0.05 (PIVW > 0.05).
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Table 3
Associations of circulating alanine instrumental variants (IVs) with multiple cancer risk in cancer-speci�c

GWAS.
Cancer site IVW method MR-Egger Weighted median method

OR (95% CI) P-
value

OR (95% CI) P-
value

OR (95% CI) P-
value

Lung cancer
overall

1.0435(0.8574-
1.2700)

0.6712 0.9794(0.5647–
1.6985)

0.9415 0.9924(0.7591–
1.2973)

0.9553

Adenocarcinoma 0.9284(0.6891–
1.2508)

0.6253 0.8864(0.3968-
1.9800)

0.7710 0.9975(0.6390–
1.5569)

0.9910

Squamous cell
carcinoma

1.3705(1.0026–
1.8735)

0.0481 0.8605(0.3648-
2.0300)

0.7341 1.1280(0.7234–
1.7589)

0.5951

Breast cancer 1.0628(0.9348–
1.2083)

0.3525 0.9986(0.6959–
1.4327)

0.9938 1.0600(0.9245–
1.2155)

0.4037

ER-positive 1.0628(0.9748–
1.2347)

0.1242 0.9894(0.7119–
1.3750)

0.9499 1.1321(0.9893–
1.3027)

0.0830

ER-negative 0.9671(0.8178–
1.1436)

0.0855 0.9392(0.5843–
1.5098)

0.7891 0.9496(0.7681–
1.1740)

0.6327

Pancreatic
cancer

3.0175(1.3476–
6.7568)

0.0072 10.5136(1.0706–
103.2430)

0.0553 1.5418(0.4812–
4.9404)

0.4662

Liver cancer 1.0001(0.9995–
1.0008)

0.7255 1.0005(0.9986–
1.0024)

0.5947 1.0001(0.9993–
1.0010)

0.7563

Colorectal
cancer

1.0002(0.9974–
1.0030)

0.8937 0.9936(0.9866–
1.0006)

0.0821 0.9997(0.9956–
1.0037)

0.8760

Esophageal
Cancer

1.0003(0.9992–
1.0013)

0.6432 1.0000(0.9973–
1.0028)

0.9766 1.0001(0.9985–
1.0016)

0.9398

Stomach Cancer 0.8862(0.4933–
1.5919)

0.6861 0.8198(0.1604–
4.1888)

0.8129 0.8071(0.3496–
1.8631)

0.6156

Thyroid cancer 1.7829(0.6218–
5.1124)

0.2820 1.0795(0.0672–
17.3468)

0.9576 1.7649(0.3991–
7.8049)

0.4538

Prostate cancer 1.0627(0.9334–
1.2099)

0.3581 1.4505(1.0609–
1.9832)

0.0272 1.1656(1.0184–
1.3341)

0.0261

Ovarian Cancer 0.9628(0.8136–
1.1392)

0.6585 1.2298(0.7792–
1.9410)

0.3835 0.9029(0.7104–
1.1476)

0.4038

High grade
serous ovarian
cancer

0.8892(0.7097–
1.1142)

0.3075 1.4385(0.7941–
2.6060)

0.2426 0.9740(0.7384–
1.2848)

0.8520

Low grade
serous ovarian
cancer

1.8084(1.0077–
3.2453)

0.0471 4.3559(0.8616–
22.0216)

0.0883 2.2330(0.9205–
5.4168)

0.0756

OR: odds ratio; 95% CI: 95% con�dence interval; IVW = Inverse-variance weighted.

Sensitivity analysis
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Implementing more SNP instruments would usually translate to better trait prediction and hence better power for
MR. It also has the potential to introduce higher levels of heterogeneity amongst the effects of the genetic
instruments. Except that breast cancer has heterogeneity (Pheterogeneity < 0.05) and prostate cancer shows
heterogeneity and diversity (Pheterogeneity < 0.05; PMR−Egger intercept < 0.05), other causal estimates have no
heterogeneity or directional pleiotropy (Pheterogeneity > 0.05; PMR−Egger intercept > 0.05) (Table 4).

Table 4
MR-Egger pleiotropy test of the associations between circulating alanine and risk

of cancer-speci�c GWAS.
Outcome Heterogeneity test MR-Egger

P-value intercept P-value

Lung cancer overall 0.9133 0.0027 0.8110

Adenocarcinoma 0.6086 0.0020 0.9041

Squamous cell carcinoma 0.3338 0.0201 0.2641

Breast cancer 0.000008 0.0027 0.7199

ER-positive 0.0226 0.0044 0.5154

ER-negative 0.0832 0.0012 0.8982

Pancreatic cancer 0.4422 -0.0558 0.2646

Liver cancer 0.0791 -0.00002 0.6587

Colorectal cancer 0.5206 0.0003 0.0515

Esophageal Cancer 0.405 0.00001 0.8701

Stomach Cancer 0.9389 0.0035 0.9207

Thyroid cancer 0.8778 0.0215 0.7069

Prostate cancer 0.0001 -0.0142 0.0431

Ovarian Cancer 0.3440 -0.0106 0.2701

High grade serous ovarian cancer 0.1004 -0.0207 0.1018

Low grade serous ovarian cancer 0.6434 -0.0377 0.2660

Discussion
In this large-scale genetic association study, we evaluated the causal relationship of circulating alanine with the
risk of common cancers capitalizing on the largest available cancer-speci�c GWAS data, the UK Biobank cohort
of European ancestry, and the part of the East Asian population. Our MR analysis demonstrated that genetically
predicted alanine level was causally associated with an increased risk of lung squamous cell carcinoma,
pancreatic cancer, prostate cancer and low-grade serous ovarian cancer, while no causal association was
observed for other cancers.
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The main function of amino acids in protein synthesis. Meanwhile, amino acid metabolism is an important
metabolic pathway for regulating tumor cell growth, reproduction(Vettore 2020) and supporting immunity(Kelly
2020). A growing body of evidence has suggested that amino acids are potential biomarkers that could be used
in cancer screening(Mandarano 2021; Shingyoji 2013). Our research provides evidence for the potential causal
relationship between alanine and cancer. Previous observational studies and routine epidemiological analysis
reports are only sometimes consistent. In a case-control study involving 564 researchers, it was found that the
plasma concentration of Ala in NSCLC patients was signi�cantly higher than that in the control group. The
model was constructed in combination with other amino acids and its stability was veri�ed in 4079 sample
species(Maeda 2010). In a prospective nested case-control study, Wang S conducted an untargeted
metabolomics study in subjects with incident pancreatic cancer (n = 68) and matched controls (n = 136) and the
results showed that alanine was signi�cantly associated with an increased risk of pancreatic cancer(Wang
2022). Moreover, in another study, the concentration of alanine in plasma and urine of the control group was
lower than that of ovarian cancer(Zhong 2022). In a case-control study, statistically signi�cant differences in
serum alanine levels were found in patients with prostate cancer compared to the control group(Dereziński
2017). Yang Q et al. also found that the concentration of alanine in malignant ascites of patients with ovarian
cancer was signi�cantly higher than that of normal and was related to the stage of the disease(Yang 2022).
However, in another clinical and laboratory study, alanine has a proliferative effect on breast cancer cells and an
inhibitory effect on gastric cancer cells(Gu 2015).

Alanine is located at the center of carbon metabolism and is synthesized by alanine aminotransferase (ALAT). It
is thought to be mainly carried out in mitochondria. It competes with pyruvate dehydrogenase (PDH) for
mitochondrial pyruvate and then forms acetyl coenzyme A. Despite these inconsistencies in observational
studies, there is still some new evidence indicating the importance of alanine metabolism in cancer. For
example, the biosynthesis of alanine has been proven to be related to cell proliferation(Coloff 2016). Caiola E et
al. determined that the catabolism of alanine-derived pyruvate plays an important role in driving NSCLC cell
survival after glutaminase inhibition(Caiola 2020). Recent evidence shows that ALAT activity is associated with
α- Ketoglutaric acid and is crucial to driving ECM formation(Elia 2019). More su�cient evidence shows that
pancreatic stellate cells secrete alanine through autophagy to support the TCA cycle and promote the
proliferation and survival of pancreatic cancer cells(Davidson 2017). Pancreatic cancer and pancreatic stellate
cells have used the differential expression of SLC38A2 and SLC1A4 to form an alanine exchange niche. Cells
lacking SLC38A2 cannot concentrate alanine in the cells, resulting in signi�cant tumor growth restriction. It is a
promising method for treating pancreatic cancer by inhibiting SLC38A2-targeted alanine uptake and
utilization(Parker 2020).

In our study, IVW results did not show a causal relationship between circulating alanine and prostate cancer, but
due to its heterogeneity (Pheterogeneity < 0.05) (Table 4), we need to consider the impact of heterogeneity, and in
the case of horizontal pleiotropy (PMR−Egger intercept < 0.05) (Table 4), we use the results of the MR-Egger
method(Sproviero 2021) (ORMR−Egger 1.45, 95% CI = 1.06 to 1.98; PMR−Egger = 0.027) (Table 3). The same result
was also shown in another gene predicting the risk relationship between alanine and prostate cancer(Yang
2022).

Our study has several strengths. This was the �rst large-scale MR analysis that systemically evaluated a causal
association between circulating alanine and the risk of multiple cancers, leveraging cancer-speci�c GWAS data
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of 247,271 solid cancer cases and controls. This may enrich our understanding of various potential risk factors
for cancer.

This study has several limitations. First, because the sample size of some cancers is not enough, it may not
represent the overall population. Second, our results are mainly based on participants of European ancestry and
may not be generalizable to other ethnic populations.

Conclusion
In summary, based on this MR study making causal inferences between circulating alanine concentrations and
the risk of multiple cancers. Our MR shows that circulating high alanine has a causal effect on the development
risk of lung squamous cell carcinoma, pancreatic cancer, prostate cancer and low-grade serous ovarian cancer,
which conveys an important public health message that taking alanine supplements may promote the
occurrence and development of some cancers. In addition, because of the limited statistical capacity of some of
the cancers in our studies, large-scale studies of these cancers will be needed in the future to con�rm our
results. At the same time, further studies are warranted to validate the circulating alanine and the potential
mechanisms of the effects on different cancers.
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